一次函数综合测试题
- 格式:doc
- 大小:217.00 KB
- 文档页数:4
第6章《一次函数》综合测试卷一、选择题(本大题共10小题,每小题2分,共20分)1.一次函数y =(a+1)x+a+2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣12.若点,在直线上,则m 与n 的大小关系是( ).A .B .C .D .无法确定3.如图,若一次函数y 1=﹣x ﹣1与y 2=ax ﹣3的图像交于点P(m ,﹣3),则关于的不等式﹣x ﹣1>ax ﹣3的解集是( )A .x <2B .x >﹣3C .x >2D .x <﹣34.一次函数中,当函数值时,自变量x 的取值范围为( )A .B .C .D .5.如图1,在等边中,点D 是边的中点,点P 为边上的一个动点,设,图1中线段的长为y ,若表示y 与x 的函数关系的图象如图2所示,则等边的周长为())A m 3,2B n ⎛⎫ ⎪⎝⎭1y x =+m n >m n <m n =36y x =-+0y <ABC V BC AB AP x =DP ABC VA .4B .C .12D .6.如图,点A ,B ,C 在一次函数y =-2x +b 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积和是( )A .1B .3C .3(b -1)D.7.如图,直线与直线相交于点P ,若不等式的解集是,则的值等于( )A .B .C .3D .8.如图,一次函数与一次函数的图象交于P (1,3),则下列说法正确的个数是( )个(1)方程的解是(2)方程组的解是(3)不等式的解集是(4)不等式的解集是.()223b -1:3m y x =+2:m y kx b =+(3)0kx b x +-+<1x >-b k 1313-3-1y ax b =+24y kx =+3ax b +=1x =4y ax b y kx =+⎧⎨=+⎩31x y =⎧⎨=⎩4ax b kx ++>1x >44kx ax b ++>>01x <<A .1B .2C .3D .49.在地球中纬度地区,从地面到高空大约之间,气温随高度的升高而下降,每升高,气温大约下降;高于但不高于,气温几乎不再变化,某城市地处中纬度地区,该市某日的地面气温为,设该城市距离地面高度为处的气温为,则与的函数图像是( )A .B .C .D .10.如图,在平面直角坐标系中,点是直线与直线的交点,点B 是直线与y 轴的交点,点P 是x 轴上的一个动点,连接PA ,PB ,则的最小值是()11km 1km 6C ︒11km 20km 20C ︒()km 020x x ≤≤C y ︒y x ()3,A a 2y x =y x b =+y x b =+PA PB +A .6B .C .9D .二、填空题(本大题共6小题,每小题2分,共12分)11.已知正比例函,当时,.则比例系数k=__________.12.若是正比例函数,则______.13.若直线是由直线向下平移了3个单位长度得到的,则kb =______.14.直线y =kx +b (k ≠0)平行于直线且经过点,那么这条直线的解析式是______.15.如图,直线y =﹣x+7与两坐标轴分别交于A 、B 两点,点C 的坐标是(1,0),DE 分别是AB 、OA 上的动点,当△CDE 的周长最小时,点E 的坐标是 _____.16.如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.三、解答题(本大题共10题,共68分)17.(4分)判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.y kx =2x =-10y =()212a y a x b =++-()2021a b -=y kx b =+21y x =--12y x =()0,2ABCD (1,0)A (3,0)D -AD x :L y kx =ABCD O E 35OE <<k18.(4分)在平面直角坐标系中,一次函数的图像经过和.(1)求一次函数解析式.(2)当,求y 的取值范围.19.(6分)小明从A 地出发向B 地行走,同时晓阳从B 地出发向A 地行走,小明、晓阳离A 地的距离y (千米)与已用时间x (分钟)之间的函数关系分别如图中、所示.(1)小明与晓阳出发几分钟时相遇?(2)求晓阳到达A 地的时间.20.(6分)如图,在平面直角坐标系中,点O 为坐标原点,直线y =kx +b 经过A (-6,0),B(1,0)(0,2)23x -<≤1l 2l(0,3)两点,点C 在直线AB 上,C 的纵坐标为4.(1)求k 、b 的值及点C 坐标;(2)若点D 为直线AB 上一动点,且△OBC 与△OAD 的面积相等,试求点D 的坐标.21.(8分)如图,直线与直线相交于点.(1)求a ,b 的值;(2)求△ADC 的面积;(3)根据图象,写出关于x 的不等式的解集.22.(8分)定义:在平面直角坐标系中,对于任意一点如果满足,我们就把点称作“和谐点”.(1)在直线上的“和谐点”为________;:AD y x b =-+1:12BC y x =+()2,B a 1012x b x <-+<+xOy ()P x y ,2||y x =()P x y ,6y =(2)求一次函数的图象上的“和谐点”坐标;(3)已知点,点的坐标分别为,,如果线段上始终存在“和谐点”,直接写出的取值范围是________.23.(6分)某校开展爱心义卖活动,同学们决定将销售获得的利润捐献给福利院.初二某班的同学们准备制作A 、B 两款挂件来进行销售.已知制作3个A 款挂件、5个B 款挂件所需成本为46元,制作5个A 款挂件、10个B 款挂件所需成本为85元.已知A 、B 两款挂件的售价如下表:手工制品A 款挂件B 款挂件售价(元/个)128(1)求制作一个A 款挂件、一个B 款挂件所需的成本分别为多少元?(2)若该班级共有40名学生.计划每位同学制作2个A 款挂件或3个B 款挂件,制作的总成本不超过590元,且制作B 款挂件的数量不少于A 款挂件的2倍.设安排m 人制作A 款挂件,请说明如何安排,使得总利润最大,最大利润是多少?2y x =-+P Q (2)P m ,(,5)Q m PQ m24.(6分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图像解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式;25.(10分)如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点在第二象限内,点、点在轴的负半轴上,,.(1)求点的坐标;(2)如图,将绕点按顺时针方向旋转到的位置,其中交直线于点,分别交直线、于点、,则除外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)(3)在(2)的基础上,将绕点按顺时针方向继续旋转,当的函数表达式.26.(10分)在平面直角坐标系中,对于点,给出如下定义:当点满足时,称点是点的等和点,已知点.(1)在中,点的等和点有__________;(2)点在直线上,若点的等和点也是点的等和点,求点的坐标;(3)已知点和线段,点C 也在 x 轴上且满足,线段上总存在线段上每个点的等和点.若的最小值为5,直接写出的值.A B C x 30CAO ∠=︒4OA =C ACB △C 30°A CB ''V A C 'OA E A B ''OA CA F G A B C AOC ''≌△△A CB ''V C COE V CE xOy 11(,)P x y 22(,)Q x y 1212x x y y +=+Q P ()3,0P ()()()1230,31,421,,Q Q Q --,P A 5y x =-+P A A (,0)B b MN 1BC =MN PC MN b答案一、选择题1.D【解析】解:∵一次函数y=(a+1)x+a+2的图象过一、二、四象限,∴a+1<0,a+2>0解得-2<a <-1.故选:D .2.B【解析】∵一次函数中,∴随的增大而增大∴故选:B .3.A【解析】解:由题意,将点代入一次函数得:,解得,不等式表示的是一次函数的图像位于一次函数的图像上方,则由函数图像得:,1y x =+10k =>y x 32<m n<(),3P m -11y x =--13m --=-2m =13x ax -->-11y x =--23y ax =-2x <故选:A .4.B【解析】解:∵一次函数y=-3x+6,∴当y=0时,x=2,y 随x 的增大而减小,∴当函数值y <0时,自变量x 的取值范围为x >2,在数轴上表示为: ,故选:B .5.C【解析】解:由图2可得y 最小值∵△ABC 为等边三角形,分析图1可知,当P 点运动到DP ⊥AB 时,DP 长为最小值,∴此时DP ∵DP ⊥AB ,∴,∵△ABC 为等边三角形,∵∠B =60°,AB=BC=AC ,∴,∴BD=2BP ,根据勾股定理可知,,∴,∴或(舍去),,∵D 为BC 的中点,∴BC =4,∴AB=BC=AC=4,∴等边△ABC 的周长为12.故选:C .90DPB ∠=︒906030PDB ∠=︒-︒=︒222BD BP DP =+22212BD BD ⎛⎫=+ ⎪⎝⎭2BD =2BD =-6.B【解析】解:由题意可得A 、C 的坐标分别为(-1,b +2)、(2,b -4),又阴影部分为三个有一直角边都是1,另一直角边的长度和为A 点纵坐标与C 点纵坐标之差的三角形,所以阴影部分的面积为:,故选B .7.B【解析】∵kx+b −(x+3)<0的解集是x>−1∴P 点横坐标是−1,则纵坐标为2则P (−1,2),由图可知直线m 2与y 轴的交点坐标是(0,-1),把P (−1,2)和(0,−1)代入∴ ∴ 故选:B .8.C【解析】解:因为一次函数与一次函数的图象交于P (1,3),所以(1)方程ax+b=3的一个解是x=1,正确;(2)方程组的解是,错误;(3)不等式ax+b>kx 十4的解集是x>1,正确;(4)不等式4>kx 十4>ax+b 的解集是0<x<1,正确.()()112432b b ⎡⎤⨯⨯+--=⎣⎦y kx b =+21k b b -+=⎧⎨=-⎩31k b =-⎧⎨=-⎩13b k =-1y ax b =+24y kx =+4y ax b y kx =+⎧⎨=+⎩31x y =⎧⎨=⎩9.B【解析】解:由题意可知,当高度x=0时,y=20℃;当x=11时,y=20-11×6=-46℃,∴y=-6x+20()当时,y=-46根据一次函数的性质可知,只有B 选项的图像符合题意.故答案为:B .10.D【解析】解:作点A 关于x 轴的对称点,连接,如图所示:则PA+PB 的最小值即为的长,将点A (3,a )代入y=2x ,得a=2×3=6,∴点A 坐标为(3,6),将点A (3,6)代入y=x+b ,得3+b=6,解得b=3,∴点B 坐标为(0,3),根据轴对称的性质,可得点A'坐标为(3,-6)∴∴PA+PB 的最小值为故选:D .二、填空题011x ≤<1120x ≤≤A 'A B 'A B 'A B '==【解析】解:把,代入得:,∴.故答案为:.12.【解析】∵是正比例函数,∴,,,∴,,∴,故答案为:.13.8【解析】解∶ 直线向下平移了3个单位长度得到,∴k=-2,b=-4,∴.故答案为:8.14.【解析】解:根据题意得,将代入得b =2,直线解析式为,故答案为:.15.10【解析】解:如图,点C 关于OA 的对称点(-1,0),点C 关于直线AB 的对称点,∵直线AB 的解析式为y=-x+7,∴直线C 的解析式为y=x-1,由,得 2x =-10y =y kx =102k =-5k =-5-1-()212a y a x b =++-10a +≠21a =20b -=1a =2b =()2021121-=-1-21y x =--24y x =--(2)(4)8kb =-⨯-=122y x =+12k =()0,212y x b =+∴122y x =+122y x =+C 'C ''C ''71y x y x =-+⎧⎨=-⎩43x y =⎧⎨=⎩∴F (4,3),∵F 是C 中点,∴可得(7,6).连接与AO 交于点E ,与AB 交于点D ,此时△DEC 周长最小,△DEC 的周长=DE+EC+CD=E +ED+D ==10.故答案为10.16.且【解析】解:如图,设BC 与y 轴交于点M ,,,,∴E 点不在AD 边上,;①如果,那么点E 在AB 边或线段BM 上,当点E 在AB 边且时,由勾股定理得,,,,C ''C ''C 'C ''C 'C ''C 'C ''k >0k <43k ≠-13OA =< 3OD =3OE >0k ∴≠0k >3OE =222918AE OE OA =-=-=AE ∴=(1E ∴当直线经过点,时,,,当点E 在线段BM 上时,,②如果,那么点E 在CD 边或线段CM 上,当点E 在CD 边且时,E 与D 重合;当时,由勾股定理得,,,,此时E 与C 重合,当直线经过点时,.当点E 在线段CM 上时,,且,符合题意;综上,当时,的取值范围是且,故答案为:且.三、解答题17.解:设过A ,B 两点的直线的表达式为y =kx +b .由题意可知,解得 ∴过A ,B 两点的直线的表达式为y =x -2.∵当x =4时,y =4—2=2.∴点C (4,2)在直线y =x -2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.18.(1)解:设一次函数解析式为∵一次函数的图像经过和y kx =(1k =22216117OB AB OA =+=+= 5OB ∴=<5OE OB <=<k ∴>0k <3OE =5OE =22225916DE OE OD =-=-=4DE ∴=(3,4)E ∴-y kx =()3,4-43k =-5OE OC <=0k ∴<43k ≠-35OE <<k k >0k <43k ≠-k >0k <43k ≠-1320k b b =+⎧⎨-=+⎩12k b =⎧⎨=-⎩(0)y kx b k =+≠(1,0)(0,2)解得:∴一次函数解析式为;(2)解:由(1)得:,一次函数的图像y 随x 的增大而减小,当时,,当时,,当时,.19.(1)解:设的解析式为:.∵函数的图象过,,即,,当时,,∴小明与晓阳出发12分钟时相遇.(2)解:∵晓阳的速度为(千米/分钟),∴晓阳到达A 地的时间为分钟.20.(1)解:(1)依题意得: 解得 ∴∵点C 在直线AB 上,C 的纵坐标为402k b b +=⎧∴⎨=⎩22k b =-⎧⎨=⎩22y x =-+20k =-<∴2x =-()2226y =-⨯-+=3x =2324y =-⨯+=-∴23x -<≤46y -≤<2l 11y k x =()30,41430k ∴=1215k =1215y x ∴=1 1.6y =12x =4 1.60.212-=4200.2==603k b b -+=⎧⎨=⎩123k b ⎧=⎪⎨⎪=⎩1,32k b ==点C 坐标为(2,4)(2)∵B (0,3),C 的纵坐标为4∴∴设点D 点坐标为,又点A (-6,0)∴ 解得 当时当时∴点D 坐标为(-4,1)或(-8,-1)21.(1)解∶∵直线经过点,∴,∴点B 的坐标为,∵直线经过点,∴,∴;(2)解:∵,∴直线AD 的解析式为,令,则,令,则,∴A (0,4),D (4,0),∴OA=OD=4,直线与x 轴交于点C ,令,则,∴C (-2,0),∴OC=2,∴CD=6,13422x x +==13232OBC S ∆=⨯⨯=3OAD S ∆=(),D D x y 162D OA y ⨯⨯=1D y =±1=D y 4D x =-1D y =-8D x =-112y x =+()2,B a 12122a =⨯+=22(,)y x b =-+()2,2B 22b =-+4b =4b =4y x =-+0x =4y =0y =4x = 112y x =+0y =2x -=∴;(3)解:点B 的坐标为,点D 的坐标为,∴根据图象可得:关于x 的不等式的解集为.22.(1)解:由题意得:,解得:x =3或x =-3,在直线上的“和谐点”为:(3,6)和(-3,6);(2)由“和谐点”的定义可知或,联立,解得:,联立,解得:,所以一次函数的图象上的“和谐点”坐标为(,)和(-2,4);(3)如图为的函数图象的简图,PQ y 轴,①当m >0时,令,解得:,令,解得:,由图可知,如果线段上始终存在“和谐点”,的取值范围是;②当m <0时,令,解得:,令,解得:,由图可知,如果线段上始终存在“和谐点”,的取值范围是,综上,当或时,线段上始终存在“和谐点”.11641222ACD S CD OA =⋅=⨯⨯=V 22(,)40(,)1012x b x <-+<+24x <<26x =6y =2y x =2y x =-22y x y x =-+⎧⎨=⎩2343x y ⎧=⎪⎪⎨⎪=⎪⎩22y x y x =-+⎧⎨=-⎩24x y =-⎧⎨=⎩2y x =-+23432y x =∥22y x ==1x =25y x ==52x =PQ m 512m ≤≤22y x =-=1x =-25y x =-=52x =-PQ m 512m -≤≤-512m ≤≤512m -≤≤-PQ23.(1)由题意可设制作一个A 款挂件、一个B 款挂件所需的成本分别为x 、y 元,则,解得将①得6x+10y=92,再将①②得x=7,再将x=7回代②得y=5,解得,答:制作一个A 款挂件、一个B 款挂件所需的成本分别7元、5元;(2)由题意得设(40)人制作B 款挂件,总利润为w 元,则w=(12),∴w 随m 的增大而增大,∵制作的总成本不超过590元,且制作B 款挂件的数量不少于A 款挂件的2倍,∴,解得10∵m 为正整数,∴当m=17时,w 取得最大值,此时w=377,(40)=23,答:当安排17人制作A 款挂件,23人制作B 款挂件时,总利润最大,最大利润为377元.24.(1)根据图像信息:货车的速度(千米/时).∵轿车到达乙地的时间为货车出发后4.5小时,354651085x y x y +=⎧⎨+=⎩①②2⨯-75x y =⎧⎨=⎩m -7-2(85)3(40)360m m m ⨯+-⨯-=+7253(40)5903(40)22m m m m ⨯+⨯-≤⎧⎨-≥⨯⎩1177m ≤≤m -300605v ==货∴轿车到达乙地时,货车行驶的路程为:(千米).此时,货车距乙地的路程为:(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD 段函数解析式为()().∵,在其图像上,∴,解得.∴CD 段函数解析式:;25.(1)解:在中,,,所以,则;(2)解:或或(3)解:如图1,过点作于点.∵∴.∵在Rt △AOC 中,,IOC=2,∠ACO=90°,∴∴点A(-2,,设直线OA 的解析是为,则,∴,∴直线OA 的解析式为,令,解得x=,∴点的坐标为. 4.560270⨯=30027030-=y kx b =+0k≠ 2.5 4.5x ≤≤(2.5,80)C (4.5,300)D 2.5804.5300k b k b +=⎧⎨+=⎩110195k b =⎧⎨=-⎩(1101952.5 4.)5y x x =-≤≤Rt AOC V 4OA =30CAO ∠=︒122CO OA ==()2,0C -A EF AGF '≌△△B GC CEO '≌△△A GC AEC'≌△△E 1E M OC ⊥M 1112COE S CO E M =⋅=△1E M =4OA =AC ===y mx =()2m =⨯-m =y ==14-1E 14⎛- ⎝设直线的函数表达式为,,解得.∴.同理,如图2所示,点的坐标为.设直线的函数表达式为,则,解得 .∴综上所得或.26.(1)Q 1(0,3),则0+3=3+0,∴Q 1(0,3)是点P 的等和点;Q 2(1,4),则1+3=4+0,∴Q 2(1,4)是点P 的等和点;Q 3(-2,-1),则-2+3≠-1+0,∴Q 3(-2,-1)不是点P 的等和点;故答案为:Q 1,Q 2;(2)设点P (3,0)的等和点为(m ,n ),∴3+m=n ,有m-n=-3,1CE 11y k x b =+11112014k b k b -+=⎧⎪⎨-+=⎪⎩11k b ⎧=⎪⎪⎨⎪=⎪⎩y x =+2E 1,4⎛ ⎝2CE 22y k x b =+22222014k b k b -+=⎧⎪⎨+=⎪⎩22k b ⎧=⎪⎪⎨⎪=⎪⎩y x =y x =+y =∵A 在直线y=-x+5上,∴设A (t ,-t+5),则A 点的等和点为(m ,n ),∴t+m=-t+5+n ,由m-n=-2t+5,∴-3=-2t+5,解得t=4,∴A (4,1);(3)∵P (3,0),∴P 点的等和点在直线l :y=x+3上,∵B (b ,0),BC=1,且C 在x 轴上,∴C (b-1,0)或(b+1,0)∴C 点的等和点在直线l 1:y=x+b-1或y=x+b+1上,设直线l 1与y 轴交于C',直线l 与y 轴交于P',则C'(0,b-1)或(0,b+1),P'(0,3),①当点C 在点B 的左边时,如图1,直线CC'与直线l 交于N ,当M 与C'重合时,MN 最小为5,∵△MNP'是等腰直角三角形,∴∴,∴如图2,同理得∴3+(1-b )∴②当点C 在点B 的右边时,如图3,同理得:∴,∴如图4,同理得:,∴,∴综上,b 的值是2−或4−或.。
一次函数测试题及答案一、选择题(每题2分,共10分)1. 一次函数y=kx+b的图象经过点(2,3),则k+b的值为()A. 1B. 3C. 5D. 72. 一次函数y=kx+b的图象与y轴交于点(0,2),则b的值为()A. 1B. 2C. 3D. 43. 若一次函数y=kx+b的图象经过第一、二、三象限,则k和b的取值范围是()A. k>0,b>0B. k<0,b>0C. k>0,b<0D. k<0,b<04. 一次函数y=kx+b的图象不经过第四象限,则k和b的取值范围是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05. 一次函数y=kx+b的图象经过点(-1,-2)和(2,3),则k的值为()A. 1B. 2C. 3D. 4二、填空题(每题3分,共15分)6. 一次函数y=kx+b的图象经过点(1,0),则b= 。
7. 一次函数y=kx+b的图象与x轴交于点(3,0),则k= 。
8. 一次函数y=kx+b的图象经过点(0,1)和(1,3),则k= 。
9. 一次函数y=kx+b的图象经过点(-2,5)和(1,1),则b= 。
10. 一次函数y=kx+b的图象经过点(2,-3)和(-1,2),则k= 。
三、解答题(每题10分,共20分)11. 已知一次函数y=kx+b的图象经过点(1,-2)和(-1,4),求该一次函数的解析式。
12. 已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,-2),求该一次函数的解析式。
答案:1. B2. B3. A4. A5. B6. -k7. -3/28. 29. 110. 5/311. y=-3x-212. y=2/3x-2结束语:以上是一次函数测试题及答案的全部内容,希望对你有所帮助。
中考数学总复习《一次函数》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为( )A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为( )A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是( )A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2B.x=0C.x=-1D.x=-35.(2024·北海模拟)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是( )A.x≤3B.x≥3C.x≥-3D.x≤06.(2024·青海)如图,一次函数y=2x-3的图象与x轴相交于点A,则点A关于y轴的对称点是( )A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是( )A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为( )A.y =12-0.5xB.y =12+0.5xC.y =10+0.5xD.y =0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式 .10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为( )A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为.13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.参考答案A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为(D)A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为(B)A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是(D)A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是(D)A .x =2B .x =0C .x =-1D .x =-35.(2024·北海模拟)直线y =kx +3经过点A (2,1),则不等式kx +3≥0的解集是(A) A .x ≤3 B .x ≥3 C .x ≥-3 D .x ≤06.(2024·青海)如图,一次函数y =2x -3的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是(A)A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是(C)A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为(B)A.y=12-0.5xB.y=12+0.5xC.y=10+0.5xD.y=0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式y=x+1(答案不唯一).10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;【解析】(1)由表中的数据,x的增加量不变∴y是x的一次函数设y=kx+b由题意得:{k+b=62k+b=8.4,解得:{k=2.4 b=3.6∴y与x之间的函数解析式为y=2.4x+3.6;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?【解析】(2)设碗的数量有x个,则:2.4x+3.6≤28.8,解得:x≤10.5,∴x的最大整数解为10答:碗的数量最多为10个.B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为(C)A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为(3×22 024,√3×22 024).13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于5.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);【解析】(1)描点如图所示:(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);【解析】(2)∵y=kx(k≠0)转化为k=xy=23×156≠24×163≠25×170≠…∴y与x的函数不可能是y=kx故选一次函数y=ax+b(a≠0),将点(23,156),(24,163)代入解析式得:{23a+b=15624a+b=163,解得{a=7 b=−5∴一次函数解析式为y=7x-5.(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.【解析】(3)当x=25.8时,y=7×25.8-5=175.6.答:脚长约为25.8 cm时,估计这个人的身高为175.6 cm.。
专题09 一次函数综合过关检测(考试时间:90分钟,试卷满分:100分)一.选择题(共10小题,满分30分,每小题3分)1.(3分)关于一次函数y =﹣x +1的描述,下列说法正确的是( )A .图象经过点(﹣2,1)B .图象经过第一、二、三象限C .y 随x 的增大而增大D .图象与y 轴的交点坐标是(0,1)2.(3分)已知一次函数y =﹣x +3,当函数值y <0时,自变量x 的取值范围在数轴上表示正确的是( )A .B .C .D .3.(3分)已知点(﹣1,m )与点(0.5,n )都在直线y =2x +1上,则m 、n 的大小关系是( )A .m >nB .m <nC .m =nD .无法判断4.(3分)若直线y =2x ﹣1与y =x ﹣k 的交点在第四象限,则k 的取值范围是( )A .k >1B .k <12C .k >1或k <12D .12<k <15.(3分)关于一次函数y =﹣2x +1,下列说法不正确的是( )A .图象与y 轴的交点坐标为(0,1)B .图象与x 轴的交点坐标为(12,0)C .y 随x 的增大而增大D .图象不经过第三象限6.(3分)一次函数y =kx ﹣k 的大致图象可能如图( )A .B .C .D .7.(3分)若一次函数y=kx+b(k,b是常数,且k≠0)的图象如图所示,则一次函数y=(k+b)x+kb的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)关于一次函数y=﹣x+4的图象与性质,下列描述正确的是( )A.图象过第二、三、四象限B.y随x的增大而减小C.图象经过点(2,﹣2)D.图象与y轴的交点是(4,0)9.(3分)点A(a,y1)、B(a+1,y2)都在直线y=−12x上,则y1与y2的关系是( )A.y1=y2B.y1<y2C.y1>y2D.与a值有关10.(3分)两个函数y=kx+b和y=bx+k,它们在同一个坐标系中的图象不可能是( )A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)若点P(﹣3,a),Q(2,b)在直线y=﹣3x+c的图象上,则a与b的大小关系是 12.(3分)如图,直线l1:y=3x+1与直线l2:y=mx+n相交于点P(1,b),则关于x,y的方程组y=3x+1y=mx+n 的解为 .13.(3分)如图中的两直线L1、L2的交点坐标可看作是方程组 的解.14.(3分)已知y=ax+b和y=kx的图象交于点P(2,﹣1),那么关于x,y的二元一次方程组ax−y+b=0kx−y=0的解是 .15.(3分)若一次函数y=kx+b(k为常数且k≠0)的图象过点(2,﹣4),且经过第二、三、四象限.(1)b= .(请用含k的代数式表示)(2)若m=k+3b,则m的取值范围是 .三.解答题(共8小题,满分55分)16.(8分)已知函数y=2x+5.(1)在满足条件 时,y=0;(2)在满足条件 时,x=0;(3)写出图象与坐标轴的交点的坐标 ;(4)在x满足条件 时,y<0?17.(6分)已知直线y=kx+b经过点(2,3)和(﹣4,1),求该直线的表达式.18.(6分)已知一次函数y1=2x﹣4和y2=﹣x+3.(1)在下面的直角坐标系中画出它们的图象;(2)求两直线的交点坐标;(3)观察图象,不等式y1<y2的解集为 .19.(6分)已知直线y=6﹣3x和y=x,求它们与y轴围成的三角形面积.20.(6分)已知函数y=(m+2)x﹣m2+4(m是常数).(1)m为何值时,y随x的增大而增大?(2)m满足什么条件时,该函数是正比例函数?21.(7分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=−12x+b过点C.(1)求m和b的值;(2)直线y=−12x+b与x轴交于点D,动点P在线段DA上从点D开始以每秒1个单位的速度向A点运动.设点P的运动时间为t秒.①若△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.22.(8分)下面对函数y1=|2x﹣4|=2和y2=x﹣1图象及性质进行研究,完成下列探索过程:。
精品文档一、填空(10X 3 '=30')1、 已知一个正比例函数的图象经过点(-2, 4),则这个正比例函数的表达式是 ____________ 。
2、 若函数y= - 2x m+2是正比例函数,则 m 的值是 _______________ 。
3、 已知一次函数 y=kx+5的图象经过点(-1,2),则k= ______________ 。
4、 已知y 与x 成正比例,且当 x = 1时,y = 2,则当x=3时,y= ______________ 。
5、 点P (a , b )在第二象限,则直线y=ax+b 不经过第 __________ 象限。
6、 已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0 , -2),那么这个一次函数的表达式是 (A) k>0 , b>0(C) k<0 , b>016、 函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是()33(A ) m(B ) 1 m -(C ) m 1 (D ) m 14 417、 一支蜡烛长20厘米,点燃后每小时燃烧 5厘米,燃烧时剩下的高度 h (厘米)与燃烧时间t (时) 的函数关系的图象是()7、已知点A(-1 , a), B(2 , b)在函数y=-3x+4的象上,则a 与b 的大小关系是(D ) y 3x 215、已知一次函数 y=kx+b 的图象如图所示,则 b 的符旦 号是( 20.某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如(B)k>0 , b<0 (D) k<0 , b<08、地面气温是20C ,如果每升高1000m,气温下降6C ,则气温t (C)与高度h (m )的函数关系 式是 ___________9、 一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: ____________________ 10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) _______________(1) y 随着x 的增大而减小, (2)图象经过点(1, -3 )。
一次函数综合练习学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列函数①5y x =-;②21y x =-+;③2y x =;④162y x =+;⑤21y x =-中,是一次函数的有( ) A .1个 B .2个C .3个D .4个【答案】C2.在下列各图象中,y 不是x 函数的是( )A .B .C .D .【答案】B3.一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解为( )A .x =0B .x =3C .x =﹣2D .x =﹣3【答案】B4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+C .22y x =+D .22y x =-【答案】A5.已知方程()00kx b k +=≠的解是3x =,则函数()0y kx b k =+≠的图象可能是( )A.B.C.D.【答案】C6.如图是一次函数y=x-3的图象,若点P(2,m)在该直线的上方,则m的取值范围是()A.m>-3 B.m>0 C.m>-1 D.m<3【答案】C7.小斌家、学校、小川家依次在同一条笔直的街道上,小斌家离学校有2800米,某天,小斌、小川两人分别从自己家中同时出发,相向而行,出发4分钟后,两人在学校相遇,小川继续前行,小斌在学校取好书包后,掉头回家,两人在运动过程中均保持速度不变,两人之间的距离y(米)与小斌出发的时间x(分钟)的关系如图所示(小斌取书包的时间、掉头的时间忽略不计),则下列选项中错误的是()A.小斌的速度为700m/min B.小川的速度为200m/minC.a的值为280 D.小川家距离学校800m【答案】C8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【答案】D二、填空题9.已知一次函数y=2x+m的图象是由一次函数y=2x﹣3的图象沿y轴向上平移8个单位得到的,则m=_____.【答案】5.10.小明从家跑步到学校,接着立即原路步行回家.如图是小明离家的路程y(米)与时间x(分)之间的函数关系的图像,则小明步行回家的平均速度是__________米/分.【答案】8011.在同一平面直角坐标系中,函数y1=kx+b与y2=mx+n的图象如图所示,则关于x 的不等式kx+b≥mx+n的解集为__.【答案】x≥212.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第___象限.【答案】一.13.甲、乙两人分别从A 、B 两地出发,相向而行.图中的1l ,2l 分别表示甲、乙离B 地的距离()km y 与甲出发后所用时间()h x 的函数关系图象,则甲出发_______小时与乙相遇.【答案】1.414.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________. 53三、解答题15.已知13y x =-+,234y x =-,当x 取哪些值时,12y y >?你是怎样做的?与同伴交流. 【答案】74x <,见解析. 16.(1)在同一直角坐标系内画出函数2y x =-+,2y x =+的图象,这两个图象有怎样的位置关系?(2)函数32y x =-+,32y x =+的图象又有怎样的位置关系?一般地,你有怎样的猜想?【答案】(1)图见解析,这两个图象关于y 轴对称;(2))这两个图象关于y 轴对称;一般地,函数y kx b =+和y kx b =-+的图象关于y 轴对称.17.某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y (千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y 与x 的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.【答案】(1)y =﹣10x +300;(2)能在保质期内销售完这批蜜柚,理由见解析 18.为做好复工复产,某工厂用A 、B 两种型号机器人搬运原料,已知A 型机器人比B 型机器人每小时多搬运20kg ,且A 型机器人搬运1200kg 所用时间与B 型机器人搬运1000kg 所用时间相等.(1)求这两种机器人每小时分别搬运多少原料?(2)该工厂计划让A 、B 两种型号机器人一共工作20个小时,并且B 型号机器人的工作时间不得低于A 型号机器人,求最多搬运多少千克原料?【答案】(1)A 型为:120千克小时,B 型为:100千克每小时;(2)最多搬运2200千克.19.如图,在平面直角坐标系中,点A B ,的坐标分别为3(,0)2-,3(,1)2,连接AB ,以AB 为边向上作等边三角形ABC . (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.【答案】(1)3(;(2)332y =+ 20.如图,直线l 1:y=2x+1与直线l 2:y=mx+4相交于点P (1,b ) (1)求b ,m 的值(2)垂直于x 轴的直线x=a 与直线l 1,l 2分别相交于C ,D ,若线段CD 长为2,求a 的值【答案】(1)-1;(2)53或13.21.某工厂有甲种原料130kg,乙种原料144kg,现用两种原料生产处,A B两种产品共30件,已知生产每件产品需甲种原料5kg,乙种原料4kg,且每件A产品可获得利润700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利润900元,设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产,A B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.【答案】(1)共有三种方案,方案一:A产品18件,B产品12件,方案二:A产品19件,B产品11件,方案三:A产品20件,B产品10件;(2)利润最大的方案是方案一:A产品18件,B产品12件,最大利润为23400元.22.如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:链条的节数/节234链条的长度/cm(2)如果x节链条的长度是y,那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【答案】(1)4.2;5.9;7.6;(2) 1.70.8y x =+;(3)102cm23.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表的数据,请你写出Q 与t 的关系式; ②汽车行驶5h 后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L ,若以100km/h 的速度匀速行驶,该车最多能行驶多远. 【答案】①Q =100﹣6t ;② 70L ;③25003km . 24.在抗击新冠肺炎的非常时期,某医药器械厂接受了生产一批高质量医用口罩的任务,要求在8天之内(含8天)生产A 型和B 型两种型号的口罩共5万只,其中A 型口罩不得少于1.8万只,该厂的生产能力是:若生产A 型口罩每天能生产0.6万只,若生产B 型口罩每天能生产0.8万只,已知生产一只A 型口罩可获利0.5元,生产一只B 型口罩可获利0.3元.若设该厂在这次任务中生产了A 型口罩x 万只.(1)该厂生产A 型口罩可获利润 万元,生产B 型口罩可获利润 万元.(2)设该厂这次生产口罩的总利润是y 万元,试写出y 关于x 的函数关系式,并求出自变量x 的取值范围;(3)在完成任务的前提下,如何安排生产A 型和B 型口罩的只数,使获得的总利润最大,最大利润是多少?(4)若要在最短时间内完成任务,如何来安排生产A 型和B 型口罩的只数?最短时间是几天?【答案】(1)0.5x ;1.5-0.3x ;(2)y=0.2x+1.5,1.8≤x≤4.2;(3)安排A 型:4.2万只,B 型:0.8万只,最大利润是2.34万元;(4)生产A 型1.8万只,生产B 型3.2万只,最短时间是7天。
一次函数综合1.在圆周长的计算公式2C r π=中,变量有( ) A .C ,πB .C ,rC .π,rD .C ,2π2.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .3.如图所示的计算程序中,y 与x 之间的函数关系式是( )A .23y x =-+B .23y x =+C .23y x =--D .23y x =-4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+C .28y x x =+D .2164y x =-5.函数y =中自变量x 的取值范围是( ) A .2x - B .2x >- C .2x -且2x ≠± D .2x >-且2x ≠6.根据如图所示的程序计算函数y 的值,当输入x 的值是3,输出y 的值是1,若输入x 的值是3-,则输出y 的值是( )A .2-B .2C .14-D .147.今年五一期间,小丽同学从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A .小丽在便利店时间为15分钟B .公园离小丽家的距离为2000米C .小丽从家到达公园共用时间20分钟D .便利店离小丽家的距离为1000米8.成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a 千米,体息了一段时间,又原路返回b 千米()b a <,再前进c 千米,则他离起点的距离s 与时间t 的关系的示意图是( )A .B .C .D .9.如表是加热食用油的温度变化情况:王红发现,烧了110s 时,油沸腾了,则下列说法不正确的是( ) A .没有加热时,油的温度是10C ︒B .加热50s ,油的温度是110C ︒ C .估计这种食用油的沸点温度约是230C ︒D .每加热10s ,油的温度升高30C ︒10.下列函数关系式:(1)y x =-;(2)1y x =-;(3)1y x=;(4)2y x =,其中一次函数的个数是( ) A .1B .2C .3D .411.若函数2(3)y x m =+--是正比例函数,则m 的值是( ) A .3-B .1C .7-D .312.如果直线2y x m =+与两坐标轴围成的三角形面积等于4,则m 的值是()A .3±B .3C .4±D .413.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴距离为4,则直线OM 的表达式是( ) A .34y x =B .34y x =-C .43y x =D .43y x =-14.已知y 关于x 成正比例,且当2x =时,6y =-,则当1x =时,y 的值为( ) A .3B .3-C .12D .12-15.已知y 与x 成正比例,且3x =时,2y =,则3y =时,x 的值为( ) A .92B .29C .2D .1216.数形结合是解决数学问题常用的思想方法.如图,直线5y x =+和直线y ax b =+相交于点P ,根据图象可知,方程5x ax b +=+的解是( )A .20x =B .5x =C .25x =D .15x =17.如图,直线(0)y kx b k =+≠过点(0,5)A ,(4,0)B -,则关于x 的方程0kx b +=的解是()A .4x =-B .5x =C .54x =-D .45x =-18.若4k >,则一次函数(4)4y k x k =-+-的图象可能是( )A .B .C .D .19.函数y kx =与y kx k =-+的大致图象是( )A .B .C .D .20.如图,三个正比例函数的图象分别对应表达式:将a ,b ,c 从小到大排列为( ) ①y ax = ②y bx = ③y cx =A .a b c <<B .a c b <<C .b a c <<D .c b a <<21.点1(A x ,1)y 和2(B x ,2)y 都在直线5y x =-上,且12x x >,则1y 与2y 的关系是( ) A .12y yB .12y y =C .12y y <D .12y y >22.若直线3y kx k =+-经过第二、三、四象限,则k 的取值范围是( ) A .0k <B .3k >C .3k <D .03k <<23.已知正比例函数(0)y kx k =≠,当2x =时,6y =,下列哪个点在该函数图象上( ) A .(1,3)-B .(3,1)-C .(6,2)D .(2,6)--24.将直线24y x =+向下平移3个单位长度后得到的函数解析式是( ) A .57y x =-B .27y x =+C .1y x =--D .21y x =+二.解答题(共6小题)25.如图,已知直线1经过点(0,1)A -与点(2,3)P . (1)求直线1的表达式;(2)若在y 轴上有一点B ,使APB ∆的面积为5,求点B 的坐标.26.如图,已知一次函数y kx b =+的图象经过(2,1)A --,(1,3)B 两点,并且交x 轴于点C ,交y 轴于点D .(1)求一次函数的解析式; (2)求点C 和点D 的坐标; (3)求AOB ∆的面积.27.如图,一次函数y kx b =+的图象经过(2,4)、(0,2)两点,与x 轴相交于点C .求: (1)此一次函数的解析式; (2)AOC ∆的面积.28.在直角坐标系中,一条直线经过(1,5)A -,(2,)P a ,(3,3)B -. (1)求直线AB 的函数表达式; (2)求a 的值; (3)求AOP ∆的面积.29.在平面直角坐标系xOy 中,直线l 与x 轴,y 轴分别交于A 、B 两点,且过点(0,4)B 和(2,2)C 两点.(1)求直线l 的解析式; (2)求AOB ∆的面积;(3)点P 是x 轴上一点,且满足ABP ∆为等腰三角形,直接写出所有满足条件的点P 的坐标.30.如图,过点(3,0)A 的两条直线1l ,2l 分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知5AB =. (1)求点B 的坐标;(2)若ABC ∆的面积为9,求直线2l 的解析式.一次函数综合答案1.【解答】解:在圆周长的计算公式2C r π=中,变量有C 和r , 故选:B .2.【解答】解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以D 正确. 故选:D .3.【解答】解:根据程序框图可得2323y x x =-⨯+=-+, 故选:A .4.【解答】解:新正方形边长是4x +,原正方形边长是4,∴新正方形面积是2(4)x +,原正方形面积是16, ∴增加的面积2(4)16y x =+-即28y x x =+ 故选:C .5.【解答】解:根据题意得:20x +且240x -≠, 解得:2x >-且2x ≠. 故选:D .6.【解答】解:当输入x 的值是3,输出y 的值是1, 133b ∴=⨯+,解得:8b =-,故输入x 的值是3-时,2(3)82y =-⨯--=-. 故选:A .7.【解答】解:A 、小丽在便利店时间为15105-=(分钟),错误;B 、公园离小丽家的距离为2000米,正确;C 、小丽从家到达公园共用时间20分钟,正确;D 、便利店离小丽家的距离为1000米,正确;故选:A .8.【解答】解:由题意,得路程先增加,路程不变,路程减少,路程又增加,故D 符合题意; 故选:D .9.【解答】解:A 、从表格可知:0t =时,10y =,即没有加热时,油的温度为10C ︒,选项正确,不符合题意;B 、每增加10秒,温度上升20C ︒,则50秒时,油温度110C ︒,选项正确,不符合题意;C 、110秒时,温度230C ︒,选项正确,不符合题意;D 、每增加10秒,温度上升20C ︒,选项错误,符合题意;故选:D .10.【解答】解:(1)y x =-是正比例函数,是特殊的一次函数,故正确; (2)1y x =-符合一次函数的定义,故正确; (3)1y x=属于反比例函数,故错误; (4)2y x =属于二次函数,故错误. 综上所述,一次函数的个数是2个. 故选:B .11.【解答】解:函数2(3)y x m =+--是正比例函数, 30m ∴--=,解得:3m =-. 故选:A .12.【解答】解:直线与x 轴的交点为:(2m-,0),与y 轴的交点为:(0,)m ,∴1||||422mm ⋅=,解得4m =±. 故选:C .13.【解答】解:点M 到x 轴的距离为3,到y 轴距离为4,M 在第二象限, (4,3)M ∴-,设OM 的解析式为y kx b =+, 将点(0,0)O ,(4,3)M -代入,得 043b k b =⎧⎨-+=⎩, ∴034b k =⎧⎪⎨=-⎪⎩,34y x ∴=-,故选:B .14.【解答】解:设y kx =, 当2x =时,6y =-, 26k ∴=-,解得3k =-,3y x ∴=-,∴当1x =时,313y =-⨯=-.故选:B .15.【解答】解:根据题意,设y kx =, 把3x =,2y =代入得:23k =, 解得:23k =, 23y x =, 把3y =代入解析式,可得:92x =, 故选:A .16.【解答】解:直线5y x =+和直线y ax b =+相交于点(20,25)P∴直线5y x =+和直线y ax b =+相交于点P 为20x =.故选:A .17.【解答】解:直线(0)y kx b k =+≠过点(4,0)B -, 即当4x =-时,0y =,∴关于x 的方程0kx b +=的解是4x =-. 故选:A .18.【解答】解:4k >,40k ∴-<,40k ->,∴一次函数(4)4y k x k =-+-的图象经过第一、二、四象限, 故选:D .19.【解答】解:A 、由y kx =的图象知0k >,则0k -<,所以y kx k =-+的图象经过第一、二、四象限,故本选项不符合题意.B 、由y kx =的图象知0k >,则0k -<,所以y kx k =-+的图象经过第一、二、四象限,故本选项不符合题意.C 、由y kx =的图象知0k <,则0k ->,所以y kx k =-+的图象经过第一、三、四象限,故本选项不符合题意.D 、由y kx =的图象知0k >,则0k -<,所以y kx k =-+的图象经过第一、二、四象限,故本选项符合题意.故选:D .20.【解答】解:根据三个函数图象所在象限可得0a <,0b >,0c >, 再根据直线越陡,||k 越大,则b c >. 则a c b <<,故选:B .21.【解答】解:10k =>,y ∴随x 的增大而增大.又12x x >,12y y ∴>.故选:D .22.【解答】解:根据题意得0k <且30k -<, 所以0k <.故选:A .23.【解答】解:把2x =,6y =代入(0)y kx k =≠得,62k =, 解得3k =,∴正比例函数为3y k =,A 、当1x =时,33y =≠-,∴此点不在函数图象上,故本选项错误;B 、当3x =时,91y =≠-,∴此点不在函数图象上,故本选项错误;C 、当6x =时,182y =≠,∴此点不在函数图象上,故本选项错误;D 、当2x =-时,6y =-,∴此点在函数图象上,故本选项正确. 故选:D .24.【解答】解:将直线24y x =+向下平移3个单位,得243y x =+-,即21y x =+, 故选:D .二.解答题(共6小题)25.【解答】解:(1)设直线l 表达式为(y kx b k =+,b 为常数且0)k ≠,把(0,1)A -,(2,3)P 代入得:123b k b =-⎧⎨+=⎩, 解得:21k b =⎧⎨=-⎩, 则直线l 表达式为21y x =-;(2)设B 坐标为(0,)m ,则|1|AB m =+, APB ∆的面积为5, ∴152P AB x ⋅=横坐标,即1|1|252m +⨯=, 整理得:|1|5m +=,即15m +=或15m +=-, 解得:4m =或6m =-,则B 坐标为(0,4)或(0,6)-.26.【解答】解:(1)把(2,1)A --,(1,3)B 代入y kx b =+得213k b k b -+=-⎧⎨+=⎩, 解得4353k b ⎧=⎪⎪⎨⎪=⎪⎩. 所以一次函数解析式为4533y x =+;(2)令0y =,则45033x =+,解得54x =-, 所以C 点的坐标为5(4-,0), 把0x =代入4533y x =+得53y =, 所以D 点坐标为5(0,)3, (3)AOB ∆的面积AOD BOD S S ∆∆=+1515212323=⨯⨯+⨯⨯ 52=. 27.【解答】解:(1)由图可知(2,4)A 、(0,2)B , 242k b b +=⎧⎨=⎩, 解得12k b =⎧⎨=⎩, 故此一次函数的解析式为:2y x =+;(2)由图可知,(2,0)C -,(2,4)A , 2OC ∴=,4AD =,1124422AOC S OC AD ∆∴=⋅=⨯⨯=. 答:AOC ∆的面积是4.28.【解答】解:(1)设直线的表达式为y kx b =+,把点A 、B 的坐标代入得:533k b k b -+=⎧⎨+=-⎩, 解得:2k =-,3b =,所以直线表达式解析式为23y x =-+;(2)把(2,)P a 代入23y x =-+得:1a =-;(3)把0x =代入23y x =-+得:3y =, ∴直线23y x =-+与y 轴的交点为(0,3), 即3OD =,(2,1)P -,AOP ∴∆的面积AOD =∆的面积DOP +∆的面积1193132222=⨯⨯+⨯⨯=. 29.【解答】解(1)设直线l 的解析式y kx b =+ 直线过(2,2)和(0,4)∴224k b b =+⎧⎨=⎩解得:14k b =-⎧⎨=⎩∴直线l 的解析式4y x =-+(2)令0y =,则4x =(4,0)A ∴1144822AOB S AO BO ∆∴=⨯⨯=⨯⨯= (3)4OA =,4OB =AB ∴=若AB AP ==∴在点A 左边,4OP =,在点A 右边,4OP =∴点P 坐标4,0),(4-,0)若BP BP ==(4,0)P ∴-若AP BP =则点P 在AB 的垂直平分线上, AOB ∆是等腰直角三角形,AB ∴的垂直平分线过点O∴点P 坐标(0,0)30.【解答】解:(1)点(3,0)A ,5AB =4BO ∴== ∴点B 的坐标为(0,4);(2)ABC ∆的面积为9 ∴192BC AO ⨯⨯= ∴1392BC ⨯⨯=,即6BC = 4BO =2CO ∴=(0,2)C ∴-设2l 的解析式为y kx b =+,则032k b b =+⎧⎨=-⎩, 解得232k b ⎧=⎪⎨⎪=-⎩2l ∴的解析式为223y x =-.。
一次函数测试题一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ... D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3x C .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y •(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=12x-3二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.八年级上学期第十四章《一次函数》单元测试班级_____________座号____________姓名_____________成绩_________ __ 一.精心选一选(本大题共8道小题,每题4分,共32分)1、下列各图给出了变量x 与y 之间的函数是: ( )2、下列函数中,y 是x 的正比例函数的是: ( )A 、y=2x-1B 、y=3xC 、y=2x 2D 、y=-2x+13、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为: ( )A 、y=2x-14B 、y=-x-6C 、y=-x+10D 、y=4x 4、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是:( )A 、12y y >B 、12y y <C 、12y y =D 、无法确定.5、若函数y=kx +b 的图象如图所示,那么当y>0时,x 的取值范围是:( )A 、 x>1B 、 x>2C 、 x<1D 、 x<26、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限7、一次函数y=ax+b ,若a+b=1,则它的图象必经过点( )A 、(-1,-1)B 、(-1, 1)C 、(1, -1)D 、(1, 1)8、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由A B D 第5题106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是: ( )二.耐心填一填(本大题5小题,每小题4分,共20分) 9、在函数21-=x y 中,自变量x 的取值范围是 。
一次函数综合训练题 姓名:
一、选择题:1
、已知一次函数,若随着的增大而减小,则该函
数的图像经过:
A .第一、二、三象限
B .第一、二、四象限
C .第二、三、四象限
D .第一、三、四象限 2、若函数是一次函数,则的值为:
A .
B .
的全体实数 C .全体实数 D .不能确定
3、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一先打开进水管5,再打开出水管,两管同时开放,直到把容器中的水放完,
则正确反映这一过程中容器的水量)随时间t ()变化的图像是
A B C D
4、无论为何实数,直线
与直线
的交点不可能在:
A .第三象限
B .第四象限
C .第一象限
D .第二象限 5、与的图像交于轴上一点,则为: A .2
B .
C .
D .
6、已知两个一次函数
的图像重合,则一次函数的
图像所经过的象限为:
A .第一、二、三象限
B .第二、三、四象限
C .第一、三、四象限
D .第
5 5 5
一、二、四象限
7、若
<0,且的图像不过第四象限,则点( c)所在象限
为
A、一
B、二
C、三 D 、四
8、如果一次函数当自变量的取值范围是-1<<3时,函数y的取值范围是-2<<6,那么此函数解析式为:
A、 B、 C、或 D、或
二、填空题:9、某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与储存月数x之间的函数关系为:。
10、已知正比例函数
的图象经过第二、四象限,则
11、直线向上平移3个单位,再向左平移2个
单位后直线解析式为:
12、已知函数-,则自变量x
13、某风景区集体门票的收费标准是:20人以内(含
20人),每人25元;超过20人,超过部分,每人10
元,写出应收门票y(元)与游览人数(人)之间
的函数关系式。
利用该函数关系计算某班54名学生
去该风景区游览时,购门票共花了元。
14、
关于的一次函数的图像与y轴的
交点在轴的上方,则y随的增大而减小,则a的取值范围是。
15、在弹性限度内,一弹簧长度()与所挂物体的质量x()之间的函数关系是
,如果该弹簧最长可以拉伸到20, 则它所挂物体的最大质量是
16、2与成正比例,且=3时,1,则与的函数关系式为。
17、直线26与y轴交点坐标为 ,与x轴交点坐标是
三、解答题:18、已知一次函数的图像交x轴于A(-6,0),交正比例函数图像于B,且B在第二象限,其横坐标是-4,若△的面积是15(平方单位),求正比例数和一次函数的解析式。
33 43 48
15
O
y()
7
6
5
19、周末,小明骑自行车从家里出发到野外郊游.从家
出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y ()与小明离家时间x (h )的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.
20、直线过点A (-1,5)且平行于直线。
(1)求这条直
线的解析式;(2)若点B (m ,-5)在这条直线上,O 为坐标原点,求m 及
△的面积。
21、如图,已知直线的图象与x 轴、y 轴交于A 、B 两点,直线经过原点与线段交于点C ,且把△的面积分成2:1两部分,求直线的解析式。
22、某贮水塔在工作期间,每小时的进水量与出水量都是固定不变的,每日从凌晨4点到8点只进水,不
出水;8点到12点既进水又出水;14点至次日凌晨只出水不进水,经测定,水塔中贮水量y (m 3
)与时间(h)的函数关系如图所示。
(1)求每小时的进水量;(2)当8≤≤12时,求y 与的函数关系式;(3)当14≤≤18时,求y 与的函数关系式。
(4)水塔的不小于水量是28(m 3
)时间是多少?
(20) x (h
y (
O 0. 1
1
23、如图所示,直线,相交于点A (2,3),与轴的交点坐标为(-1,0),与y 轴的交点坐标为(0
-2),结合图像解答下列题: (1)求出直线表示
的一次函数的表达式。
(2)当为何值时,,表示的两个一次函数值都大于0?
24、某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食
品,已知这两种原料的维生素C 含量及购
买这两种原料的价格如右表: 现要配制
这种营养食品20千克,要求每千克至少含有480单位的维生素C .设购买甲种原料x 千克.
(1)至少需要购买甲种原料多少千克? (2)设食堂用于购买这两种原料的总费用为y 元,求y 与x 的函数关系式.并说明购买甲种原料多少千克时,总费用最少?
1 2
A y。