九年级(上)第五章 中心对称图形(二) 课时练习 第7课时 确定圆的条件
- 格式:doc
- 大小:117.00 KB
- 文档页数:3
第4课时圆的对称性(二)(附答案)一、选择题1.下列三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等圆心角所对的弧相等.其中是真命题的是( )A. ①②B.②③C.①③D.①②③2.弦MN把☉O分成两条弧,它们的度数比为4:5,如果T为MN的中点,那么∠MOT 的度数为( )A .1600B.800C.1000D.5003.如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2 cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=900,则圆心O到弦AD的距离是( )A. B cm C.D.4.圆的半径为13 cm,弦AB∥CD,AB=24 cm,CD=10 cm,则弦AB、CD之间的距离是( )A. 7 cm B.17 cm C.12 cm D.7 cm或17 cm二、填空题5.在直径为10 cm的☉O中,弦AB的长为8 cm,则点O到弦AB的距离为_________cm.6.如图,AB是☉O的直径,弦CD⊥AB于E,如果AB=10,CD=8,那么AE的长为___________.7.如图,AB是半圆☉O的直径,E是BC的中点,OE交弦BC于点D.已知BC=8 cm,DE=2 cm,则AB的长为________cm.8.如图,水平放置的油管的截面半径为13 cm,其中有油部分油面宽AB为24 cm,则截面上有油部分油面高CD为__________ cm.三、解答题9.如图,线段AB交☉O于点C、D,如果AC=BD,那么OA与OB相等吗?请证明你的结论.10.如图,CD是☉O的直径,AB为弦,CD⊥AB于点E,且AB=24cm,CE=8 cm. 求☉O的半径.11.如图,点A、B是☉O上两点,AB=10,点P是☉O上的动点(点P与点A、B不重合),连接AP、PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F.试问EF的长会变化吗?若变化,有什么规律? 若不变,求EF的长.12.某地有一座圆弧形拱桥,桥下水面宽度为7.2 m,拱顶高出水面2.4 m,现有一艘宽3 m、船舱顶部高出水面2 m的货船要经过这里,此货船能顺利通过这座拱桥吗?写出你的结论,并说明理由。
第6课时 圆周角(二) (附答案)一、选择题1.下列命题:①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等.其中真命题的个数为 ( )A .1B .2C .3D .42.下列格点图中都给出了圆,只用直尺就能确定圆心的是 ( )3.如图,AB 是半圆O 的直径,∠BAC=200, D AC 上任意一点,则∠D 的度数为 ( )A .1200B .1100C .1000D .9004.如图,ABC 内接于☉O ,∠C=450,AB=4,☉O 的半径为 ( )A .B .4 C. D .5二、填空题5.如图,AB 是☉O 的直径,CD 与AB 相交于点E ,∠ACD=600,∠ADC=500,则∠AEC=__________.6. 如图,在☉O 中,弦AC BC ⊥,若AC=6cm ,BC=8cm ,则☉O 的半径为______cm.7. 如图,ABC 内接于☉O ,0120BAC ∠=, AB=AC, BD 为☉O 的直径,AD=6cm ,则BC=__________.8.已知AB是☉O的直径,AC、AD是弦,且AB=2,AD=1,则圆周角∠CAD 的度数是_________.三、解答题9.如图,OA是☉O的半径,以OA为直径的☉C与☉O的弦AB相交于点D.求证:点D是AB的中点.10.如图,☉O是ABC的外接圆,CD是AB边上的高.求证:∠ACO=∠BCD。
11.如图,AB、AC是☉O中相等的两条弦,延长CA至D,使AD=AC,连接DB并萼长交☉O于点E,连接CE.求证:CE是☉O的直径.12.如图,AB是☉O的直径,弦CD⊥AB,垂足为H.(1)求证:AH·AB=AC2.(2)若过A的直线与弦CD(不含端点)相交于点E,与☉O相交于点F,则AE·AF=AC2是否成立?并说明你的理由.(3)若过A的直线与直线CD相交于点P,与☉O相交于点Q,则AP·AQ=AC2是否成立?(不必证明)参考答案1. B2. A 3.B 4.A5.806.57.68.150或10509.连接OD(图略).AO为OC的直径,∴∠ADO=900.即OD⊥AB.∴AD=DB.即点D是AB的中点10.延长CO交☉O于点E,连接AE.∴∠CAE=900.∴∠ACE十∠AEC=900.又CD是AB边上的高,∴∠CDB=900.∴∠BCD+∠B=900.∠AEC=∠B,∴∠ACE=∠BCD.即∠ACO=∠BCD11.点拨:连接BC(图略).可得∠DBC=900.即∠EBC=900.则CE是☉O的直径12.(1)连接CB(图略).AB是☉O的直径, ∴∠ACB=900.又∠CAH=∠BAC,∴CAH BAC.∴AC AHAB AC=,即AH·AB=AC2(2)连接期(图略).易证△AHE△AFB.∴AE·AF=AH·AB.∴AE·AF=AC2(3)结论AP·AQ=AC2成立。
【回顾与思考】1、_______________________________叫圆、2、平面内点与圆的位置关系有____种:__________,__________,__________、3、圆既是________对称图形,也是________对称图形,其对称中心是_______,对称轴是________、4、垂径定理:________________________________________________________、5、_________________________________________________________叫圆周角、6、在同圆或等圆中,同弧或等弧所对的圆周角________,都等于该弧所对的_____的一半、 【经典试题】 一、选择题1、下列命题正确的是()A 、平分弦的直径必垂直于弦B 、不都是直径的两弦不能互相平分C 、与直径不垂直的弦,不通被直径平分D 、弦所对的两条弧的中点的连线,不一定经过圆心2、如图,AC 是⊙O 直径,BD 是⊙O 的弦,EC ∥AB ,交⊙O 于点E ,则图中与12∠BOC相等的角共有 ( ) A 、2个B 、3个C 、4个D 、5个第2题第3题第4题E第5题3、如图,点A,B,C,D在同一个圆上,AC,BD为四边形ABCD的对角线,则图中相等的角有( )A、3对B、4对C、5对D、6对4、如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D=50°,则∠C的度数是( )A、50°B、40°C、30°D、25°5、正三角形ABC内接于⊙O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于( )A、30°B、60°C、90°D、45°二、填空题(每题3分,共30分)6、已知⊙O的面积为36π、⑴若PO=6、5,则点P在_________; ⑵若PO=4,则点P在_________;⑶若PO=_________,则点P在⊙O上、7、一个点与定圆上最近点的距离为4cm,与最远点的距离为9cm,则圆的半径是_________、8、半径为10的圆中,垂直平分半径的弦长为_________、9、在半径为5cm的圆中,两条平行弦的长度分别为6cm,8cm,则这两条弦之间的距离为___________、10、已知⊙O的半径为10cm,弦AB=16cm,P为AB上一个动点,则点P到圆心O的最短距离为_____cm、11、已知四边形ABCD内接于⊙O,∠BOD=100°,则∠DAB=______、第11题三、解答题(每题10分,共40分)12、如图,BD,CE分别是△ABC中,AC,AB边上的高、求证:B,C,D,E四点在同一个圆上、13、已知M是⊙O中,弧AB的中点,过点M的弦MN交AB于点C,设⊙O的半径为4cm,MN=43cm、⑴求圆心O到弦MN的距离;⑵求∠ACM的大小、14、用尺规四等分已知弧AB、(不写作法,保留作图痕迹)15、如图,AB是⊙O的直径,以OA为直径的⊙C与⊙O的弦AD相交于点E,线段AE与DE相等吗?为什么?探究学习某居民区一处圆形污水管破裂,维修人员准备更换一段新管道,如图,污水水面宽度为60cm,水面至管道顶部的距离为10cm,则维修人员应准备内径为多大的管道?参考答案一、1、B2、C3、C4、D5、B二、6、圆外,圆内,67、132cm 或52cm8、10 39、1cm 或7cm10、611、130°三、13、2cm ,60° 探究学习半径50cm。
第11课时直线与圆的位置关系(四)(附答案)一、选择题1.如图,从☉O外一点P引☉O 的两条切线PA、PB,切点分别为A、B.如果∠APB=600,PA=8,那么弦AB的长是( )A.4 B.8 C.D.2. 如图,☉I为ABC的内切圆,点D、E分别为边AB、AC上的点,且DE为☉I的切线,若△ABC的周长为24,BC边的长为9,则△ADE的周长为( ) A.15 B.9 C.7.5 D.63. 如图,梯形ABCD是☉O的外切梯形,AB CD,若该梯形的周长是20 cm,则该梯形的中位线长为( ) A.4 cm B.5 cm C.8 cm D.10 cm4. 如图PA、PB分别切☉O于点A、B,CD与☉O相切,分别交PA、PB于点D、C。
若∠P=300,则∠DOC的度数为( ) A.500B.600 C. 750D.800二、填空题5. 如图,△ABC内切于☉O,切点分别为D、E、F.若AE=4,CE=2,BF=1,则△ABC 的周长为_________ .6.如图,PA、PB是☉O的切线,点A、B为切点,AC是☉O的直径,∠BAC=200,则∠P_______0。
7. 如图,从☉O外一点P引☉O的两条切线PA、PB,切点分别是A、B,若PA=8 cm,C是AB一上的一个动点(点C与A、B两点不重合),过点C作☉O的切线,分别交PA、PB 于点D、E,则△PED的周长是_________.8.如图,PA、PB切☉O于点A、B,∠P=500,点C是圆上异于A、B的一点,则∠ACB 等于_________.三、解答题9.如图,☉O是△ABC的内切圆,且∠ACB=900,BC、AC分别切☉O于点D、E。
若BD=2,AE=3.求☉O的半径.10.如图,PA、PB为☉O的切线,A、B为切点,∠P=600,求☉O的半径.11.如图,在梯形ABCD中,AB CD,☉O为内切圆,E为切点.(1)求∠AOD的度数.(2)若AO=8 cm,DO=6 cm,求OE的长.12.如图,在△ABC中,∠ABC=900,点E在AB上,以BE为直径的☉O恰与AC相切于点D,若AE=2 cm,AD=4 cm.(1)求☉O的直径BE的长.(2)求△ABC的面积.参考答案1.B 2.D 3.B 4.C5.146.407.16 cm8.650或11509.☉O的半径为110.点拨:连接OA、OP(图略).可得AABP是等边三角形.则AP=6 APO= 300.应用勾股定理可得OA=6.即☉O的半径为6.11.(1) 900(2)4.8 cm12.(1)连接OD(图略).在Rt ADO中,AD2+DO2=AO2.设☉O的半径为R cm,则有16+R2=(2+R)2.解得R=3.即☉O的直径BE的长为6 cm(2)在Rt ABC中,AB2+BC2=AC2.设BC的长为x cm,则有64+x2=(4+x)2.解得x=6.即BC=6 cm,AB=8cm. 因此ABC的面积为24 cm2。
专题24.1 圆及有关概念(知识讲解)【学习目标】1.理解圆的本质属性;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;【要点梳理】要点一、圆的定义第一定义:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.特别说明:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.第二定义:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合. 特别说明:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.1.点和圆的三种位置关系:由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.特别说明:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆; 优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.特别说明:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.特别说明:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.类型一、圆的定义1.如图,已知O 的圆心原点()0,0O ,半径长为(10,8),A a 是O 上的在第一象限的点,求a 的值.【答案】6【分析】根据圆的基本性质,可得OA =10,再由(),8A a ,可得AB =8,然后由勾股定理,求出OB =6,即可求解.解:如图,过点B 作AB ⊥x 轴于点B ,连接OA ,⊥O 的半径长为10,⊥OA =10,⊥(),8A a ,⊥AB =8,在Rt AOB 中,由勾股定理得:6OB = ,⊥(),8A a 在第一象限内,⊥0a > ,⊥6a =.【点拨】本题主要考查了圆的基本性质,勾股定理,点的坐标,熟练掌握圆的基本性质,勾股定理是解题的关键.举一反三:【变式1】 ABC 中,90C ∠=︒.求证:A B C ,,三点在同一个圆上.【分析】取AB 的中点O ,根据直角三角形的性质得到CO =AO =BO ,故可求解. 解:如图所示,取AB 的中点O ,连接CO在Rt ⊥ABC 中,⊥AO = BO ,⊥ACB = 90°,⊥CO =12AB ,即CO =AO =BO .⊥A ,B ,C 三点在同一个圆上,圆心为点O .【点拨】此题主要考查证明三点共圆,解题的关键是熟知圆的基本性质及直角三角形的特点.【变式2】如图,已知MN 为O 的直径,四边形ABCD ,EFGD 都是正方形,小正方形EFGD 的面积为16,求圆的半径.【答案】r =【分析】连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==,在Rt ⊥COD 和Rt ⊥FOG 中,分别根据勾股定理可得222(2)832x x x x +=++,解方程即可求解.解:如图,连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==, ⊥222DO CD CO +=,⊥222(2)x x r +=,⊥正方形EFGD 的面积为16,⊥4DG FG ==,⊥4OG x =+,又⊥222OF OG FG =+,⊥2222(4)4832r x x x =++=++,⊥222(2)832x x x x +=++, 解得14x =,22x =-(不合题意,舍去),⊥2224880r =+=,r =【点拨】本题考查勾股定理的应用圆的认识和性质,解题的关键是熟练掌握在一个直角三角形中两条直角边的平方和等于斜边的平方.类型二、与圆有关的概念3.如图,在O 中,半径有________,直径有________,弦有________,劣弧有________,优弧有________.【答案】OA,OB,OC,OD AB AB,BC AC,BC,BD,CD,AD ADC,BAC,BAD,ACD,DAC【分析】根据圆的基本概念,即可求解.解:在O中,半径有OA,OB,OC,OD;直径有AB;弦有AB,BC;劣弧有AC,BC,BD,CD,AD;优弧有ADC,BAC,BAD,ACD,DAC;故答案为:OA,OB,OC,OD;AB;AB,BC;AC,BC,BD,CD,AD;ADC,BAC,BAD,ACD,DAC.【点拨】本题主要考查了圆的基本概念,熟练掌握圆的半径、直径、弦、弧的概念是解题的关键.举一反三:【变式1】小于半圆的弧(如图中的________)叫做______;大于半圆的弧(用三个字母表示,如图中的_______)叫做______ .【注意】1)弧分为是优弧、劣弧、半圆.2)已知弧的两个起点,不能判断它是优弧还是劣弧,需分情况讨论.【答案】AC劣弧ABC优弧【变式2】如图,以点A为端点的优弧是____________,以点A为端点的劣弧是_____________.【答案】AEC,ADE AE,AC【分析】根据劣弧和优弧的定义求解.解:在⊥O中,以A为端点的优弧有AEC,ADE;以A为端点的劣弧有AE,AC;故答案为:AEC,ADE;AE,AC.【点拨】本题考查了圆的认识:掌握与圆有关的概念,注意:大于半圆的弧是优弧,小于半圆的弧是劣弧,半圆既不是优弧,也不是劣弧.类型三、点和圆的位置关系3.已知⊥O的半径r=5cm,圆心O到直线l的距离d=OD=3cm,在直线l上有P、Q、R三点,且有PD=4cm,QD>4cm,RD<4cm,P、Q、R三点与⊥O位置关系各是怎样的【答案】PD=4cm,点P在⊥O上.QD>4cm,点Q在⊥O外.RD<4cm,点R在⊥O 内.【分析】依题意画出图形(如图所示),计算出P、Q、R三点到圆心的距离与圆的半径比较大小.解:连接PO,QO,RO.⊥PD=4cm,OD=3cm,⊥PO5r==.⊥ 点P 在⊥O 上.5QO r ===,⊥ 点Q 在⊥O 外.5RO r ==,⊥ 点R 在⊥O 内.【点拨】本题主要考查点与圆的位置关系,点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.举一反三:【变式1】已知:如图,△ABC 中,90,2cm,4cm AC C C B ∠==︒=,CM 是中线,以C长为半径画圆,则点A 、B 、M 与⊥C 的关系如何?【答案】点A 在⊥O 内;点B 在⊥C 外;M 点在⊥C 上【分析】点与圆的位置关系由三种情况:设点到圆心的距离为d ,则当d =r 时,点在圆上;当d >r 时,点在圆外;当d <r 时,点在圆内.解:根据勾股定理,有AB =cm );⊥CA =2cm ,⊥点A 在⊥O 内,⊥BC =4cm ,⊥点B 在⊥C 外;由直角三角形的性质得:CM⊥M 点在⊥C 上.【点拨】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.【变式2】画图说明:端点分别在两条互相垂直的直线上,且长度为5 cm的所有线段的中点所组成的图形.【答案】以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【分析】如图所示,当线段两个端点在O,F时,此时的的中点为B点,同理可知也可在A,G,H点,这些点在已知直线的交点为圆心,2.5 cm长为半径的一个圆上;当线段两个端点在C,D时,其中点为E,根据直角三角形斜边上的中点是斜边的一半知CE=DE=OE,则E点在以O为圆心2.5 cm长为半径的一个圆上;综上即可画出图形.解:如图所示,以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【点拨】此题主要考查点与圆的关系,解题的关键是正确理解题意,再画出图形.类型四、圆中弦的问题4、已知:线段AB = 4 cm,画图说明:和点A、B的距离都不大于3 cm的所有点组成的图形.【答案】所求图形为阴影部分(包括阴影的边界).【分析】以A,B点为圆心,半径为3作圆,重叠的部分即为所求.解:如图所示,以点A,B为圆心,3cm为半径画圆,两个圆相交的部分为阴影部分,图中阴影部分就是到点A和点B的距离都不大于3 cm的所有点组成的图形.【点拨】此题主要考查点与圆的位置关系,解题的关键是根据题意画出图形,根据所学的点与圆的位置关系的判断方法来解答.举一反三:【变式1】如图所示,AB 为O 的一条弦,点C 为O 上一动点,且30BCA ∠=︒,点E ,F 分别是AC ,BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径为7,求GE FH +的最大值.【答案】GE FH +的最大值为212. 【分析】由GE FH +和EF 组成O 的弦GH ,在O 中,弦GH 最长为直径14,而EF 可求,所以GE FH +的最大值可求.解:连结AO ,BO ,⊥30BCA ∠=︒ ⊥60BOA ∠=︒⊥AOB 为等边三角形,7AB =⊥点E ,F 分别是AC ,BC 的中点 ⊥1722EF AB ==,⊥ GH 为O 的一条弦 ⊥GH 最大值为直径14 ⊥GE FH +的最大值为7211422-=. 【点拨】利用直径是圆中最长的弦,可以解决圆中一些最值问题.【变式2】如图,已知等边⊥ABC 的边长为8,点 P 是 AB 边上的一个动点(与点 A 、B 不重合).直线 l 是经过点 P 的一条直线,把⊥ABC 沿直线 l 折叠,点 B 的对应点是点B '.当 PB =6 时,在直线 l 变化过程中,求⊥ACB'面积的最大值.【答案】【分析】如图,过点P 作PH AC ⊥,当B ',P ,H 共线时,ACB '△的面积最大,求出PH 的长即可解决问题.解:如图,过点P 作PH ⊥AC ,由题可得,B '在以P 为圆心,半径长为6的圆上运动,当HP 的延长线交圆P 于点B '时面积最大,在Rt APH 中,8AB =,6PB =,2PA ∴=, ABC 是等边三角形,60PAH ∴∠=︒,1AH ∴=,PH =6BH ∴=ACB S '∴的最大值为18(6242⨯⨯=. 【点拨】本题考查圆与三角形综合问题,根据题意构造出图形是解题的关键. 类型五、与圆周长和面积有关的问题5、如图所示,求如图正方形中阴影部分的周长.(结果可保留π)【答案】正方形中阴影部分的周长为()2060cm π+【分析】阴影部分的周长=半圆弧长+14圆弧长+正方形边长的3倍,依此计算即可求解. 解:根据题意得:1110(cm)2l d ππ==, 2210(cm 41)r l ππ=⋅=, ()1010602060cm C πππ=++=+.故正方形中阴影部分的周长为()2060cm π+.【点拨】本题主要考查列代数式,解题的关键是掌握圆的周长公式.举一反三:【变式1】如图,长方形的长为a ,宽为b ,在它的内部分别挖去以b 为半径的四分之一圆和以b 为直径的半圆.(1)用含a 、b 的代数式表示阴影部分的面积;(2)当a =8,b =4时,求阴影部分的面积(π取3).【答案】(1)阴影部分的面积=ab ﹣38πb 2;(2)14.【分析】 (1)根据阴影部分面积=矩形面积-14圆的面积-半圆的面积,结合图形14圆的半径、半圆的半径和矩形的宽的关系,并利用它们的面积公式即可求解.(2)将a ,b 的值代入(1)中所求的代数式进行计算.解:(1)14圆的半径即为矩形的宽=b ,半圆的半径为矩形宽的12=12b , 阴影部分面积=矩形面积-14圆的面积-半圆的面积即:阴影部分面积=2221113()4228ab b b ab b πππ--=- (2)因为π取3,将84a b ==,代入(1)所得的代数式得:原式=238434=148⨯-⨯⨯. 【点拨】本题考查求圆的面积的公式及根据题意列代数式,明确阴影部分面积=矩形面积-14圆的面积-半圆的面积是解题的关键. 【变式2】如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).【答案】2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=. 【点拨】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.类型六、坐标系中圆的问题6、如图,点P 是反比例函数(0)k y x x=<图象上一点,PA x ⊥轴于点A ,点M 在y 轴上,M 过点A ,与y 轴交于B 、D ,已知A 、B 两点的坐标分别为()()6,00,2A B -,,PB 的延长线交M 于另一点C .(1)求M 的半径的长;(2)当45APB ∠=︒时,试求出k 的值;(3)在(2)的条件下,请求出线段PC 的长.【答案】(1) 10 (2) 48- (3) 【分析】(1)设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,求出满足要求的m ,求出MB 的长,进而可得半径;(2)由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,将P B ,代入得62a b n b -+=⎧⎨=⎩,可得过P B ,的直线的解析式为226n y x -=+,将0y =代入,求得12,02E n -⎛⎫ ⎪-⎝⎭,由45APB ∠=︒ ,90PAB ∠=︒,可知AP PE =,则()1262n n -=---,求出满足要求的n 值,得到P 点坐标,然后代入反比例函数解析式求k 即可;(3)由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+,设(),2C a a -+,由题意知,10MC =,则()2222810a a +-++=,求出符合要求的a 值,进而可得C 的坐标,然后利用勾股定理求PC 的值即可.(1)解:设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,解得:8m =-,⊥()0,8M -,⊥()2810--=,⊥M 的半径的长为10.(2)解:由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,如图,将P B ,代入得62a b n b -+=⎧⎨=⎩, 解得262n a b -⎧=⎪⎨⎪=⎩, ⊥过P B ,的直线的解析式为226n y x -=+, 将0y =代入得122x n-=-, ⊥12,02E n -⎛⎫ ⎪-⎝⎭, ⊥45APB ∠=︒ ,90PAE ∠=︒,⊥45PEA ∠=︒,⊥AP AE =, ⊥()1262n n-=---, 整理得280n n -=,解得8n =,0n =(不合题意,舍去),⊥()6,8P -,将()6,8P -代入k y x =得,86k =-, 解得48k =-,⊥k 的值为48-.(3)解:由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+, 设(),2C a a -+,由题意知,10MC =,⊥()2222810a a +-++=,解得10a =, 0a =(不合题意,舍去),⊥()10,8C -,⊥PC =⊥PC 的长为【点拨】本题考查了圆的概念,反比例函数与一次函数的综合,等角对等边,勾股定理等知识.解题的关键在于对知识的熟练掌握与灵活运用.举一反三:【变式1】如图,在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,其中0a >,0b >.(1)请写出方程22(3)(4)25x y ++-=表示的圆的半径和圆心的坐标;(2)判断原点()0,0和第(1)问中圆的位置关系.【答案】(1)半径为5,圆心()3,4- (2)在圆上【分析】(1)根据题目所给的“在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆”即可直接得出答案;(2)将原点()0,0的坐标代入22(3)(4)25x y ++-=,即可判断出点与圆的位置关系.(1)解:在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,∴将22(3)(4)25x y ++-=化成()2223(4)5x y --+-=⎡⎤⎣⎦, ∴22(3)(4)25x y ++-=表示的圆的半径为5,圆心的坐标为()3,4-;(2)解:将原点()0,0代入22(3)(4)25x y ++-=,左边2222(03)(04)3491625=++-=+=+==右边,∴原点()0,0在22(3)(4)25x y ++-=表示的圆上.【点拨】此题主要考查对未学知识以新定义形式出现的题型,读懂题意,根据新定义解决问题是本题的关键.【变式2】阅读下列材料:平面上两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离表示为12PP =,称为平面内两点间的距离公式,根据该公式,如图,设P (x ,y )是圆心坐标为C (a ,b )、半径为r 的圆上任意一点,则点P r =,变形可得:(x ﹣a )2+(y ﹣b )2=r 2,我们称其为圆心为C (a ,b ),半径为r 的圆的标准方程.例如:由圆的标准方程(x ﹣1)2+(y ﹣2)2=25可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C (3,4),半径为2的圆的标准方程为: ;(2)若已知⊥C 的标准方程为:(x ﹣2)2+y 2=22,圆心为C ,请判断点A (3,﹣1)与⊥C 的位置关系.【答案】(1)()()223425x y -+-=;(2)点A 在⊥C 的内部.【分析】(1)先设圆上任意一点的坐标(x ,y ),根据圆的标准方程公式求解即可;(2)先根据圆的标准方程求出圆心坐标,利用两点距离公式求出点A 到圆心的距离d ,然后与半径r 相比较,d >r ,点在圆外,d =r ,点在圆上,d <r ,点在圆内,即可判断点A与圆的位置关系.解:(1)设圆上任意一点的坐标为(x ,y ),⊥()()223425x y -+-=,故答案为()()223425x y -+-=;(2)⊥⊥C 的标准方程为:(x ﹣2)2+y 2=22,⊥圆心坐标为C (2,0),⊥点A (3,﹣1),AC 2 ⊥点A 在⊥C 的内部.【点拨】本题考查两点距离公式的拓展内容,圆的标准方程,正确理解题意、熟练掌握基本知识是解题关键.。
第10课时直线与圆的位置关系(三)(附答案)一、选择题1.三角形的内心是三角形的( ) A.三条高的交点B.三条角平分线的交点C. 三条中线的交点D.三条边的垂直平分线的交点2.如图,点O是△ABC的内切圆的圆心,若∠BOC=1260,则∠BAC的度数为( ) A.720B.540C.630D.3603.如图,☉O是△ABC的内切圆,切点分别是D、E、F,已知∠A=1000,∠C=300,则∠DFE 的度数为( )A.550B.600 C. 650D.7004.如图,☉I是△ABC的内切圆,切点分别为D、E、F,则△DEF是( )A.钝角三角形B.直角三角形C.锐角三角形D.它的形状不能确定二、填空题5.一个三角形的内心与外心重合,那么这个三角形是____________.6.在边长为3 cm、4 cm、5 cm的三角形白铁皮上剪下一个最大的圆,则此圆的半径为_________cm.7.三角形的面积为15,周长为30,则它的内切圆半径为__________.8.定义1:与四边形四边都相切的圆叫做四边形的内切圆.定义2:一组邻边相等,另两边也相等的凸四边形叫做筝形.探究:任意筝形是否一定存在内切圆?答案:________ (填“是”或“否”).三、解答题9.如图是一块三角形木板余料.现要从中裁出一块圆形的木板,怎样裁剪才能使这块圆形木板的面积尽可能大?10.如图,在△ABC中,∠C=900,内切圆☉O与AB相切于点E,BO的延长线交AC于点D。
求证:BE·BD=BO·BC.11.等腰三角形的腰长为10 cm,底边长为12 cm,求它的内切圆的半径.12.如图,AB是☉O的直径,AE平分∠BAC交☉O于点E,过E作☉O的切线ME交AC于点D.试判断△AED的形状,并说明理由.参考答案1. B 2.A 3.C 4.C5.等边三角形6.17.18.是9.作出这个三角形木板余料的内切圆即可10.点拔:连接EO(图略).证明△BEO∽△BCD.11.3 cm12.∆AED为直角三角形连接BE(图略).AB是直径,∴∠BEA= 900.∴∠B+∠BAE= 900。
第12课时 圆与圆的位置关系(一) (附答案)一、选择题1.如图是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是 ( )A .内含B .相交C .相切D .外离2.已知⊙O 1和⊙O 2的半径分别为3 cm 和2 cm ,圆心距O 1O 2=4 cm ,则两圆的位置关系是( )A .相切B .内含C .外离D .相交3.已知半径分别为5 cm 和8 cm 的两圆相交,则它们的圆心距可能是 ( )A .1cmB .3 cmC .10 cmD .15 cm4.如图,以O 为圆心的两个同心圆的半径分别为11 cm 和9 cm ,若⊙P 与这两个圆都相切,则下列说法中:①⊙P 的半径可以为2 cm ;②⊙P 的半径可以为10 cm ;③符合条件的⊙P 有无数个且P 点运动的路线是曲线;④符合条件的⊙P 有无数个且P 点运动的路线是直线.其中正确的有 ( )A .1个B .2个C .3个D .4个二、填空题5.两圆内切,其中一个圆的半径为6,两圆的圆心距为3,则另一个圆的半径为________.6.两圆的半径分别为4 cm 和7 cm ,圆心距为3 cm ,则两圆的位置关系是___________.7.某人用如下方法测一钢管的内径:将一小段钢管竖直放在平台上,向内放入两个半径为5 cm 的钢球,测得上面一个钢球顶部高.DC=16 cm(钢管的轴截面如图所示),则钢管的内直径AD 长为__________cm .8.已知两圆半径分别是R 和r(R>r),圆心距为d ,且2222d dR R r +-=,则两圆的位置关系是_________.三、解答题9.两圆相切,圆心距为5 cm ,且两圆半径之比为3:2,求较小圆的半径.10.如图,⊙O 1和⊙O 2相交于A 、B 两点,⊙O 1的弦BC 交于⊙O 2点D ,过点A 的直线分别交⊙O 1和⊙O 2于点E 、F .试判断直线CE 与直线DF 的位置关系,并说明你的理由.11.如图,⊙O1和⊙O2外切于点B,⊙O和⊙O1内切于点A,⊙O和⊙O2内切于点C.且⊙O的半径为3cm.求△O1 O2O的周长.12.如图,⊙O1与⊙O2外切于点P,过点P的直线交⊙O1、⊙O2分别于点A、B.若⊙O1的半径为3 cm,⊙O2的半径为2 cm,AP的长为4 cm。
【回顾与思考】1.直线与圆的位置关系有_____种:____________,___________,____________.2.当直线与圆_________________时,叫直线与圆_______;当直线与圆_________________时,叫直线与圆_______;当直线与圆_________________时,叫直线与圆_______.3.已知圆半径为r,圆心到直线距离为d,则直线与圆_____<=>d___r;直线与圆_____<=>d___r;直线与圆_____<=>d___r;4.圆的切线垂直于经过______的半径.5.与三角形三边都相切的圆叫做三角形的________,圆心叫做三角形的_____,它是三角形三条_________的交点.6.在平面内两个半径不等的圆的位置关系有___种:_______,_______,_______,_______,_______.7.两圆半径为R,r(R>r),圆心距为d,写出两圆在各种位置关系下R,r,d之间的关系.⑴若两圆________,则______________;⑵若两圆________,则______________;⑶若两圆________,则______________;⑷若两圆________,则______________;⑸若两圆________,则______________;【经典试题】一、选择题1.已知⊙O的半径r=3cm,直线和点O的距离为d,如果直线与有公共点,那么( )A.d=3cmB.d≤3cmC.d>3cmD.d<3cm2.如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是 ( )A.0≤x≤ 2B.-2≤x≤ 2C.-1≤x≤1D.x> 23.圆的半径为5cm ,圆心到一条直线的距离是7cm ,则直线与圆 ( )A.有两个交点B.有一个交点C.没有交点D.交点个数不定4.△ABC 中,∠A:∠B:∠C=1:2:3,以B 为圆心,BC 为半径的⊙O 与边AC 的位置关系是()A.外离B.相切C.相交D.不能确定5.如图,⊙O 内切于△ABC ,切点分别为D ,E ,F ,已知∠B=50°,∠C=60°,连结OE ,OF ,DE ,DF ,那么∠EDF 等于 ( )A.40°B.55°C.65°D.70°第5题第8题6.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是()A.相交B.内含C.内切D.外切7.已知⊙O 1和⊙O 2相切,两圆的圆心距O 1O 2为9cm ,⊙O 1的半径为4cm ,则⊙O 2的半径()A.5cmB.13cmC.9cm 或13cmD.5cm 或13cm二、填空题8.如图,⊙O 半径为3cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以πcm/s 的速度在⊙O 上按逆时针方向运动一周回到点A ,立即停止.当点P 运动时间为________s 时,BP 与⊙O 相切.9.若⊙O 1与⊙O 2的半径分别为3cm ,4cm ,圆心距为1cm ,则两圆的位置关系是__ __________.10.两圆半径之比为5:7,两圆外切时,圆心距为6cm,则两圆的半径为分别为___ _____和__________.三、解答题(每题10分,共40分)11.如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC.求证:DE是⊙O的切线.C 12.如图,△ABC中,AB=AC=5,BC=6,求△ABC内切圆的半径长.C13.已知一个三角形的三边长分别为3cm,4cm,5cm,以各顶点为圆心的三个圆两两相切.求这三个圆的半径分别是多少?14.已知⊙O1与⊙O2外切于点P,AB是⊙O1的直径,AP,BP的延长线分别交⊙O2于点C,D.求证:⑴CD是⊙O2的直径; ⑵CD∥AB.探究学习如图,⊙O1的半径为1cm,⊙O2的半径为2cm,两圆外切.若⊙P的半径为3cm,且与⊙O1,⊙O2都相切,请画出⊙P,符合条件的⊙P有几个.参考答案一、1.B 2.A 3.C4.B5.B6.C7.D二、8.1或3 9.内切 10.2.5cm ,3.5cm三、12.3213.2cm ,3cm ,1cm 14.⑴证∠CPD=∠APB=90°;⑵连结O 1O 2,证∠D=∠B.5个探究学习。
苏科版九年级教材第五章《中心对称图形(二)-----圆》简介与三角形、四边形等图形一样,圆也是基本的平面图形,也是“空间与图形”的主要研究对象,是人们生活中常见的图形。
本章将在学生前面学习了一些基本的直线形----三角形、四边形等图形的基础上,进行研究一种基本的曲线形------圆,探索圆的有关性质,了解与圆有关的位置关系等,并结合一些图形性质的证明,进一步发展学生的逻辑思维能力。
本章共安排了九个小节和一个数学活动内容,教学时间大约18课时,具体安排如下:5.1圆2课时5.2圆的对称性2课时5.3圆周角2课时5.4确定圆的条件1课时5.5直线与圆的位置关系4课时5.6圆与圆的位置关系1课时5.7正多边形与圆1课时5.8弧长及扇形的面积1课时5.9圆锥的侧面积和全面积1课时数学活动1课时小结与思考2课时一、本章知识结构框图二、课标要求1、理解圆及其有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆以及圆与圆的位置关系。
2、探索圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征。
3、了解三角形的内心和外心。
4、了解切线的概念,探索切线与过切点的半径之间的关系;能判断一条直线是否为圆的切线,会过圆上一点画圆的切线。
5、了解正多边形的概念。
6、会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。
三、本章设计思路本章是在学习了直线形图形的有关性质和判定的基础上,来探索一种特殊的曲线型图形------圆的有关性质。
圆既是中心对称图形,又是轴对称图形。
同时,圆还具有旋转不变性,即绕圆心旋转任意角度都能与原来的图形重合。
圆的这些特征,是研究圆的有关性质的基础。
本章由4个单元组成。
第一单元是圆的有关性质。
课本在给出圆的概念后,首先研究了圆的对称性,并以此作为研究圆的有关性质的基础。
第二单元是直线和圆的位置关系。
课本通过操作、观察直线与圆的相对运动,揭示直线与圆的三种位置关系,探索直线与圆的位置关系和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。
第7课时确定圆的条件(附答案)
一、选择题
1.可以作圆,且只可以作一个圆的条件是( ) A.已知圆心的位置B.已知圆的半径大小
C.过三个点D.过不在同一条直线上的三个点
2.三角形的外心是( ) A.三条边高的交点B.三个角的平分线的交点
C.三边垂直平分线的交点D.三边中线的交点
3.A、B、C是平面内的三点,AB=3,BC=3,AC=6,下列说法正确的是( ) A.可以画一个圆,使A、B、C都在圆上
B.可以画一个圆,使A、B在圆上,C在圆外
C.可以画一个圆,使A、C在圆上,B在圆外
D.可以画一个圆,使B、C在圆上,A在圆内
4.△ABC内接于☉O,OD⊥AC于点D,如果∠COD=600,那么∠B的度数为( )
A. 300B.600C.600或1200D.300或1500
二、填空题
5.如果一个三角形的外心在这个三角形的内部,那么这个三角形是_______(填“锐角”、“直角”或“钝角”)三角形.
6.直角三角形的两边长分别为6 cm、8 cm,则这个三角形外接圆的半径为_________.7.如图,☉O是△ABC的外接圆,∠A=300,BC=2 cm,则☉O的半径为________cm.
8.如图,在平面直角坐标系中,已知一圆弧过正方形网格的格点A、B、C,已知A点的坐标为(-3,5),则该圆弧所在圆的圆心坐标为________.
三、解答题
9.如图,A、B、C是三个居民小区的位置.现决定在三个居民小区建造一个购物超市,使这个购物超市到三个小区的距离相等.请你在图中确定这个超市的位置.
10.如图是一个破损的机器部件,它的残留边缘是圆弧,请作图找出该圆弧所在圆的圆心. (不写画法,但要保留作图痕迹)
11.已知平面直角坐标系内的三个点分别为A(1,-1)、B(-2,5)、C(4,-6).试判断过点A、点B、点C这三点能否确定一个圆,并说明你的理由.
12.如图,△ABC内接于☉O,如果AB=AC=5 cm,BC=8 cm,求☉O的半径.
13.如图,☉O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD,交☉O于点E,连接BE,交AC于点F,连接CE.
(1) △ABE与△CDE全等吗?并说明你的理由.
(2)若AE=6,DE=9,求EF的长.
参考答案
1.D 2.C 3.B 4.C
5.锐角
6.5 cm 或4 cm
7.2
8.(-l ,0)
9.连接AB 、AC ,分别作出它们的垂直平分线.它们的交点即为所求的购物超市,作图略
10.如图所示点拨:过圆弧上任意三点作两条不同的弦,再分别作出这两条弦的垂直平分线,
且相交于点O. 则点O 即为该圆弧所在圆的圆心
11.设过点A 、点B 的直线解析式为y=kx+b ,
A(1,-1)、B(-2.5),
∴125k b k b +=-⎧⎨-+=⎩ 解得21
k b =-⎧⎨=⎩. 即y=-2x+1.
当x=4时,y=-7≠-6,∴点C 不在直线AB 上.
即点A 、点B 、点C 这三点不在同一直线上.
∴过点A 、点B 、点C 这三点能确定一个圆
12.☉O 的半径为
256cm 13.(1)全等 四边形ABCE 内接于☉O,
∴ ∠DEC= ∠ABC ,∠DCE= ∠BAE .
AB=AC .∴ ∠ABC= ∠ACB . 又 ∠ACB= ∠AEB ,CD=AC ,∠AEB= ∠ABC ,AB=CD .
∴ ∠AEB= ∠CED .
△ABE ≅△CDE
(2)由△ABE ≅△CDE ,得
∠ABE=∠D ,BE=DE=9. 又CD=AC, ∴∠CAD=∠D .∴∠CAD=∠ABE . 又
∠AEF=∠BEA, ∴△AFE △BAE .∴AE EF
BE AE = 又
BE=9,AE=6, ∴EF=4。