灰铸铁铁水成分与金相组织、力学性能之间的关系.pptx
- 格式:pptx
- 大小:3.64 MB
- 文档页数:58
附录C(资料性)灰铸铁的力学性能和物理性能C.1 灰铸铁的力学性能灰铸铁的力学性能见表C.1。
表C.1Φ30mm单铸试棒力学性能C.2 灰铸铁的物理性能灰铸铁的物理性能见表C.2。
表C.2Φ30mm单铸试棒的物理性能附录D(资料性)灰铸铁硬度和抗拉强度之间的关系D.1 一般要求灰铸铁硬度和抗拉强度、弹性模量和刚度模量,相互之间存在联系。
在多数情况下,其中一个性能值的增加会导致其他性能值的增加。
不同牌号灰铸铁具有不同的相对硬度(RH)或拉伸强度和硬度比(T/H)。
本附录简要介绍了灰铸铁的相对硬度以及抗拉强度和硬度比T/H。
D.2 相对硬度布氏硬度(HBW)与抗拉强度R m之间的经验关系式如下:H B = H R × (A + B ×R m)式中:H B——布氏硬度,单位HBW;H R——相对硬度;R m——抗拉强度,单位MPa。
通常式中的常量值为:——A=100——B=0.44相对硬度变化范围为0.8~1.2(见图D.1)。
相对硬度主要受原材料、熔化工艺、冶金方法的影响。
对铸造企业而言,这些影响因素几乎可以保持常数,因此可以测定出硬度及与其抗拉强度的对应关系。
引导序号说明:H B——布氏硬度,单位HBW;H R——相对硬度;R m——抗拉强度,单位MPa。
图D.1灰铸铁相对硬度与硬度、抗拉强度之间的关系D.3 抗拉强度和硬度比共晶石墨含量与抗拉强度和硬度比(T/H)的关系见图B.2,抗拉强度和硬度比(T/H)在0.8-1.4之间波动。
注:布氏硬度与抗拉强度可通过公式 MPa = HBW×9.80665转换,T/H比是一个常数,灰铸铁的T/H比范围约在0.082-0.143之间。
在共晶成分以上,CE增加,T/H比减少,但幅度很小。
图B.2中,T/H是常量,表示石墨对力学性能的影响。
石墨形态和基体组织对灰铸铁的力学性能有显著影响。
例如对铸件整体而言,抗拉强度和硬度之比接近常数。
灰铸铁的牌号、力学性能及用途材料牌号 石墨类型 石墨尺寸 金相组织HT150 A+B 无定向分布 120~250um (4级) 40%~90%中粗片状珠光体,10%~60%铁素体,二元磷共晶<7%HT200 A+B 允许10%~20%D 型 60~250um (4~5级)>95%中片状珠光体,<5%铁素体, 二元磷共晶<4%HT250 A+B 允许5%~15%D 型60~250um (4~5级) >98%中细片状珠光体,二元磷共晶<2%力学性能 铸铁类别牌号铸件壁厚/mmσb /MPa ≥HBS应用2.5~10 130 10~16610~20 100 93~14020~30 90 87~131铁素体 灰铸铁 HT100 30~50 80 82~122 适用于载荷小、对摩擦和磨损无特殊要求的不重要铸件,如防护罩、盖、油盘、手轮、支架、底板、重锤、小手柄等2.5~10 175 137~20510~20 145 119~17920~30 130 110~166铁素体—珠光体 灰铸铁HT150 30~50 120 105~157承受中等载荷的铸件,如机座、支架、箱体、刀架、床身、轴承座、工作台、带轮、端盖、泵体、阀体、管路、飞轮、电机座等2.5~10 220 157~23610~20 195 148~222 20~30 170 134~200HT20030~50 160 129~192 4.0~10 270 175~26210~20 240 164~247 20~30 220 157~236 珠光体 灰铸铁HT25030~50 200 150~225 承受较大载荷和要求一定的气密性或耐蚀性等较重要铸件,如汽缸、齿轮、机座、飞轮、床身、气缸体、气缸套、活塞、齿轮箱、刹车轮、联轴器盘、中等压力阀体等 10~20 290 182~27220~30 250 168~251HT300 30~50 230 161~24110~20 340199~29820~30 290182~272 孕育铸铁HT350 30~50 260171~257承受高载荷、耐磨和高气密性重要铸件,如重型机床、剪床、压力机、自动车床的床身、机座、机架,高压液压件,活塞环,受力较大的齿轮、凸轮、衬套,大型发动机的曲轴、气缸体、缸套、气缸盖等 PDF 文件使用 "pdfFactory Pro" 试用版本创建 。
第二章普通灰铸铁第一节铁-碳双重相图合金相图是分析合金金相组织的有用工具。
铸铁是以铁元素为基的含有碳、硅、锰、磷、硫等元素的多元铁合金,但其中对铸铁的金相组织起决定作用的主要是铁、碳和硅,所以,除根据铁-碳相图来分析铸铁的金相组织外,还必须研究铁-碳-硅三元合金的相图。
一、铁-碳相图的二重性从热力学的观点看,在一定的条件下,高温时的渗碳体能自动分解成为奥氏体和石墨,这表明渗碳体的自由能较高,亦即在这个条件下一定成分的铸铁以奥氏体和石墨的状态存在时具有较低的能量,是处于稳定平衡的状态,说明了奥氏体加渗碳体的组织,虽然亦是在某种条件下形成,在转变过程中也是平衡的,但不是最稳定的。
从结晶动力学(晶核的形成与长大过程)的观点来看,以含C 4.3% 的共晶成分液体在低于共晶温度的凝固为例:在液体中形成含C 6.67% 的渗碳体晶核要比形成含C 100% 的石墨核容易,而且渗碳体是间隙型的金属间化合物,并不要求铁原子从晶核中扩散出去。
因此,在某些条件下,奥氏体加石墨的共晶转变的进行还不如莱氏体共晶转变那样顺利。
至于共析转变,也可以从热力学、动力学两方面去分析而得到和上面相似的结论。
C相图只是介稳定的,Fe-C(石墨)由此可见,从热力学观点上看,Fe-Fe3C相图转变也是相图才是稳定的。
从动力学观点看,在一定条件下,按Fe-Fe3可能的,因此就出现了二重性。
二、铁-碳双重相图及其分析对铸铁合金长期使用与研究的结果,人们得到了如图2﹣1所示的铁碳合金C介稳定系相图与Fe-C(石墨)稳定系相图,分别以实双重相图,即Fe-Fe3线和虚线表示。
表2﹣1为图中各临界点的温度及含碳量。
图2-1 铁-碳相图G-石墨Fe3C-渗碳体表2﹣1 铁碳相图各临界点的温度、成分从这里看出,在稳定平衡的Fe-C相图中的共晶温度和共析温度都比介稳定平衡的高一些。
共晶温度高出6℃,共析温度高出9℃,这是容易理解的。
如图2﹣2的示意图所示,共晶成分的液体的自由能和共晶莱氏体(奥氏体加渗碳体)的自由能都是随着温度的上升而减低的,这二条曲线的交点就是共晶温度Tc。