四种强度准则
- 格式:ppt
- 大小:165.00 KB
- 文档页数:7
为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用第一理论的应用和局限1、应用材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
2、局限没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。
为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容。
一、四大强度理论基本内容介绍:1 、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力(T 1达到单向应力状态下的极限应力(7 b,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:7仁7 b o 7 b/S=[ 7 ],所以按第一强度理论建立的强度条件为:7 K [ 7 ] o2 、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变& 1达到单向应力状态下的极限值& u,材料就要发生脆性断裂破坏。
& u= 7 b/E ;£仁7 b/E o 由广义虎克定律得:& 1=[ 7 1-u(7 2+7 3)]/E 所以7 1-u(7 2+7 3)= 7 b o按第二强度理论建立的强度条件为:7 1-u(7 2+7 3)< [ 7 ] 03、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力T max达到单向应力状态下的极限切应力T 0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知T 0= 7 s/2 (7 s --------------------- 横截面上的正应力)由公式得:T max=T 1s= (7 1- 7 3)/2 0所以破坏条件改写为7 1- 7 3=7 S。
按第三强度理论的强度条件为:7 17 3W [ 7 ] 04 、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容.之杨若古兰创作一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为惹起材料脆性断裂破坏的身分是最大拉应力,不管什么应力形态,只需构件内一点处的最大拉应力σ1达到单向应力形态下的极限应力σb,材料就要发生脆性断裂.因而风险点处于复杂应力形态的构件发生脆性断裂破坏的条件是:σ1=σb.σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ].2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是惹起断裂的次要身分,不管什么应力形态,只需最大伸长线应变ε1达到单向应力形态下的极限值εu,材料就要发生脆性断裂破坏. εu=σb/E;ε1=σb/E.由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb.按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ].3、最大切应力理论(第三强度理论):这一理论认为最大切应力是惹起屈服的次要身分,不管什么应力形态,只需最大切应力τmax达到单向应力形态下的极限切应力τ0,材料就要发生屈服破坏.依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2. 所以破坏条件改写为σ1-σ3=σs.按第三强度理论的强度条件为:σ1-σ3≤[σ].4、外形改变比能理论(第四强度理论):这一理论认为外形改变比能是惹起材料屈服破坏的次要身分,不管什么应力形态,只需构件内一点处的外形改变比能达到单向应力形态下的极限值,材料就要发生屈服破坏.二、四大强度理论适用的范围1、各种强度理论的适用范围及其利用(1)、第一理论的利用和局限利用:材料无裂纹脆性断裂失效情势(脆性材料二向或三向受拉形态;最大压应力值不超出最大拉应力值或超出不多).局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力形态没法利用.(2)、第二理论的利用和局限利用:脆性材料的二向应力形态且压应力很大的情况.局限: 与极少数的脆性材料在某些受力情势下的实验结果相吻合.(3)、第三理论的利用和局限利用:材料的屈服失效情势.局限:没考虑σ2对材料的破坏影响,计算结果偏于平安.(4)、第四理论的利用和局限利用:材料的屈服失效情势.局限:与第三强度理论比拟更符合实际,但公式过于复杂.2、总结来讲:第一和第二强度理论适用于:铸铁、石料、混凝土、玻璃等,通常以断裂方式失效的脆性材料.第三和第四强度理论适用于:碳钢、铜、铝等,通常以屈服方式失效的塑性材料.3、以上是通常的说法,在实际中,有复杂受力条件下,哪怕同种材料的失效方式也可能分歧,对应的强度理论也会随之改变.例如,在三向应力情况下,某些塑性材料会呈现出脆性材料最经典的断裂失效,又或者正好相反.比较经典的例子,如碳钢材料螺钉,单向拉伸时会断裂而不会屈服.是以具体情况还要具体分析.三、四种强度理论的比较如下:。
工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。
(2)、第二理论的应用和局限应用:脆性材料的二向应力状态且压应力很大的情况。
四大强度理论基本内容介绍建立的强度条件公式以及适用的范围
强度理论是材料力学中的重要理论之一。
其中包括最大拉应力理论、最大伸长线应变理论、最大切应力理论和形状改变比能理论。
这些理论都有其基本假设和建立的强度条件公式。
最大拉应力理论认为最大拉应力是引起材料脆性断裂破坏的主要因素。
只要构件内一点处的最大拉应力达到单向应力状态下的极限应力,材料就会发生脆性断裂。
按照该理论建立的强度条件为:σ1≤[σ]。
最大伸长线应变理论认为最大伸长线应变是引起断裂的主要因素。
只要最大伸长线应变达到单向应力状态下的极限值,材料就会发生脆性断裂破坏。
按照该理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
最大切应力理论认为最大切应力是引起屈服的主要因素。
只要最大切应力达到单向应力状态下的极限切应力,材料就会发生屈服破坏。
按照该理论建立的强度条件为:σ1-σ3≤[σ]。
形状改变比能理论认为形状改变比能是引起材料屈服破坏的主要因素。
只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就会发生屈服破坏。
这些强度理论都有其适用的范围和局限。
最大拉应力理论适用于材料无裂纹脆性断裂失效形势,但局限在于未考虑σ2、σ3对材料的影响,无法应用于无拉应力的应力状态。
最大伸
长线应变理论适用于脆性材料的二向应力状态且压应力很大的情况,但局限在于只有极少数的脆性材料在某些受力形势下的实验结果相吻合。
最大切应力理论适用于材料的屈服失效形势,但局限在于未考虑σ2对材料的影响,计算结果偏于安全。
四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
四大强度理论适用的范围各种强度理论的适用范围及其应用第一理论的应用和局限1、应用材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
2、局限没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。
第二理论的应用和局限1、应用脆性材料的二向应力状态且压应力很大的情况。
为了探讨导致资料破坏的纪律,对资料破坏或失效进行了假定即为强度理论,简述工程力学中四大强度理论的根本内容.之五兆芳芳创作一、四大强度理论根本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起资料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,资料就要产生脆性断裂.于是危险点处于庞杂应力状态的构件产生脆性断裂破坏的条件是:σ1=σb.σb/s=[σ] ,所以按第一强度理论成立的强度条件为:σ1≤[σ].2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,资料就要产生脆性断裂破坏. εu=σb/E;ε1=σb/E.由狭义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb.按第二强度理论成立的强度条件为:σ1-u(σ2+σ3)≤[σ].3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,资料就要产生屈服破坏.依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2. 所以破坏条件改写为σ1-σ3=σs.按第三强度理论的强度条件为:σ1-σ3≤[σ].4、形状改动比能理论(第四强度理论):这一理论认为形状改动比能是引起资料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改动比能达到单向应力状态下的极限值,资料就要产生屈服破坏.二、四大强度理论适用的规模1、各类强度理论的适用规模及其应用(1)、第一理论的应用和局限应用:资料无裂纹脆性断裂失效形势(脆性资料二向或三向受拉状态;最大压应力值不超出最大拉应力值或超出未几).局限:没考虑σ2、σ3对资料的破坏影响,对无拉应力的应力状态无法应用.(2)、第二理论的应用和局限应用:脆性资料的二向应力状态且压应力很大的情况.局限: 与少少数的脆性资料在某些受力形势下的实验结果相吻合.(3)、第三理论的应用和局限应用:资料的屈服失效形势.局限:没考虑σ2对资料的破坏影响,计较结果偏于平安.(4)、第四理论的应用和局限应用:资料的屈服失效形势.局限:与第三强度理论相比更合适实际,但公式过于庞杂.2、总结来讲:第一和第二强度理论适用于:铸铁、石料、混凝土、玻璃等,通常以断裂形式失效的脆性资料.第三和第四强度理论适用于:碳钢、铜、铝等,通常以屈服形式失效的塑性资料.3、以上是通常的说法,在实际中,有庞杂受力条件下,哪怕同种资料的失效形式也可能不合,对应的强度理论也会随之改动.例如,在三向应力状况下,某些塑性资料会呈现出脆性资料最经典的断裂失效,又或正好相反.比较经典的例子,如碳钢资料螺钉,单向拉伸时会断裂而不会屈服.因此具体情况还要具体阐发.三、四种强度理论的比较如下:。
为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容。
一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。
力学中常用的四个强度理论是:
1. 最大剪应力理论(Tresca理论):最大剪应力理论假设材料在破坏前,会发生剪应力最大的区域,因此材料的破坏准则基于剪应力达到一定的临界值。
2. 极限强度理论(Rankine理论):极限强度理论认为材料在破坏前,承受的应力应该小于材料的屈服强度,因此材料的破坏准则基于主应力或主应力之和。
3. 椭圆形变能理论(Von Mises理论):椭圆形变能理论基于金属塑性变形过程中的等效应变能,认为材料在破坏前,应变能密度达到一定的临界值。
4. 梁库伦应力理论(Mohr-Coulomb理论):梁库伦应力理论主要适用于岩石和土壤等非金属材料的破坏,该理论基于材料的摩擦角和抗压强度,判断材料的破坏状态。
这些强度理论都是基于材料的力学性质和破坏机制而提出的,用于进行材料的强度设计和破坏分析。
在具体应用中,选择合适的强度理论取决于材料的特性、实际应力状态和设计要求。
为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容。
一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。