常见光无源器件解读
- 格式:ppt
- 大小:3.08 MB
- 文档页数:64
光无源器件介绍范文光无源器件是指无需外界能源输入即可以产生、控制、处理或传输光信号的器件。
它们在光通信、光传感、光储存、激光装置等领域具有重要应用价值。
本文将详细介绍几种常见的光无源器件,包括光纤、光栅、偏振器件、光耦合器件和光探测器等。
首先,光纤是一种常见的光无源传输介质。
它具有优异的光学特性,可以实现长距离、高速、低损耗的光信号传输。
光纤通信系统中的核心部件就是光纤。
光纤根据其结构可以分为多模光纤和单模光纤。
多模光纤通常用于短距离通信,而单模光纤适用于长距离通信。
光纤的制作工艺和材料技术的不断进步使得光纤通信系统性能不断提升。
其次,光栅是另一种常见的光无源器件。
光栅是在光介质中周期性变化的折射率结构,可以对入射光进行衍射和反射。
光栅可以用于光谱分析、光信号处理和光波波长选择等应用。
根据光栅的结构可以分为吸收光栅和反射光栅。
吸收光栅通过调整折射率分布来实现频率选择,反射光栅则通过反射光波形成波束宽度调制。
光栅可以实现光信号的分光、滤波和耦合等功能。
再次,偏振器件是用于控制和调整光波偏振状态的器件。
偏振器件根据其工作原理可以分为吸收式偏振器、分束偏振器和光学偏振调制器。
吸收式偏振器通过吸收非期望偏振分量来实现偏振分离。
分束偏振器通过折射率分布的改变实现光波的分离。
光学偏振调制器则通过改变材料的光学特性或施加电场来调制光的偏振状态。
其次,光耦合器件用于实现不同光波的耦合和分离。
光耦合器按照其结构和工作原理可分为分离型光耦合器和集成型光耦合器。
分离型光耦合器通过光波的反射和折射实现光波的耦合。
集成型光耦合器则通过光导波结构的耦合来实现不同波长光波的耦合和分离。
光耦合器为光通信和光传感等系统提供了重要的互连和耦合功能。
最后,光探测器是一种用于接收光信号并转换为电信号的器件。
根据工作原理,光探测器可分为光电二极管、光电导探测器和光电子倍增器等。
光电二极管是最常见的光探测器,它利用内建电场将吸收的光电子转化为电流。
光无源器件的原理及应用概述光无源器件是指在光通信系统中不需要能量供给而能够实现光信号的传输和处理的器件。
这些器件主要包括光纤、光耦合器、光分路器和光合器等。
本文将介绍光无源器件的原理和应用。
光纤光纤是光通信系统的核心组成部分。
它通过将光信号以光的全内反射方式在高纯度的玻璃/塑料纤维中传输。
光纤有着很低的损耗和高的带宽能力,也是目前最主要的传输媒介之一。
光纤的原理光纤的工作原理基于光的光束泄漏现象,即当光束从一种介质射入另一种折射率较低的介质中时,光束会不断发生反射并沿着光纤内部进行传输。
光纤的核心由折射率较高的材料组成,以便在传输过程中最小化信号的损耗。
光纤的应用光纤广泛应用于长距离通信和局域网等领域。
其高带宽和低损耗的特点使得它成为传输大量数据的理想选择。
此外,光纤还应用于医疗设备、光纤传感器和光纤显示等领域。
光耦合器光耦合器是一种用于将光信号从一个光纤耦合到另一个光纤的器件。
它广泛应用于光通信系统中,可以实现信号的分配、处理和路由等功能。
光耦合器的原理光耦合器的原理基于波导模式之间的耦合。
当光信号从一个波导模式传输到另一个波导模式时,通过适当设计导波结构,可以实现高效的能量转移。
光耦合器的设计可以根据具体的应用需求进行调整,以实现不同的功能。
光耦合器的应用光耦合器广泛应用于光网络中的信号分配和路由。
在光通信系统中,光耦合器可以用于将信号从主干光纤耦合到分支光纤或从分支光纤耦合到接收器等。
此外,光耦合器还可以应用于光传感器和光存储等领域。
光分路器光分路器是一种可以将入射光信号分为两个或多个输出通道的器件。
它常用于光网络中的信号分配和选择。
光分路器的原理光分路器的原理基于多模干涉。
当光信号通过光分路器时,不同波长的光信号会按照特定的光学路径进行干涉,从而实现光的分路。
根据光分路器的设计,可以实现不同的分路比例和带宽。
光分路器的应用光分路器广泛应用于光通信系统中的信号分配和选择。
光分路器可以将光信号分为不同的通道,实现多路复用和分布式传输。
就是不含光能源的光功能的器件,是光纤通信设备的重要组成部分,也是其它光纤应用领域不可缺少的元器件。
因其具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等领域。
光无源器件在光路中都要消耗能量,插入损耗是其主要性能指标。
光无源器件包括光纤连接器、光开关、光衰减器、光纤耦合器、波分复用器、光调制器、光滤波器、光隔离器、光环行器等。
它们在光路中分别可实现连接、能量衰减、反向隔离、分路或合路、信号调制、滤波等功能。
光无源器件有很多种,本文将讲述常用的几种—光纤衰减器、光纤环形器、光纤准直器、光纤隔离器、光纤传感器、光纤合束器和光纤起偏器。
光纤衰减器是一种非常重要的纤维光学无源器件,是光纤CATV中的一个不可缺少的器件。
从市场需求的角度看,一方面光衰减器正向着小型化、系列化、低价格方向发展。
另一方面由于普通型光衰减器已相当成熟,光衰减器正向着高性能方向发展,如智能化光衰减器,高回损光衰减器等。
到目前为止市场上已经形成了固定式、步进可调式、连续可调式及智能型光衰减器四种系列。
任何光纤系统传输数据的能力取决于接收器的光功率,如下图所示,其显示了接收光功率作用下的数据链路误码率。
(误码率是信噪比的倒数,例如误码率越高表示信噪比的信号越低。
)无论功率过高或者过低都会导致较高的误码率。
功率过高,接收放大器饱和,功率过低,可能会干扰信号产生噪音等问题。
光纤衰减器主要用于调整光功率到所需标准。
光纤环形器光纤环形器为非互易设备,只能沿单方向环行,反方向是隔离的。
光纤环形器除了有多个端口外,其工作原理与光纤隔离器类似,也是一种单项传输器件,主要用于单纤双向传输系统和光分插复用器中。
光纤准直器光纤准直器由尾纤与自聚焦透镜精确定位而成。
它可以将光纤内的传输光转变成准直光(平行光),或将外界平行(近似平行)光耦合至单模光纤内。
适用于扩展以及校准光纤端的输出光束,或耦合两光纤光束的装置。
光无源器件介绍范文光无源器件,又称为光传输无源器件,是指在光通信或光网络中起到信号传输、辅助和转换的功能,但没有电源和活动部件的器件。
光无源器件包括各种被动元件,如光纤、光耦合器、光分路器、光滤波器、光合分器、光切换器等等。
在光通信和光网络中,光无源器件的使用非常广泛且至关重要。
首先,光纤是光无源器件中最基础和最关键的一个。
光纤的作用是将光信号传输到目标地点。
光纤由细长的玻璃或塑料材料制成,其核心是一个折射率较高的介质,被一个折射率较低的包层包围。
光纤的传输速度快、信号损耗小、带宽大,使其成为光通信和光网络中最常用的传输介质。
其次,光耦合器是光无源器件中一种常见的元件,用于实现光信号的耦合和分配。
光耦合器可以将入射光信号分配到多个输出端口,也可以将多个光信号通过耦合器的输入端口合并到一个输出端口。
光耦合器通常以光栅波导结构实现,其工作原理是通过光栅波导的折射率周期性变化将光信号耦合到不同的传输通道。
光分路器是另一种常见的光无源器件,用于将光信号按不同的比例分配到不同的输出通道。
光分路器通常采用耦合波导技术,通过改变波导的结构或尺寸使得不同的输出通道对应不同的传输损耗。
光分路器广泛应用于光网络中的信号分配、波长分割和波长选择等应用场景。
光滤波器是一种能够选择性地传递或阻挡特定波长的光信号的器件。
光滤波器通常采用薄膜多层堆积技术,通过控制多层膜材料的厚度和折射率来实现对特定波长的选择性透过或反射。
光滤波器在光通信中被广泛应用于波分复用和波分多路复用系统中,用于合并或分离不同波长的光信号。
此外,光合分器和光切换器也是光无源器件中的重要代表。
光合分器是一种能够将多个光信号合并到一个输出通道的器件,常用于光网络中信号的合并和集中。
光切换器则是一种能够通过调节输入和输出通道的连通状态实现光信号的切换的器件。
光切换器在光通信和光网络中能够实现对光路的切换、光路的互联等重要功能。
总之,光无源器件是光通信和光网络中不可或缺的一部分。
无源器件简介
1、光跳线:(光纤+两端的活动连接器)
传输模式:多模、单模。
活动连接器型式:FC/PC、ST/PC、SC/PC(两端活动连接器可相同也可不同)
FC/PC-FC/PC单模光跳线
SC/PC-SC/PC单模光跳线
ST/PC-ST/PC多模光跳线
说明:单模光纤为黄色,多模光纤为橙色。
2、波分复用器:
一般为单模耦合:
接口类型:
①适配器类型:FC(普遍)
②尾纤类型:FC/PC、SC/PC
工作波长:1310和1550、1480和1550等。
隔离度:大于18dB。
适配器输出型
(只有FC型)
尾纤输出型
(FC型、
SC型)
3、Y 型分路器:
一般为单模耦合:
接口类型:
①适配器类型:FC (普遍)②尾纤类型:FC/PC 、SC/PC 工作波长:1310或1550。
分光比:50/50、10/90。
4、小可变衰减器:
接口类型:只有FC/PC-FC/PC 这一种型号。
法兰式小可变衰减器
5、适配器:(法兰盘)
接口类型:FC 、ST 、SC 。
FC 型适配器
SC 型适配器 ST 型适配器
适配器输出型
(只有FC 型)
尾纤输出型 (FC 型、 SC 型)。
光无源器件的原理及应用光无源器件是光纤通信设备的重要组成部分。
它是一种光学元器件,其工艺原理遵守光学的基本规律及光线理论和电磁波理论、各项技术指标、多种计算公式和各种测试方法,与纤维光学、集成光学息息相关;因此它与电无源器件有本质的区别。
在光纤有线电视中,其起着连接、分配、隔离、滤波等作用。
实际上光无源器件有很多种,限于篇幅,此处仅讲述常用的几种—光分路器、光衰减器、光隔离器、连接器、跳线、光开关。
一、光纤活动连接器。
光纤活动连接器是实现光纤之间活动连接的无源光器件,它还有将光纤与有源器件、光纤与其它无源器件、光纤与系统和仪表进行连接的功能。
活动连接器伴随着光通信的发展而发展,现在已形成门类齐全、品种繁多的系统产品,是光纤应用领域中不可缺少的、应用最广泛的基础元件之一。
尽管光纤(缆)活动连接器在结构上千差万别,品种上多种多样,但按其功能可以分成如下几部分:连接器插头、光纤跳线、转换器、变换器等。
这些部件可以单独作为器件使用,也可以合在一起成为组件使用。
实际上,一个活动连接器习惯上是指两个连接器插头加一个转换器。
(1)连接器插头。
使光纤在转换器或变换器中完成插拔功能的部件称为插头,连接器插头由插针体和若干外部机械结构零件组成。
两个插头在插入转换器或变换器后可以实现光纤(缆)之间的对接;插头的机械结构用于对光纤进行有效的保护。
插针是一个带有微孔的精密圆柱体,其主要尺寸如下:外径Ф2.499±0.0005mm外径不圆度<0.0005mm微孔直径Ф126±0.5μm微孔偏心量<1μm微孔深度4mm 或 10mm插针外圆柱体光洁度▽14端面曲率半径20-60mm插针的材料有不锈钢、全陶瓷、玻璃和塑料几种。
现在市场上用得最多的是陶瓷,陶瓷材料具有极好的温度稳定性,耐磨性和抗腐蚀能力,但价格也较贵。
塑料插头价格便宜,但不耐用。
市场上也有较多插头在采用塑料冒充陶瓷,工程人员在购买时请注意识别。
光无源器件的技术分析光无源器件是指不能对光信号进行增强、放大、调制等操作的器件。
光无源器件包括分光器、耦合器、衰减器、反射镜、吸收器等。
这些器件在光通信、光传感和光学成像等方面具有重要作用。
分光器是将一束入射光根据波长或调制方式分成不同光路的光学器件。
在通讯领域中,光纤的直径只有几个微米,但每根光纤可同时传输数十个波长,这需要利用分光器将信号进行分离和合成。
分光器的制作方法主要有基于波导结构的压缩和拉伸工艺、叠层压缩和分子束外延等。
耦合器用于将两条或更多条光纤相互连接,将光信号从一条光纤耦合到另一条光纤。
耦合器的制造方法主要有基于双曲形结构和波导交汇结构的技术。
利用双曲形结构制造的耦合器具有高耦合效率和低损耗,而波导交汇结构的耦合器可以实现高效、紧凑和集成化。
衰减器是能够减弱入射信号强度的器件,用于调整光纤中的信号强度以及在实验室实现不同功率的光源。
衰减器的制作方法主要有基于杆状结构的烧蚀和双曲形结构的耦合器结构等。
反射镜是利用反射作用来将入射光束改变方向的光学器件。
对于公共开放空间的光通信系统,反射镜可以将信号从一个发射器中转向其他发射器,起到信号的传递作用。
同时,在复杂环境下,反射镜还可以用于减少干扰和增强信号强度。
吸收器是一种能够吸收光能的材料,可以用于遏制光呈现的噪声和干扰。
吸收器的制作需要材料具有高吸收率和低反射率。
具有强吸收性能的材料有石墨烯、金属钙锆锂等。
综上所述,光无源器件在通讯、光传感和光学成像等领域中发挥着重要作用。
其制造技术主要有压缩和拉伸工艺、叠层压缩、分子束外延和波导交汇结构等。
这些方法都需要具有高精度和稳定性的加工和测量工具,如亚微米级的光刻和显微镜。
未来,随着技术的发展和需求的增加,光无源器件将会得到进一步的研究和应用。