(完整版)高一集合练习题一(附答案)
- 格式:doc
- 大小:192.33 KB
- 文档页数:6
高一数学集合练习题附答案一、单选题1.已知集合{1A x x =≤-或}2x >,则 RA =( ).A .{}12x x -≤<B .{}12x x -<≤C .{}12x x -<<D .{1A x x =<-或}2x ≥2.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂ B .()UMNC .()U N M ⋂D .()()U U M N3.已知集合U =R ,则正确表示集合U ,1{}1M =-,,{}²|0N x x x =+=之间关系的维恩图是( )A .B .C .D .4.已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( )A .{}0,1B .{}0,1,2C .{}1,2,3D .{}1,2,3,45.已知集合{}1|32|22xA x xB x ⎧⎫⎪⎪⎛⎫=-<<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,,则A B =( )A .{}|22x x -<<B .{} |12x x -<<C .{}|32x x -<<-D .{} |31x x -<<-6.已知集合{}{01}A xx a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( ) A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.若{}22,a a a ∈-,则a 的值为( )A .0B .2C .0或2D .2-9.已知集合{}20A x R x a =∈+>,且2A ∉,则实数a 的取值范围是( )A .{}4a a ≤B .{}4a a ≥C .{}4a a ≤-D .{}4a a ≥-10.已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=( )A .[]22-,B .(]2,1-C .[)2,3-D .∅11.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( ) A .AB .BC .(5,1]-D .[4,0)-12.已知集合{1,2,3,4,5}A =,()(){}130B x R x x =∈+-≤,则集合A B 等于( ) A .{1}B .{3}C .{1,2,3}D .{3,4,5}13.已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2,3B =,则()UB A =( )A .{}2-B .{}2,2-C .{}2,1,0,3--D .{}2,1,0,2,3--14.集合{}{}Z 2,1,0,1|,2,3A x x B =∈<=-,则A B =( ) A .1,0,1,2B .{}1,0,1?-C .{}0,1D .{}115.已知集合{5,3,1,0,2,4},{1,2,4},{5,0,2}U A B =---=-=-,则()U A B ⋃=( ) A .{2}B .{3}-C .{3,1,2}-D .{5,3,1,0,4}---二、填空题16.从集合{}123,,,,n U a a a a =⋅⋅⋅的子集中选出4个不同的子集,需同时满足以下两个条件:①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇.则选法有___________种.17.组成平面图形的点的集合是P ,这个平面图形所在的平面上的所有点组成的集合为Q ,那么P 与Q 的关系是___________.18.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.19.集合{}{}23,12,1A B m m ==+,,且A B =,则实数m =________.20.已知集合{}2,1,0,1A =--,{}|3B x N x =∈<,则A B =_____.21.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________. 22.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.23.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.24.若集合{}23,21,4A a a a =---,且3A -∈,则实数=a ___________.25.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______.三、解答题26.定义:Leistra 序列是一个由1a ,2a ,…,1n a -,()*,2n a n n ∈≥N 组成的有限项序列,有如下性质:①每项1a ,2a ,…,1n a -,n a 都是正偶数;②每项2a ,3a ,…,1n a -,n a 通过将序列中的前一项除以一个10-50(包含10和50)之间的整数得到(对于一个特定序列,使用的除数不一定都相同);③10-50(包含10和50)之间没有整数m 使得na m是一个偶数(其中n a 为数列的最后一项).(1)试判断序列1000、100、4和序列1000、200、4是否为Leistra 序列?并说明理由; (2)是否存在以首项1216a =,末项2n a =的Leistra 序列?如果有,请写出所有的Leistra 序列;如果没有,请说明理由;(3)首项为350123a =⋅的Leistra 序列有多少个?并说明理由.27.已知集合{12}S n =,,,(3n ≥且*n N ∈),12{}m A a a a =,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1km ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由; ①1{124}A =,,; ②2{245}A =,,.(2)若123{}A a a a =,,是{127}S =,,,的3元完美子集,求123a a a ++的最小值; (3)若12{}m A a a a =,,,是{12}S n =,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++≥,并指出等号成立的条件.28.如图所示阴影部分角的集合.29.已知集合2{20}A x x x =+-<,{213}B x m x m =+≤≤+(m )R ∈.(1)当1m =-时,求A B ,A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.30.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】利用补集的概念求解 RA .【详解】因为{1A x x =≤-或}2x >,所以 RA ={}12x x -<≤,故选:B 2.B 【解析】 【分析】化简集合N ,然后由集合的运算可得. 【详解】{}sin ,cos0}0,1 {N π==, {}2,1,2,U N ∴=-- {}()1U MN ∴=-故选:B. 3.A 【解析】 【分析】先求得集合N ,判断出,M N 的关系,由此确定正确选项. 【详解】∵{}{}2|1,00N x x x =-=+=,1{}1M =-,, ∴{1}M N ⋂=-,故A 正确,BCD 错误. 故选:A. 4.C 【解析】 【分析】化简集合A ,根据集合B 中元素的性质求出集合B. 【详解】{}24[2,2]A x x =≤=-,{}*1B x x N x A =∈-∈且,{1,2,3}B ∴=, 故选:C 5.B 【解析】 【分析】先由指数函数的性质求得集合B ,再根据集合的交集运算可求得答案. 【详解】解:因为}{}1{|32,|()212x A x x B x x x ⎧⎫=-<<=<=-⎨⎬⎩⎭,所以A B ={}|12x x -<<, 故选:B. 6.C 【解析】 【分析】利用交集的定义即得. 【详解】∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤. 故选:C. 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 8.A 【解析】 【分析】分别令2a =和2a a a =-,根据集合中元素的互异性可确定结果. 【详解】若2a =,则22a a -=,不符合集合元素的互异性;若2a a a =-,则0a =或2a =(舍),此时{}{}22,2,0a a -=,符合题意;综上所述:0a =. 故选:A. 9.C 【解析】 【分析】结合元素与集合的关系得到220a +≤,解不等式即可求出结果. 【详解】由题意可得220a +≤,解得4a ≤-, 故选:C 10.C 【解析】 【分析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算. 【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤, 所以{|23}[2,3)A B x x =-≤<=-. 故选:C . 11.C 【解析】 【分析】根据集合并集的概念及运算,正确运算,即可求解. 【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-. 故选:C. 12.C【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{1,2,3,4,5}A =,()(){}{}13013B x R x x x x =∈+-≤=-≤≤, 所以{1,2,3}A B ⋂=, 故选:C . 13.A 【解析】 【分析】利用并集和补集的定义可求得结果. 【详解】由已知可得{}1,0,1,2,3A B ⋃=-,因此,(){}2UAB =-.故选:A. 14.B 【解析】 【分析】根据集合的交集运算,求得答案. 【详解】由题意{}{}Z 2,1,0,1|,2,3A x x B =∈<=-,因为集合A 中元素为小于2的整数,又{}1,0,1,2,3B =-, 所以{}1,0,1A B =-, 故选:B . 15.B 【解析】 【分析】按照并集和补集计算即可. 【详解】由题意得,{5,1,0,2,4}A B =--,所以(){3}U A B =-.故选:B.二、填空题16.3323n n -⋅+【解析】 【分析】分析出当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;再进行【详解】因为∅、U 都要选出;故再选出两个不同的子集,即为M ,N , 因为选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇,故各个子集所包含的元素个数必须依次增加,且元素个数多的子集包含元素个数少的子集,当一个子集只含有1个元素时,另外一个子集可以包含2,3,4()1n -个元素,所以共有()()111221111C C C C C 22n n n n n n n -----⨯+++=⨯-种选法; 当一个子集只含有2个元素时,另外一个子集可以包含3,4,()1n -个元素,所以共有()()221232222C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;当一个子集只含有3个元素时,另外一个子集包含4,5,()1n -个元素,所以共有()()331243333C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;……当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;……当一个子集有()2n -个元素时,另外一个子集包含()1n -个元素,所以共有()22C 22n n -⨯-种选法;当一个子集有()1n -个元素时,另外一个子集包含有n 个元素,即为U ,不合题意,舍去;故共有()()()()122122C 22C 22C 22C 22n n n mm n n n n n ----⨯-+⨯-++⨯-++⨯-()1122122C 2C 22C C C n n n n n n n n ---=⋅++⋅-+++()()122212223323nn n n n n n =+------=-⋅+. 故答案为:3323n n -⋅+ 【点睛】对于集合与排列组合相结合的题目,要能通过分析,求出通项公式,再结合排列或组合的常用公式进行化简求解. 17.P Q ≠⊂ 【解析】 【分析】根据两个集合中的元素可判断出包含关系. 【详解】集合P 包含的所有元素都在集合Q 中,且集合Q 包含集合P 所不包含的其他元素,P Q ≠∴⊂.故答案为:P Q ≠⊂ 18.{}1,3【解析】 【分析】由交集定义直接得到结果. 【详解】由交集定义知:{}1,3A B =. 故答案为:{}1,3 19.1或3-##3-或1 【解析】 【分析】由题意可得223m m +=,求出m , 【详解】因为{}{}23,12,1A B m m ==+,,且A B =,所以223m m +=,由223m m +=,得2230m m +-=,解得1m =或3- 故答案为:1或3-20.{}0,1【解析】 【分析】由题知{}0,1,2B =,再根基集合交集运算求解即可. 【详解】解:因为{}{}|30,1,2B x N x =∈<=,{}2,1,0,1A =-- 所以A B ={}0,1 故答案为:{}0,1 21.1,1,22⎧⎫-⎨⎬⎩⎭【解析】 【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭.故答案为:1,1,22⎧⎫-⎨⎬⎩⎭22.5 【解析】 【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人. 【详解】设第一、二题都没答对的有x 人, 则()()206166635x -+-++= ,所以5x = 故答案为:5 23. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤24.0或1.【解析】【分析】根据题意,分33a -=-、213a -=-和243a -=-,三种情况讨论,结合元素的互异性,即可求解.【详解】由题意,集合{}23,21,4A a a a =---,且3A -∈,若33a -=-时,可得0a =,此时集合{}3,1,4A =---,符合题意;若213a -=-时,可得1a =-,此时243a -=-,不满足集合元素的互异性,舍去; 若243a -=-时,可得1a =或1a =-(舍去),当1a =时,集合{}2,1,3A =--,符合题意,综上可得,实数a 的值为0或1.故答案为:0或1.25.{}1【解析】【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果.【详解】 因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =, 则{}1M =,故答案为:{}1.三、解答题26.(1)序列1000、100、4是Leistra 序列,序列1000、200、4不是Leistra 序列,理由见解析(2)不存在,理由见解析(3)187个,理由见解析【解析】【分析】(1)看两个序列是否满足题干中的三个条件,得到1000、100、4是Leistra 序列,1000、200、4不是Leistra 序列;(2)将216拆解为3323⨯,得到{}218,12,6a ∈,故不能得到末项2n a =,从而证明出不存在;(3)首先得到{}2,6,18,4,12,8n a ∈,根据末项和除数进行分类讨论,求出不同情况下的Leistra 序列个数,相加即为答案.(1)序列1000、100、4每项都是正偶数,而除数依次为10,25,且10-50(包含10和50)之间没有整数m 使得n a m是一个偶数(其中n a 为数列的最后一项),故序列1000、100、4是Leistra 序列;1000、200、4不是Leistra 序列,因为10005200=不在10-50(包含10和50)之间; (2) 因为33121623a ==⨯,则216在10-50(包含10和50)之间的正约数有12,18,24,36,若1216a =,则{}218,12,6a ∈(9不是偶数,舍去),而此时不存在10-50(包含10和50)之间的正数能再进一步计算使得末项2n a =,所以不存在这样的Leistra 序列.(3)因为350123a =⋅,则在10-50(包含10和50)之间的正约数有27,18,12,36,且每一项()231,k a k n k N αβ*=⋅≤≤∈,其中1,2,3,50αβ=≤且N β∈,再结合10-50(包含10和50)之间没有整数m 使得n a m是一个偶数(其中n a 为数列的最后一项),则末项20n a <,所以{}2,6,18,4,12,8n a ∈,下面根据末项和除数分别进行研究:①当382n a ==时,则5013na a =,所以每个除数只含有因子3,即全是27,当50不能被3整除,所以无法由27相乘得到,即不存在这种情况; ②当242n a ==时,则50123na a =⋅,所以除数中因子2仅出现1次,只能是21823=⨯,剩下除数全是27,又因为剩下除数乘积为()16483163327==,即有17个除数(18出现一次,27出现16次),一共有17种;③当21232n a ==⨯,则49123na a =⋅,所以除数中因子2仅出现了1次,只能是21823=⨯,剩下除数全是27,但因为剩下除数乘积为473,其中47不能被3整除,所以无法由27相乘得到,即不存在这样的情景;④当2n a =时,则250123na a =⋅,所以除数中因子2出现了2次,即18出现2次或12出现1次或36出现1次,剩下的除数全是27,而对应的剩下除数乘积依次为4549483,3,3,其中()16483163327==,其余两种情况(46和49)都不能被3整除,所以有17个除数(36出现1次,27出现16次),共有17种;⑤当632n a ==⨯时,则249123na a =⋅,所以除数中因子2出现2次,即18出现2次或12出现1次,或36出现1次,剩下除数全是27,而对应的剩下除数乘积依次为4548473,3,3,其中()15453153327==,()16483163327==,而47不能被3整除,所以第一种情况有17个除数(18出现2次,27出现15次),一共有217C 136=种,第二种情况有17个除数(12出现1次,27出现16次),一共有17种;⑥当21823n a ==⨯时,248123na a =⋅,所以除数中因子2出现了2次,即18出现了2次或12出现一次或36出现一次,剩下除数全是27,而对应 的剩下除数乘积依次为4447463,3,3三个数都不能被3整除,故无法由27相乘得到,即不存在这种情形;综上:一共有17+17+136+17=187个Leistra 序列.【点睛】对于定义新数列的问题,要能正确阅读理解题干信息,抓住关键信息,转化为我们熟悉的问题解决.27.(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析(2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤ 【解析】【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值; (3)不妨设12m a a a <<<,有121i i i i m i a a a a a a a n +-<+<+<<+≤.121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证.(1)解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集.②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>,所以2A 是S 的3元完美子集.(2)解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾; 若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=. 若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥.综上,123a a a ++的最小值是12.(3)证明:不妨设12m a a a <<<.对任意1i m ≤≤,都有11i m i a a n +-++≥,否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤.由12m a a a <<<,得121i i i i m i a a a a a a a n +-<+<+<<+≤.所以121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,, 该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥.于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥. 即12(1)2m m n a a a ++++≥.等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤. 28.{}45?18045?180,n n n Z αα-+≤≤+∈ 【解析】【分析】观察图形, 按图索骥即可.【详解】}{1|45?36045?360,S k k k Z αα︒︒︒︒=-+≤≤+∈,}{2|135?360225?360,S k k k Z αα︒︒︒︒=+≤≤+∈,{}12|452180452180S S S k k αα︒︒︒︒=+=-+≤≤+ ()(){}|45211804521180k k αα︒︒︒︒-++≤≤++()k ∈Z{}()|4518045180n n n Z αα︒︒︒︒=-+≤≤+∈ ,故答案为:{}()|4518045180n n n Z αα︒︒︒︒-+≤≤+∈.29.(1){}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤ (2)32,2⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)求出集合B ,进而求出交集和并集;(2)根据x A ∈是x B ∈的充分不必要条件得到A 是B 的真子集,进而得到不等式组,求出实数m 的取值范围.(1){}21A x x =-<<.当1m =-时,{}12B x x =-≤≤ 所以{}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤;(2)x A ∈是x B ∈的充分不必要条件∴A 是B 的真子集,故21231m m +≤-⎧⎨+≥⎩即322m -≤≤- 所以实数m 的取值范围是32,2⎡⎤--⎢⎥⎣⎦. 30.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解. (2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1) 由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2) 因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤, 由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆, 则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.。
高一数学集合练习题附答案一、单选题1.设全集{}1,2,3,4U =,{}1,3A =,{}4B =,则()U A B =( ) A .{}2,4B .{}4C .∅D .{}1,3,42.已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =( )A .2B .1C .0D .-13.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个4.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-15.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .76.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤7.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)-8.已知集合{}27120A x x x =-+≤,{}20B x x m =+>,若A B ⊆,则m 的取值范围为( ) A .()6,-+∞B .[)6,-+∞C .(),6-∞-D .(],6∞--9.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3-B .[2,3)-C .(2,2)-D .[2,2)-10.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是( )A .(,1)-∞B .(,1]-∞C .{1,0}-D .{1,0,1}-11.已知集合{}20A x R x a =∈+>,且2A ∉,则实数a 的取值范围是( )A .{}4a a ≤B .{}4a a ≥C .{}4a a ≤-D .{}4a a ≥-12.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,613.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.已知集合{}12,12x A y y x -==≤≤,|lg 2Bx y x,则下列结论正确的是( )A .AB ⊆B .[]0,2A B =C .(],2A B ⋃=-∞D .()R B A =⋃R15.已知集合{}220|A x x x =-<,{}|55B x x =-<<,则( )A .AB =∅ B .A B R =C .B A ⊆D .A B ⊆二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________. 17.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______.18.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 19.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.20.已知集合121{|2}8x A x -=>,{|20}B x x a =-<.若A B A =,则实数a 的取值范围是________. 21.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.22.若{}231,13a a ∈--,则=a ______.23.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( ) (2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( ) (4)满足{}{}00,1,2,3A的集合A 的个数是322-个.( )24.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 25.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ; (3)13______Q ;(4)2π-______R .三、解答题26.已知集合2{|23}A x a x a =≤≤+,{|14}B x x =-≤≤,全集U =R . (1)当1a =时,求U ()A B ;(2)当A =∅时,求实数a 的取值范围;(3)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.27.已知:20,:40p x q ax ->->其中R a ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围.28.已知集合P ={x |a +1≤x ≤2a +1},Q ={x |-2≤x ≤5}. (1)若a =3,求()U P Q ⋂;(2)若“x ∈P ”是“x ∈Q ”充分不必要条件,求实数a 的取值范围.29.已知p :|m -1|>a (a >0),q :方程22152x y m m +=--表示双曲线.(1)若q 是真命题,求m 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围30.已知集合{}|13A x x =<<,集合{}|21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若B A ⊆,求实数m 的取值范围;【参考答案】一、单选题 1.A 【解析】 【分析】根据补集的概念求出UA ,再根据并集运算即可求出结果.【详解】 由题意可知{}2,4UA =,又{}4B =,所以(){}2,4U A B =.故选:A. 2.B 【解析】 【分析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解. 【详解】对于集合N ,因为280a ∆=+>, 所以N 中有两个元素,且乘积为-2, 又因为N M ⊆,所以{}2,1N =-, 所以211a -=-+=-.即a =1. 故选:B. 3.C 【解析】 【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 4.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-, 故选:D. 5.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 6.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 7.D 【解析】 【分析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)M N =-.故选:D 8.A 【解析】 【分析】先解出集合,A B ,再结合A B ⊆得到关于m 的不等式,求解即可. 【详解】因为{}34,,2m A xx B x A B ⎧⎫==>-⊆⎨⎬⎩⎭∣,所以32m -<,解得6m >-. 故选:A. 9.D 【解析】 【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-, 所以[2,2)A B ⋂=-. 故选:D 10.D 【解析】 【分析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得答案. 【详解】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ,故选:D 11.C 【解析】 【分析】结合元素与集合的关系得到220a +≤,解不等式即可求出结果. 【详解】由题意可得220a +≤,解得4a ≤-, 故选:C 12.B【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =, 根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.C 【解析】 【分析】求函数的值域求得集合A ,求函数的定义域求得集合B ,由此对选项进行分析,从而确定正确答案. 【详解】112,011,122x x x -≤≤≤-≤≤≤,所以[]1,2A =,20,2x x -><,所以(),2B =-∞. ∵2A ∈,2B ∈/,故A 错,B 错; ∵R2A ∈/,2B ∈/,∴()R 2A B ∈/,D 错.(],2A B ⋃=-∞,C 正确.故选:C 15.D 【解析】 【分析】先求出集合{}|02A x x =<<,再按照集合间的基本关系和运算判断即可. 【详解】{}|02A x x =<<,{}|02A B x x ⋂=<<,A 错误;{|A x x B =<,B 错误;A B ⊆,C 错误,D 正确.故选:D.二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3.18.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.19.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==.由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z ,∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒20.[4,)+∞【解析】 【分析】结合指数不等式化简集合A ,由A B A A B ⋂=⇒⊆,建立不等式即可求解a 的取值范围. 【详解】1212312228x x --->⇒>,即123x ->-,解得2x <,故{}|2A x x =<,|2a B x x ⎧⎫=<⎨⎬⎩⎭,由A B A A B ⋂=⇒⊆,即22a≤,4a ≥. 故答案为:[4,)+∞ 21.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】 因为()()294sin32311644x x xf x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤.故答案为:35,88⎡⎤⎢⎥⎣⎦22.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-. 23. 假 假 假 真 【解析】 【分析】(1)利用真子集的定义即可判断. (2)由集合与集合的关系即可判断真假. (3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数. 【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题. (3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题. (4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题.故答案为:假;假;假;真24.{}3【解析】 【分析】由交集、补集的定义计算. 【详解】由题意{4,3}M =,所以M N ⋂={3}. 故答案为:{3}. 25. ∉, ∈, ∈ ∈ 【解析】 【分析】(1)利用元素与集合的关系判断.(2)利用元素与集合的关系判断.(3)利用元素与集合的关系判断.(4)利用元素与集合的关系判断.【详解】 解:34∉N ; 4-∈Z ;13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈三、解答题26.(1)[)1,1-;(2)()(),13,∞∞--⋃+; (3)()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 【解析】【分析】(1)根据集合的补运算和交运算,求解即可;(2)根据题意,求解关于a 的一元二次不等式,即可求得范围;(3)根据集合之间的关系,列出不等关系,求解即可.(1)当1a =时,{|15}A x x =≤≤,{|14}B x x =-≤≤,故U ()A B {|1x x =<或{}5}|14{|11}x x x x x >⋂-≤≤=-≤<. 即U ()A B [)1,1=-.(2)若A =∅,则223a a >+,即()()310a a -+>,解得1a <-或3a >,故实数a 的取值范围为:()(),13,∞∞--⋃+.(3)若“x A ∈”是“x B ∈”的充分条件,则A B ⊆,①A =∅时,1a <-或3a >满足题意; ②A ≠∅,则13234a a -≤≤⎧⎨+≤⎩,得1-12a ≤≤ 综上所述,实数a 的取值范围为()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 27.(1)(2,)+∞(2)[0,2)【解析】【分析】(1)由题意可得A ⫋B ,所以0,42,a a>⎧⎪⎨<⎪⎩从而可求出实数a 的取值范围, (2)由题意可得B ⫋A ,然后分a =0,a >0和a <0三种情况求解即可(1)设命题p :A ={x |x -2>0},即p :A ={x |x >2},命题q :B ={x |ax -4>0},因为p 是q 的充分不必要条件,所以A ⫋B ,. 即0,42,a a>⎧⎪⎨<⎪⎩解得a >2 所以实数a 的取值范围为(2,)+∞(2)由(1)得p :A ={x |x >2},q :B ={x |ax -4>0},因为p 是q 的必要不充分条件,所以B ⫋A ,①当a =0时,B =∅,满足题意;②当a >0时,由B ⫋A ,得4a .>2,即0<a <2;.③当a <0时,显然不满足题意.综合①②③得,实数a 的取值范围为[0,2)28.(1)4{|}2x x -≤<(2)2a ≤【解析】【分析】(1)将a =3代入求出集合P ,Q ,再由补集及交集的意义即可计算得解. (2)由给定条件可得P Q ,再根据集合包含关系列式计算作答.(1)因a =3,则P ={x |4≤x ≤7},则有{|4U P x x =<或7}x >,又Q ={x |-2≤x ≤5}, 所以{|24)}(U P Q x x ⋂=-≤<.(2)“x ∈P ”是“x ∈Q ”充分不必要条件,于是得P Q ,当a +1>2a +1,即a <0时,P =∅,又Q ≠∅,即∅ Q ,满足P Q ,则a <0,当P ≠∅时,则有12112215a a a a +≤+⎧⎪+≥-⎨⎪+<⎩或12112215a a a a +≤+⎧⎪+>-⎨⎪+≤⎩,解得02a ≤<或02a ≤≤,即02a ≤≤,综上得:2a ≤,所以实数a 的取值范围是2a ≤.29.(1)(-∞,2)(5⋃,)∞+;(2)[4,)∞+.【解析】【分析】(1)解不等式(5)(2)0m m --<即得解;(2)由题意可得:1p m a >+或1m a <-+,解不等式组12150a a a -+⎧⎪+⎨⎪>⎩即得解. (1)解:由题意可得(5)(2)0m m --<,解得2m <或5m >.故m 的取值范围为(-∞,2)(5⋃,)∞+.(2)解:由题意可得:1p m a >+或1m a <-+.因为p 是q 的充分不必要条件,所以(-∞,1)(1a a -++⋃,)(+∞-∞,2)(5⋃,)∞+.所以12150a a a -+⎧⎪+⎨⎪>⎩,解得4a . 故a 的取值范围为[4,)∞+.30.(1){}23x x -<< (2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)先分别求出,A B ,然后根据集合的并集的概念求解出A B 的结果;(2)根据B A ⊆,进而先讨论B =∅的情况,再讨论B ≠∅的情况,进而得答案;(1)解:当1m =-时,{}22B x x =-<<, ∴{}23A B x x ⋃=-<<;(2)解:因为B A ⊆,所以,当B =∅时, 21m m ,解得13m ≥,满足B A ⊆; 当B ≠∅时,若满足B A ⊆,则212113m m m m <-⎧⎪≥⎨⎪-≤⎩,该不等式无解;综上,若B A ⊆,实数m 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭。
高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。
高一数学必修一集合练习试题及答案高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=87,∴22∉{x|x7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N_},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N_,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.学好数学的几条建议1、要有学习数学的兴趣。
高一数学集合练习题附答案一、单选题1.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -2.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N3.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}4.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π5.若集合{A y y ==,{}3log 2B x x =≤,则A B =( ) A .(]0,9B .[)4,9C .[]4,6D .[]0,96.已知集合{}i ,N nM m m n ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()1i 1i -+ B .1i1i-+ C .i 1i- D .()21i -7.设集合{}|14A x x =<<,集合2{|230}B x x x =≤一一,则A B =( ) A .[一1,4)B .(一1,4)C .(1,3]D .(1,3)8.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( )A .{}0,1,2B .{}1,2C .{}0,2D .{}29.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >- D .{}3x x >-10.已知集合02A x x,{}0,1B =,则A B ⋃=( )A .{}01x x <<B .{}01x x ≤≤C .{}02x x <≤D .{}02x x ≤≤11.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,12.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .313.设全集{}U 0|x x =≥,集合2{|}0M x x x =-<,{}|1N x x =≥,则()UM N =( ) A .()0,1B .[)0,1C .()1,+∞D .[)0,∞+14.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,515.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5二、填空题16.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________.17.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.18.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.21.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.22.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______. 23.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 24.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.立德中学高一年级共有200名学生,报名参加学校团委与学生会组织的社团组织,据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有有多少人?27.函数()f x 满足(21)41f x x +=-. (1)求()f x 的解析式;(2)集合{}2|()30A x x f x =++=,写出集合A 的所有子集.28.已知集合{12}S n =,,,(3n ≥且*n N ∈),12{}m A a a a =,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1km ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由; ①1{124}A =,,; ②2{245}A =,,.(2)若123{}A a a a =,,是{127}S =,,,的3元完美子集,求123a a a ++的最小值; (3)若12{}m A a a a =,,,是{12}S n =,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++≥,并指出等号成立的条件.29.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .30.已知集合{}2,560|U R A x x x ==-+≤,112B xx ⎧⎫=≤⎨⎬-⎩⎭. (1)求,A B ;(2)判断Ux A ∈是x B ∈的什么条件.【参考答案】一、单选题 1.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 2.D 【解析】 【分析】利用()()()U U uM N M N ⋂=⋃,判断相互之间的关系.【详解】()()()UU uM N M N ⋂=⋃,M N N ⋃=,()u uM N N ⋃=.故选D. 3.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 4.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 5.A 【解析】 【分析】先解出集合A 、B,再求A B . 【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A . 6.B 【解析】 【分析】计算出集合M ,在利用复数的四则运算化简各选项中的复数,即可得出合适的选项. 【详解】当N k ∈时,4i 1k =,41i i k +=,422i i 1k +==-,433i i i k +==-,则{}i,1,i,1M =--, ()()1i 1i 112M -+=+=∉,()()()21i1i 2i i 1i 1i 1i 2M ---===-∈++-,()()()i 1i i 11i 1i 1i 1i 22M +==-+∉--+,()2i 1i 2M =-∉-, 故选:B. 7.A 【解析】 【分析】解二次不等式求得集合B 然后根据并集的定义即得. 【详解】由2230x x --≤,解得13x -≤≤,[]1,3B ∴=-,又()1,4A =,[1,4)A B ∴⋃=-.故选:A. 8.C 【解析】 【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果. 【详解】因为集合{}24A x N x =∈≤化简可得{0,1,2}A =又{}1,B a =,B A ⊆, 所以0a =或2a =,故实数a 的取值集合为{0,2}, 故选:C. 9.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 10.D 【解析】 【分析】根据集合的并集的定义即可求解. 【详解】 {}{}{}200,102A B x x x x ==<≤≤≤.故选: D. 11.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 12.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 13.B 【解析】 【分析】首先解一元二次不等式求出集合M ,再根据补集、并集的定义计算可得; 【详解】解:由20x x -<,即()10x x -<,解得01x <<,所以{}{}210||0M x x x x x -=<=<<,因为{}|1N x x =≥,{}U 0|x x =≥,所以{}U|01N x x =≤<,所以(){}U|01MN x x =≤<;故选:B 14.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 15.B 【解析】 【分析】求出集合{}2230A x x x =--<,再根据集合的交集运算求得答案.【详解】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B二、填空题16.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.17.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭18.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥ 19.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫⎪⎝⎭.20.12 【解析】 【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可. 【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12. 21.5 【解析】 【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果 【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =. 故答案为:522.{}0,1,4【解析】 【分析】根据集合的运算法则计算. 【详解】由已知{4}A =,{0,1}B =,所以{0,1,4}A B =. 故答案为:{0,1,4}. 23.{x |2<x <3} 【解析】 【分析】解二次不等式可得集合B ,再求交集即可. 【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3} 24.4 【解析】 【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可 【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素, ∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去). 故答案为:425.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.103;23. 【解析】 【分析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少. 【详解】由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有10312020023+-=人,所以同时参加这2个社团的最多有103名学生,最少有23名学生. 27.(1)()23f x x =-(2){}0,{}2-,{}0,2-和∅【解析】【分析】(1)利用换元法:21t x =+,求出()f t ,即可求出()f x 的解析式;(2)根据()230x f x ++=求出集合A 的元素,根据元素即可写出集合A 的所有子集.(1)令21x t +=,所以12t x -=, 所以()141232t f t t -=⋅-=-,即()23f x x =-; (2)因为()23f x x =-, {}{}22|()30|20A x x f x x x x =++==+=,因为220x x +=,解得0x =或2x =-,所以{}0,2A =-,所以集合A 的所有子集为:{}0,{}2-,{}0,2-和∅.28.(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析(2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤ 【解析】【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值; (3)不妨设12m a a a <<<,有121i i i i m i a a a a a a a n +-<+<+<<+≤.121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证.(1)解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集. ②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>, 所以2A 是S 的3元完美子集.(2)解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾; 若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=. 若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥. 综上,123a a a ++的最小值是12.(3)证明:不妨设12m a a a <<<.对任意1i m ≤≤,都有11i m i a a n +-++≥,否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤. 由12m a a a <<<,得121i i i i m i a a a a a a a n +-<+<+<<+≤. 所以121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,, 该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥. 于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥. 即12(1)2m m n a a a ++++≥. 等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤. 29.(1){23A B x x ⋂=-<≤或}9x =,A B R =(2)(){2R B A x x ⋂=≤-或}9x >【解析】【分析】(1)根据集合的交集和并集的定义即可求解; (2)先根据补集的定义求出B R ,然后再由交集的定义即可求解. (1) 解:因为{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{23A B x x ⋂=-<≤或}9x =,A B R =;(2)解:因为全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{2R B x x =≤-或}9x >,所以(){2R B A x x ⋂=≤-或}9x >.30.(1){}|23A x x =≤≤;{2B x x =<或}3x ≥.(2)充分不必要条件【解析】【分析】(1)分别解一元二次不等式和分式不等式即可得答案; (2)由题知{2U A x x =<或}3x >,进而根据充分不必要条件判断即可.(1)解:解不等式2560x x -+≤得23x ≤≤,故{}|23A x x =≤≤; 解不等式()()320113110022220x x x x x x x ⎧--≤-≤⇔-≤⇔≤⇔⎨----≠⎩, 解得2x <或3x ≥,故{2B x x =<或}3x ≥.(2)解:因为{}|23A x x =≤≤, 所以{2U A x x =<或}3x >, 因为{2B x x =<或}3x ≥, 所以U x A ∈是x B ∈的充分不必要条件.。
高一数学集合练习题附答案一、单选题1.已知集合(){}{}|20,|10M x x x N x x =-<=-<,则M N =( )A .(),2-∞B .(),1-∞C .()0,1D .()1,22.已知集合2{|4}A x x =≥,则A =R( )A .()(),22,-∞-⋃+∞B .(][),22,-∞-+∞C .()2,2-D .[]22-,3.已知集合{}213A x x =+>,{}220B x x x =--<,则A B =( )A .{}1x x >-B .{}11x x -<<C .{}211x x x -<或D .{}12x x <<4.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( ) A .{}6x e x << B .{}1,2,3e e e +++ C .{}3,4,5 D .{}2,3,4,55.已知集合{|23}M x x =-≤≤,{|ln 1}N x x =≥,则RMN ( )A .[]2,0-B .[)2,e -C .[]2,e -D .[e,3]6.已知集合02A x x,{}0,1B =,则A B ⋃=( )A .{}01x x <<B .{}01x x ≤≤C .{}02x x <≤D .{}02x x ≤≤7.设集合{}0,1S =,{}0,3T =,则S T ⋃=( ) A .{}0 B .{}1,3 C .{}0,1,3D .{}0,1,0,38.已知集合{}sin ,M y y x x ==∈R ,{}220N x x x =--<,则MN =( )A .(]1,1-B .[)1,2-C .()1,1-D .[)1,1-9.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 10.设集合{}09A x x =∈≤≤N ,{}1,2,3,6,9,10B =-,则()AA B ⋂=( ).A .{}0,1,4,5,7,8B .{}1,4,5,7,8C .{}2,3,6,9D .∅11.已知集合(){},M x y y x ==,(){}22,|1N x y xy =+=,M N A ⋂=,则A 中元素个数为( )个. A .1B .2C .3D .412.已知集合{1,2,3,4,5}A =,()(){}130B x R x x =∈+-≤,则集合A B 等于( ) A .{1}B .{3}C .{1,2,3}D .{3,4,5}13.已知集合{}21,A x x n n Z ==+∈,{}3B =,则A B =( ) A .{}1,3 B .{}3,5,7,9 C .{}3,5,7D .{}1,3,5,7,914.若集合{}3221x A x -=>,{}2,B y y x x A ==-∈,则A B =( ) A .24,33⎛⎤⎥⎝⎦B .4,3⎛⎫+∞ ⎪⎝⎭C .24,33⎛⎫ ⎪⎝⎭D .2,3⎛⎫+∞ ⎪⎝⎭15.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( ) A .{0,1,2,3,4} B .{3,2,1,0,1,2,3}--- C .{2,1,0,1,2}--D .()3,3-二、填空题16.已知集合[)[)2,6,1,4A B ==-,则A B ⋃=__________.17.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________.18.设集合{}{}240,,20A xx x A x x a =-≤∈=+≤R ∣∣,且[]2,1A B =-,则=a ___________.19.设全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6},则ST =__.20.{}2|60A x x x =+-=,{}|10B x mx =+=,且A B A ⋃=,则m 的值是__________.21.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.22.若{}231,13a a ∈--,则=a ______.23.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.24.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______.25.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.三、解答题26.(1)已知全集{}|510,Z U x x x =-≤≤∈,集合M ={|07,Z x x x ≤≤∈},N ={|24,Z x x x -<∈≤},求()U N M (分别用描述法和列举法表示结果);(2)已知全集{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,若集合{}2,4,6,8UA B =,求集合B ;(3)已知集合2{|210,R,R}P x ax ax a x =++=∈∈,当集合P 只有一个元素时,求实数a 的值,并求出这个元素.27.在①{}{}21,22,1,0a a a a ⊆-+-;②关于x 的不等式13ax b <+≤的解集是{}34x x <≤这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分.(1)已知______,求关于x 的不等式230ax x a -->的解集A ;(2)在(1)的条件下,若非空集合{}22B x k x k =<≤+,A B A ⋃=,求实数k 的取值范围.28.设集合{}53A x x =-≤≤,{2B x x =<-或}4x >. (1)求A B ; (2)求R R ()()A B ⋃.29.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.30.设{}24,21,A a a=--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.【参考答案】一、单选题 1.C 【解析】 【分析】分别求出集合M 和集合N ,然后取交集即可. 【详解】集合(){}{}|20|02M x x x x x =-<=<<,{}|1N x x =<, 则M N ={}()|010,1x x <<=,故选:C2.C 【解析】 【分析】先求得集合{|2A x x =≤-或2}x ≥,结合集合补集的概念及运算,即可求解. 【详解】由不等式24x ≥,解得2x -≤或2x ≥,即集合{|2A x x =≤-或2}x ≥, 根据集合补集的概念及运算,可得(){|22}2,2A x x =-<<=-R.故选:C. 3.D 【解析】 【分析】分别求出集合AB 、根据集合的交集运算可得答案. 【详解】{}{}2131=+>=>A x x x x ,{}{}22012=--<=-<<B x x x x x ,∴{}12A B x x ⋂=<<. 故选:D . 4.C 【解析】【分析】先化简出结合,A B ,然后再求交集. 【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞ 所以{}3,4,5A B = 故选:C 5.B 【解析】 【分析】由对数函数的单调性解不等式求集合N ,再应用集合的交补运算求RM N .【详解】由题设{|e}N x x =≥,则{|e}N x x =<R,所以{|2e}M N x x =-≤<R.故选:B 6.D 【解析】 【分析】根据集合的并集的定义即可求解. 【详解】 {}{}{}200,102A B x x x x ==<≤≤≤.故选: D. 7.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 8.A 【解析】 【分析】由正弦函数性质可得集合M ,解一元二次不等式可得集合N ,然后由交集定义可得. 【详解】由正弦函数值域可知{|11}M y y =-≤≤, 由220x x --<解得{|12}N x x =-<< 所以{|11}M N x x =-<≤,即(]1,1-故选:A9.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确; 故选:C. 10.A 【解析】 【分析】根据集合的运算直接可得. 【详解】解:依题意{}0123456789A ,,,,,,,,,=,{}1,2,3,6,9,10B =-, 所以{}2,3,6,9A B ⋂=,故(){}0,1,4,5,7,8AA B ⋂=.故选:A . 11.B 【解析】 【分析】联立方程,解方程组,考察方程组的解的组数,即为集合A 的元素个数; 【详解】联立方程得221y x x y =⎧⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩所以集合M 与N 的交集A 中的元素个数为2个; 故选:B. 12.C 【解析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{1,2,3,4,5}A =,()(){}{}13013B x R x x x x =∈+-≤=-≤≤, 所以{1,2,3}A B ⋂=, 故选:C . 13.D 【解析】 【分析】根据集合交集运算直接求解可得. 【详解】3得110x ≤<,则{1,3,5,7,9}A B =. 故选:D 14.C 【解析】 【分析】根据指数函数和一次函数的性质,分别求得集合,A B ,结合集合交集的概念与运算,即可求解. 【详解】由不等式3221x ->,可得320x ->,解得23x >,所以2{|}3A x x =>, 又由{}42,{|}3B y y x x A y y ==-∈=<,所以2424{|}(,)3333A B x x =<<=. 故答案为:C 15.C 【解析】 【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解. 【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<, 又由集合{4,3,2,1,0,1,2,3,4}A =----, 所以A B ={2,1,0,1,2}--. 故选:C.二、填空题16.[1-,6) 【解析】直接利用并集运算得答案. 【详解】[2A =,6),[1B =-,4),[2AB ∴=,6)[1-,4)[1=-,6).故答案为:[1-,6). 17.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:1 18.-2 【解析】 【分析】由二次不等式和一次不等式的解法,求出集合A ,B ,再由交集的定义,可得a 的方程,解方程可得a . 【详解】集合2{|40}{|22}A x x x x =-=-,{|20}{|}2B x x a x x a =+=-, 由{|21}A B x x ⋂=-,可得12a-=,则2a =-. 故答案为:-2.19.{}2,4,7,8【解析】 【分析】由已知得可以求得S 和T ,再由交集运算即可解决. 【详解】∵全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6}, ∴{}=2,4,6,7,8S ,{}=1,2,4,5,7,8T , ∴{}2,4,7,8S T =. 故答案为:{}2,4,7,8.20.11023-、、【分析】先求出集合A ,再由A B A ⋃=,可得B A ⊆,然后分B =∅和B ≠∅两种情况求解即可 【详解】解:由260x x +-=,得2x =或3x =-,所以{}{}2|603,2A x x x =+-==-,因为A B A ⋃=,所以B A ⊆,当B =∅时,B A ⊆成立,此时方程10+=mx 无解,得0m =; 当B ≠∅时,得0m ≠,则集合{}1|10B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ⊆,所以13m -=-或12m -=,解得13m =或12m =-, 综上,0m =,13m =或12m =-.故答案为:11023-、、 21.12 【解析】 【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可. 【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.22.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-. 23.3 【解析】 【分析】根据题意21a a -+7=,结合7A =,即可求得a . 【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-.当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去. 当3a =时,满足题意. 故答案为:3.24.{}1【解析】 【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果. 【详解】因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =,则{}1M =, 故答案为:{}1.25.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4三、解答题26.(1){}|47,Z x x x ≤≤∈,{}4,5,6,7;(2){}0,1,3,5,7,9,10;(3)1a =,元素为1-. 【解析】 【分析】(1)根据补集和交集的定义直接计算作答. (2)利用补集的定义直接计算作答. (3)利用元素与集合的关系推理计算作答. 【详解】(1)由{}|510,Z U x x x =-≤≤∈,N ={|24,Z x x x -<∈≤}, 得:{|52U N x x =-≤<-或410,Z}x x ≤≤∈,而{|07,Z}M x x x =≤≤∈, 所以{}()|47,Z U N M x x x =≤≤∈{}4,5,6,7=. (2)由{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,{}2,4,6,8UA B =,得{2,4,6,8}UB =,所以{}()0,1,3,5,7,9,10U U B B ==. (3)当0a =时,P =∅,不符合题意,当0a ≠时,因集合P 只有一个元素,则方程2210ax ax ++=有等根,2440a a ∆=-=,此时1a =,集合P 中的元素为1-,所以1a =,这个元素是1-.27.(1)条件选择见解析,12A x x ⎧=<-⎨⎩或}2x > (2)[)5,1,22∞⎛⎫--⋃ ⎪⎝⎭ 【解析】【分析】(1)若选①,分2122a a =-+和11a =-,求得a ,再利用一元二次不等式的解法求解; 若选②,根据不等式13ax b <+≤的解集为{}34x x <≤,求得a ,b ,再利用一元二次不等式的解法求解;(2)由A B A ⋃=,得到B A ⊆求解;(1)解:若选①,若2122a a =-+,解得1a =,不符合条件.若11a =-,解得2a =,则2222a a -+=符合条件.将2a =代入不等式230ax x a -->并整理得()()2210x x -+>,解得2x >或12x <-,故12A x x ⎧=<-⎨⎩或}2x >. 若选②,因为不等式13ax b <+≤的解集为{}34x x <≤,所以3143a b a b +=⎧⎨+=⎩,解得25a b =⎧⎨=-⎩. 将2a =代入不等式整理得()()2210x x -+>,解得2x >或12x <-. 故12A x x ⎧=<-⎨⎩或}2x >. (2)∵A B A ⋃=,∴B A ⊆,又∵B ≠∅, ∴22122k k k +>⎧⎪⎨+<-⎪⎩或2222k k k +>⎧⎨≥⎩, ∴52k <-或12k ≤<, ∴[)5,1,22k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 28.(1){}52x x -≤<-; (2){5x x <-或}2x ≥-.【解析】【分析】(1)根据给定条件利用交集的定义直接计算作答.(2)利用补集的定义求出R A ,R B ,再利用并集的定义求解作答. (1) 因集合{}53A x x =-≤≤,{2B x x =<-或}4x >,所以{|52}A B x x ⋂=-≤<-.(2) 依题意,R {5A x x =<-或3}x >,{}R 24B x x =-≤≤,所以{R R ()()5A B x x ⋃=<-或}2x ≥-.29.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解.(2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1)由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2)因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤,由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆,则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.30.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a的值为-3.。
高一数学集合练习题一及答案第一篇:集合初步概念及运算1. 下列说法中正确的是:()A.空集是任何集合的子集B.空集是任何集合的真子集C.单集是有限集D.全集的子集个数是1答案:A2. 若集合A={1,2,4},B={1,2,3},C={2,3},则A∩B∪C的结果为()A. {1,3}B. {1,2}C. {2,3,4}D. {1,2,3,4}答案:D3. 若A∪B={-2,-1,0,3,4},则A∩B的结果为()A. {-2,-1}B. {0,3,4}C. {-2,-1,0,3,4}D. 无法确定答案:D4. 已知A={x|0≤x<5},B={x|x²-4x+3<0},则A∪B 的结果为()A. {1,2,3,4,5}B. {x|x²-4x+3≥0}C. [3,5)D. [1,5)答案:A5. 下列说法中正确的是:()A. A={0,1,2},|A|=2B. A={0,x,2},x为实数,|A|=2C. A={0,1,2},P(A)的元素个数是3D. A={0},P(A)的元素个数是2答案:D6. 下列说法中正确的是:()A. A∩B=∅,则A=BB. A∩B=A,则A包含于BC. A∪B=B,则A包含于BD. 若A=B,则A∩B=A答案:B7. 下列说法中正确的是:()A. A×B的元素个数是|A||B|B. A×∅=∅C. |P(A)|=2^|A|D. A∩B=A∪B答案:C8. 下列说法中正确的是:()A. 不交集的交集是空集B. 空集和任何集合的并集是空集C. 任何集合和全集的交集是原集合D. 全集和空集的交集是全集9. 集合A、B的笛卡尔积为{(x,y)|x∈A,y∈B},则A×B 的结果为()A. {AB}B. A+BC. {(x,y)|x∈A,y∈B}D. AB答案:C10. 下列说法中正确的是:()A. A⊂B,B⊂C,则A⊂CB. A⊂B,B∩C=∅,则A⊂CC. A∩B=A,A⊂C,则B⊂CD. A∩B=A,A⊂C,则B包含于C答案:D第二篇:复合函数与反函数1. 函数f(x)=x²,g(x)=3-x,则复合函数(f∘g)(x)的结果为()A. x²-3x+9B. 3x²-x+9C. 9-6x+x²D. x²-6x+9答案:D2. 已知函数f(x)=x³,则函数f的反函数为()A. f⁻¹(x)=x³B. f⁻¹(x)=∛xC. f⁻¹(x)=x²D. f⁻¹(x)=x³/33. 函数y=2x-1,它的反函数为()A. y=2x+1B. y=(x+1)/2C. y=(x-1)/2D. y=2(x+1)答案:C4. 函数f(x)=log₃(x+2),则它的反函数为()A. f⁻¹(x)=3ⁿ-2B. f⁻¹(x)=log₃(x)-2C. f⁻¹(x)=3ⁿ+2D. f⁻¹(x)=log₃(x+2)-2答案:B5. 已知函数f(x)=2x+1,g(x)是f(x)的反函数,则g(-2)的值为()A. -1/2B. -3/2C. 0D. 3答案:B6. 设函数f(x)=x³,g(x)是函数f(x)在[0,+∞)上的反函数,则g(8)的值为()A. 0B. 2C. 3D. 4答案:B7. 函数f(x)=(x-1)/(x+2),则f(f(x))的分母为()A. x²B. (x-1)²C. (x+2)²D. (x²+1)答案:C8. 函数f(x)=log₃x,则它的反函数f⁻¹(x)为()A. f⁻¹(x)=3ⁿB. f⁻¹(x)=3/xC. f⁻¹(x)=3log(x)D. f⁻¹(x)=log₃(x)答案:D9. 函数f(x)=log₃x,g(x)=x-2,则(f∘g)(x)的结果为()A. log₃(x-2)B. log₃(x-2)/3C. log₃x-2D. log₃(x+2)答案:C10. 已知函数f(x)=3x²-4,函数g(x)为f(x)的反函数,则g(5)的值为()A. 1B. 2C. 3D. 4答案:C第三篇:不等式和函数的性质1. 若a>b,则a²≤3a+b+2的条件是()A. b≤a-2B. b≥a-2C. b≤-a-2D. b≥-a-2答案:B2. 若x>0,x+1/x≥2,则x的取值范围为()A. [0,1)B. [1,∞)C. (0,1)D. (1,∞)答案:B3. 已知函数f(x)的值域为[1,2],则方程f(x)=1/2的解集为()A. {1}B. (0,1)C. ∅D. (1,2)答案:C4. 已知函数f(x)=3x-1,g(x)=2x-3,则fg(x)和gf(x)的符号相反,x的取值范围是()A. (-∞,1)B. (1,∞)C. [1,3/5]D. (3/5,1)答案:A5. 若函数f(x)在区间[a,b]上单调递减,则f(x)在区间[a,b]上的最大值出现在()A. x=aB. x=bC. x=(a+b)/2D. x未知答案:A6. 若函数f(x)=3x+c的解析式是f(x)的导函数,则常数c为()A. -2B. -1C. 0D. 1答案:B7. 函数f(x)=x/(5-x),则函数f(x)在[0,5)上的值域是()A. (-∞,1/5)B. (-∞,-1/5)C. (1/5,∞)D. (-∞,∞)答案:C8. 若函数f(x)的值域为[1,2),则函数g(x)为f(x)的反函数的值域为()A. [1,2)B. (-∞,2)C. (1,∞)D. ∅答案:B9. 函数f(x)=2x(1-x)的最大值为()A. 1B. 1/4C. 1/2D. 1/8答案:B10. 若函数f(x)满足f(x)+f(1-x)=x,则f(1/2)的值为()A. 1/2B. 1/4C. -1/4D. -1/2答案:B。
一、选择题(每题4分,共40分)1、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 104、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4}5、方程组 11x y x y +=-=- 的解集是 ( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0⊇∅,Q ∉3.0, N ∈0, {}{},,a b b a ⊂ ,{}2|20,x xx Z -=∈是空集中,错误的个数是 ( )A 4B 3C 2D 17、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集C. 第一、第三象限内的点集D. 不在第二、第四象限内的点集8、设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤9、 满足条件M}{1=}{1,2,3的集合M 的个数是 ( )A 1B 2C 3D 410、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( )A a b P +∈B a b Q +∈C a b R +∈D a b +不属于P 、Q 、R 中的任意一个 二、填空题(每题3分,共18分)11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ⊂A ,则a=__________13、设全集U={}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。
高一数学集合练习题含答案一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( ) A .2B .3C .4D .无数个2.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅3.设I 为全集,1S 、2S 、3S 是I 的三个非空子集且123S S S I ⋃⋃=.则下面论断正确的是( )A .()123I S S S ⋂⋃=∅B .()123I I S S S ⊆⋂C .123I I I S S S ⋂⋂=∅D .()123I I S S S ⊆⋃4.已知集合{}42A x x =-<<,{}29B x x =≤,则A B ⋃=( )A .(]4,3-B .[)3,2-C .()4,2-D .[]3,3-5.设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是( )A .3B .6C .7D .86.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,27.设集合{}2,1,0,1,2,3A =--,{|B x y ==,则AB =( )A .{}2B .{}0,1C .{}2,3D .{}2,1,0,1,2--8.设全集U =R ,集合{}{}13,0,1,2,3,4,5A x x B =≤≤=,则()U A B =( ) A .{0,4,5}B .{0,1,3,4,5}C .{4,5}D .{0}9.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,210.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,611.已知集合{}{}|1|Z 3,0A x x B x x =∈-≤≤=≥,则A B =( ) A .[]1,2B .{}1,2,3C .[]0,3D .{}0,1,2,312.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2 B .{}2,3C .{}0,3D .{}313.已知集合{|03}A x x =<<,集合2{|0log 1}B x x =<<,则A ∩B =( )A .{|13}x x <<B .{|12}x x <<C .{|23}x x <<D .{|02}x x <<14.已知集合{}{}21,,3A x x n n Z B ==+∈=,则A B =( ) A .{1,3}B .{1,3,5,7,9}C .{3,5,7}D .{1,3,5,7}15.等可能地从集合{}1,2,3的所有子集中任选一个,选到非空真子集的概率为( ) A .78B .34C .1516 D .14二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________. 18.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.19.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________.20.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 21.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________.22.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个. 23.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.24.若{}231,13a a ∈--,则=a ______.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.设A 为非空集合,令(){},,A A x y x y A ⨯=∈,则A A ⨯的任意子集R 都叫做从A 到A 的一个关系(Relation ),简称A 上的关系.例如{}0,1,2A =时,(){}10,2R =,2R A A =⨯,3R =∅,()(){}40,0,2,1R =等都是A 上的关系.设R 为非空集合A 上的关系.如果R 满足:①(自反性)若x A ∀∈,有(),x x R ∈,则称R 在A 上是自反的; ②(对称性)若(),x y R ∀∈,有(),y x R ∈,则称R 在A 上是对称的; ③(传递性)若(),x y ∀,(),y z R ∈,有(),x z R ∈,则称R 在A 上是传递的;称R 为A 上的等价关系.(1)已知{}0,1,2A =.用列举法写出A A ⨯,然后写出A 上的关系有多少个,最后写出A 上的所有等价关系.(只需写出结果)(2)设1R 和2R 是某个非空集合A 上的关系,证明: (ⅰ)若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的;(ⅱ)若1R ,2R 是传递的,则12R R 也是传递的.(3)若给定的集合A 有n 个元素()4n ≥,()12,,,2m A A A m n ⋅⋅⋅≤≤为A 的非空子集,满足12m A A A A ⋅⋅⋅=且两两交集为空集.求证:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A上的等价关系.27.已知集合{|28}x a A x -=>,2{|20}B x x x =+-<,再从条件① ,条件② ,条件③这三个条件中选择一个作为已知,求实数a 的取值范围. 条件①:A B =∅;条件②:A B A =;条件③:RA B ⊆.28.已知M 由0,2,4,6,8组成的集合,{|33}Z N x x =∈-≤. (1)用列举法表示集合N ,用描述法表示集合M (书写格式要规范)(2)若∃x ∈B 而x ∉ A ,则称B 不是A 的子集.结合集合M ,N 写出5个含M 中3个元素但不是M 的子集的集合.29.已知集合{}|33A x a x a =-≤≤+,{}2|40B x x x =-≥.(1)当2a =时,求A B ,A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. (1)分别求出集合A 、B ; (2)设全集为R ,求()RA B ⋂.【参考答案】一、单选题 1.B 【解析】 【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解. 【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦,故{}ln 2,0,ln5B =,集合B 中元素个数为3. 故选:B. 2.A 【解析】 【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 3.C 【解析】 【分析】画出关于123S S S I ⋃⋃=且含7个不同区域的韦恩图,根据韦恩图结合集合的交并补运算确定各选项中对应集合所包含的区域,并判断包含关系. 【详解】将123S S S I ⋃⋃=分为7个部分(各部分可能为空或非空),如下图示:所以1A B D E S =⋃⋃⋃、2A B C F S =⋃⋃⋃、3S A C D G =⋃⋃⋃, 则1I S C F G =⋃⋃,2I S D E G =⋃⋃,3I S B E F =⋃⋃,所以23S S A B C D F G ⋃=⋃⋃⋃⋃⋃,故()123I S S S F G ⋂⋃=⋃,A 错误;23I I S S E ⋂=,故231I I S S S ⋂⊆,B 错误; 123I I I S S S ⋂⋂=∅,C 正确;23II S S B D E F G ⋃=⋃⋃⋃⋃,显然1S 与23I I S S ⋃没有包含关系,D 错误.故选:C 4.A 【解析】 【分析】先求B ,再求并集即可 【详解】易得{}3|3B x x =-≤≤,故(]4,3A B ⋃=- 故选:A 5.D 【解析】 【分析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案. 【详解】2222x x ≤⇒-≤,所以2,2A ⎡=-⎣,所以{}1,0,1A ⋂=-Z , 所以A ⋂Z 子集的个数是328=. 故选:D 6.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 7.C 【解析】 【分析】根据偶次根式有意义及一元二次不等式的解法,再结合集合的交集的定义即可求解. 【详解】由y =()()250x x --≥,解得25x ≤≤,所以{}|25B x x =≤≤,A B ={}{}{}2,1,0,1,2,3|252,3x x --≤≤=,故选:C. 8.A 【解析】 【分析】由集合的补集和交集的运算可得. 【详解】 由题可得{1UA x x =<或3}x >,所以(){0,4,5}=UA B .故选:A .9.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 10.B 【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =,根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 11.D 【解析】 【分析】直接利用集合的交集运算求解. 【详解】∵集合{}{}{}Z 131,0,1,2|,0|3,A x x B x x =∈-≤≤-=≥=, 所以{}0,1,2,3A B =. 故选:D. 12.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 13.B 【解析】 【分析】化简集合B ,再求集合A,B 的交集即可. 【详解】∵集合{|03}A x x =<<,集合2{|0lo {|}g 121}B x x x x =<<<<=, ∴A B ={|12}x x <<. 故选:B. 14.B 【解析】 【分析】先求出集合[)1,10B =,再根据集合的交集运算求得答案. 【详解】由题意得[){3}1,10B x =<=,其中奇数有1,3,5,7,9 又{}21,Z A x x n n ==+∈,则{}1,3,5,7,9A B ⋂=, 故选:B . 15.B 【解析】 【分析】写出集合{}1,2,3的所有子集,再利用古典概率公式计算作答.【详解】集合{}1,2,3的所有子集有:{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅,共8个,它们等可能,选到非空真子集的事件A 有:{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,共6个, 所以选到非空真子集的概率为63()84P A ==. 故选:B二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x <18.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-19.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:8 20.5 【解析】 【分析】直接求出集合A 、B ,再求出A B ,即可得到答案. 【详解】因为集合{}{}352,1,0,1,2,3,4A x Z x =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =, 所以A B 的元素个数为5. 故答案为:5.21.()5,1-【解析】 【分析】根据逻辑条件关系与集合间的关系、一元二次不等式的解法即可求解. 【详解】由题意得,{}{}228024A x x x x x =--<=-<<,由x B ∈是x A ∈成立的一个充分而不必要条件,得B A ,即2334m m -<+⎧⎨+<⎩解得,51m -<<, 故答案为:()5,1-. 22.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:7 23.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】因为()()294sin32311644x x x f x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦24.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-.25.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.(1)答案见解析(2)(ⅰ)证明见解析;(ⅱ)证明见解析 (3)证明见解析 【解析】 【分析】(1)由A A ⨯的定义可直接得到结果;根据A A ⨯中元素个数可得其子集个数,即为A 上的关系个数;根据等价关系定义列举出所有满足的R 即可;(2)(ⅰ)由()1,x x R ∈,()2,y y R ∈可知()(){}()12,,,x x y y R R ⊆,自反性得证;由()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,根据并集定义可知()()()(){}()12,,,,,,,x y y x s t t s RR ⊆,对称性得证;(ⅱ)采用反证法,可知1R 或2R 不是传递的,假设错误,传递性得证;(3)采用假设的方式,分别假设s s a A ∈,可知(){}(),s s s s a a A A R ⊆⨯⊆,自反性得证;假设,s t t a a A ∈,可知()(){}(),,,s t t s t t a a a a A A R ⊆⨯⊆,对称性得证;假设(),,1s t q q a a a A q m n ∈≤≤≤,可知()()(){}(),,,,,s t t s s q q q a a a a a a A A R ⊆⨯⊆,传递性得证;由此可得结论. (1)由题意得:()()()()()()()()(){}0,0,0,1,0,2,1,0,1,1,1,2,2,0,2,1,2,2A A ⨯=;A A ⨯共有9个元素,A A ∴⨯共有92个子集,即A 上的关系有72512=个;所有等价关系有:()()(){}10,0,1,1,2,2R =,()()()()(){}20,0,1,1,2,2,0,1,1,0R =,()()()()(){}30,0,1,1,2,2,0,2,2,0R =,()()()()(){}40,0,1,1,2,2,1,2,2,1R =, ()()()()()()()()(){}50,0,1,1,2,2,1,2,2,1,0,2,2,0,0,1,1,0R =. (2)(ⅰ)若任意,x y A ∈,12,R R 在A 上是自反的,令()1,x x R ∈,()2,y y R ∈,()(){}()12,,,x x y y R R ∴⊆,则12R R 是自反的;若12,R R 在A 上是对称的,则()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,()()()(){}()12,,,,,,,x y y x s t t s R R ∴⊆,则12R R 是对称的;综上所述:若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的.(ⅱ)假设12R R 不是传递的,则()()12,x y R R ∃∈,()()12,y z R R ∈,()()12,x z R R ∉,即()1,x z R ∉或()2,x z R ∉,此时1R 或2R 不是传递的,与已知矛盾, ∴若1R ,2R 是传递的,则12R R 也是传递的.(3)令{}123,,,,n A a a a a =⋅⋅⋅, 12m A A A A ⋅⋅⋅=且两两交集为空集,设s s a A ∈()1s m n ≤≤≤,则除s A 外,其余集合不包含元素s a ; 则(){}(),s s s s a a A A ⊆⨯,又()()()()1122s s m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s s a a R ∴∈,则R 在A 上是自反的;设,s t t a a A ∈()1t m n ≤≤≤,则除t A 外,其余集合不包含元素,s t a a ; 则()(){}(),,,s t t s t t a a a a A A ⊆⨯, 又()()()()1122t t m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,则R 在A 上是对称的;设(),,1s t q q a a a A q m n ∈≤≤≤,则除q A 外,其余集合不包含元素,,s t q a a a ; 则()()(){}(),,,,,s t t s s q q q a a a a a a A A ⊆⨯, 又()()()()1122q q m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,(),s q a a R ∈,则R 在A 上是传递的; 综上所述:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A 上的等价关系.【点睛】关键点点睛:本题考查集合的自反性、对称性和传递性的证明,解决此问题的关键是能够充分理解已知中所说的性质的含义;解题基本思路是采用假设的方式和反证的方式,通过说明元素与集合、集合与集合之间关系证得结论. 27.若选① ,[2-,)∞+. 若选② ,(-∞,5]-. 若选③ ,[2-,)∞+. 【解析】 【分析】先将集合A,B 中的不等式求解,根据集合运算的最后结果分析参数a 需要满足的范围即可求解. 【详解】{|28}{|3}{|3}x a A x x x a x x a -=>=->=>+,2{|20}{|(2)(1)0}{|21}B x x x x x x x x =+-<=+-<=-<<,若选择条件①:A B =∅,则需31a +,即2a -, 所求实数a 的取值范围为[2-,)∞+.若选择条件②:A B A =,即B A ⊆,则需32a +-,即5a -, 所求实数a 的取值范围为(-∞,5]-. 若选择条件③:RA B ⊆,因为{|2R B x x =-或1}x ,所以要使RA B ⊆,则需31a +,即2a -,所求实数a 的取值范围为[2-,)∞+.28.(1){}0,1,2,3,4,5,6N =;{2,4M x x k k ==≤且}N k ∈(答案不唯一); (2){}0,1,2,3,4,{}{}{}{}0,1,2,4,5,0,1,3,4,6,1,2,3,4,6,1,2,4,5,6(答案不唯一). 【解析】 【分析】(1)利用集合的列举法,描述法即得; (2)结合条件及子集的概念即得. (1)∵{|33}Z N x x =∈-≤,∴{}0,1,2,3,4,5,6N =,∵M 由0,2,4,6,8组成的集合,∴{2,4M x x k k ==≤且}N k ∈(答案不唯一); (2)由题可得含M 中3个元素但不是M 的子集的集合为:{}0,1,2,3,4,{}{}{}{}0,1,2,4,5,0,1,3,4,6,1,2,3,4,6,1,2,4,5,629.(1){|45}A B x x ⋂=,{|0A B x x ⋃=或1}x ; (2)(0,1). 【解析】 【分析】(1)当2a =时,求出集合A ,B ,由此能求出A B ,A B ;(2)推导出0a >,R A B 是的真子集,求出{|04}R B x x =<<,A ≠∅,列出不等式组,能求出实数a 的取值范围. (1)2{|40}{|0B x x x x x =-=或4}x ,当2a =时,{|15}A x x =,{|45}A B x x ∴⋂=, {|0A B x x ⋃=或1}x ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,0a ∴>,R A B 是的真子集,{|04}RB x x =<<,A ≠∅,∴3034a a ->⎧⎨+<⎩,解得01a <<. ∴实数a 的取值范围是(0,1).30.(1){}5A x x =>,{0B y y =<或}2y > (2)(){}R5A B x x ⋂=≤【解析】 【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ; (2)求出A B ,利用补集的定义可求得集合()RA B ⋂.(1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >.(2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R5A B x x ⋂=≤.。
完整版)高一数学集合练习题及答案-经典升腾教育高一数学满分150分姓名一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数答案:D解析:只有倒数等于它自身的实数可以构成集合。
2、集合{a,b,c }的真子集共有个()A。
7.B。
8.C。
9.D。
10答案:D解析:真子集不包含原集合,所以共有2^3-1=7个真子集。
3、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()A。
6.B。
7.C。
8.D。
9答案:A解析:集合A中的元素可以是1,2,也可以是1,2,3,或者1,2,3,4,或者1,2,3,4,5,共有6种情况。
4、若U={1,2,3,4},M={1,2},N={2,3},则CUM∪N)=()A。
{1,2,3}。
B。
{2}。
C。
{1,3,4}。
D。
{4}答案:A解析:M∪N={1,2,3},所以CUM∪N)={1,2,3}∪{4}={1,2,3,4}。
5、方程组x y1的解集是(。
)A。
{x=0,y=1}。
B。
{0,1}。
C。
{(0,1)}。
D。
{(x,y)|x=0或y=1}答案:C解析:将方程组化简得到y=x+1,所以解集为{(x,y)|y=x+1}={(x,x+1)}。
6、以下六个关系式:3Q,N。
a,b b,ax|x220,x Z是空集中,错误的个数是()A。
4.B。
3.C。
2.D。
1答案:B解析:第一个关系式中,应该是∈而不是;第二个关系式中,应该是∉而不是。
第三个关系式中,应该是={a,b}而不是;第四个关系式中,应该是x∈Z而不是x Z,所以错误的个数为3个。
8、设集合A=x1x2,B=xx a,若A B,则a的取值范围是()Aaa2Baa1Caa1Daa 2答案:D解析:由题意可得x1<a<x2,即1<a<2,所以a的取值范围是a<2.9、满足条件M11,2,3的集合M的个数是()A。
高一数学集合练习题及答案(新版)一、单选题1.设集合{|,log (1)}xa A a x R a x a =∃∈=>,{|0,B y x xy =∀≥≥,下列说法正确的是( ) A .A B ⊆B .B A ⊆C .B A ⋂=∅D .BA ≠∅2.已知集合{}1,2,3,4A =,{}25B x x =<,则A B =( ) A .{}1B .{}1,2C .{}1,2,3D .{}1,2,3,43.集合{}230,{1,0,1,2,3}A xx x B =-<=-∣,则A B =( ) A .(1,2)B .{1,2}C .{0,1,2}D .{0,1,2,3}4.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个5.设集合{}2{|1N 9|}A x x B x x =>=∈<, ,则A B = ( )A .(13),B .(31)(13)--⋃,,C .{2}D .{-2,2}6.已知集合{}2cos ,A y y x x R ==∈,满足BA 的集合B 可以是( )A .[]22-,B .[]2,3-C .[]1,1-D .R7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 9.已知集合{}21A x x =-≤,2024x B xx ⎧⎫+=≤⎨⎬-⎩⎭.则A B =( ) A .[6,2]- B .(,1][2,)-∞⋃+∞ C .[1,2] D .[1,2)10.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,511.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0B .2C .4D .812.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( )A .{}1B .{}01,C .{}123,,D .{}0123,,,13.已知集合{}2280,Z A x x x x =--<∈,则A 的非空子集的个数为( )A .32B .31C .16D .1514.已知集合{}ln ,1A y y x x ==>,1,12xB y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .102y y ⎧⎫<<⎨⎬⎩⎭B .{}01y y <<C .112y y ⎧⎫<<⎨⎬⎩⎭D .∅15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学 B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.如图,设集合,A B 为全集U 的两个子集,则A B =____________.18.已知集合A ={x |(x -3)(x +1)<0},B ={x |x -1>0},则A ∪B =___________. 19.设非空数集M 同时满足条件:①M 中不含元素1,0,1-;②若a M ∈,则11aM a+∈-,则下列结论不正确的个数是__________个. (1)集合M 中至多有2个元素; (2)集合M 中至少有4个元素; (3)集合M 中有且仅有4个元素; (4)集合M 中至多有4个元素.20.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 21.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题:①{} 2,3,5,6,8,9,AB =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数; ③A 、B 两个集合元素个数相等; ④n A ∀∈,22n n ≥. 其中真命题序号是______.22.设集合1,2x A y y x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,集合12,0B y y x x ⎧⎫⎪⎪==≥⎨⎬⎪⎪⎩⎭,则A B =________.23.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.24.若{}231,13a a ∈--,则=a ______.25.已知集合{}2|1A x x ==,{}|10B x ax =-=,若B A ⊆,则实数=a ______.三、解答题26.已知函数()0)>f x a 的定义域为M . (1)若M R =,求实数a 的取值范围; (2)求{}x x a M ≥⋂.27.已知函数()f x =A,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知函数()f x A ,不等式1()402x->的解集是集合 B ,求集合 A 和R ()B A ⋂ .29.已知集合1282xA x ⎧⎫=≤≤⎨⎬⎩⎭,()(){}210B x x a x a =---≤.(1)当2a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 的充分不必要条件,求实数a 的取值范围.30.(1)已知全集U =R ,集合{}2A x x =≤,{}2|60B x x x =--<,求()U A B ⋂. (2)已知0a >,0b >,且21a b +=,若不等式21m a b+≥恒成立,求实数m 的最大值.【参考答案】一、单选题 1.D 【解析】 【分析】利用因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,得到x a x ≤,进而得出集合A 的范围;对于集合B ,化简得y ≥()g x =()g x 的最值,得出集合B 的范围,即可求解 【详解】对于集合{},log (1)xa A a x R a x a =∃∈=,因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,而,log x a x R a x ∃∈=,所以,只需要x a x ≤即可,因为1a >,所以, ln ln x a x ≤,得ln ln x a x ≤,设ln ()xf x x=,得21ln ()x f x x -'=,所以, (0,)x e ∈,()0f x '>,()f x 单调递增;(,)x e ∈+∞,()0f x '<,()f x 单调递减,所以,1()()Maxf x f e e ==,得到11e a e <≤,所以,11,e A e ⎛⎤= ⎥⎝⎦;对于集合{|0,B y x xy=∀≥≥,化简得y≥()g x=()g x'20x>,可设()h x=,()h x'=<,()h x∴单调递减,又(0)0h=,所以,当0x>时,()0h x'<,()0h x<,()0g x∴'<,()g x单调递减,利用洛必达法则,x→时,000x x x→→→===所以,()y g x=≥)B=+∞;由于1(1,)Ae=,)B=+∞,所以,D正确故选:D2.B【解析】【分析】求出集合B,根据集合的交集运算求得答案.【详解】因为{}5252B x x x x⎧⎫=<=<⎨⎬⎩⎭,所以{}1,2A B=,故选:B3.B【解析】【分析】求得集合{|03}A x x=<<,根据集合交集的概念及运算,即可求解.【详解】由题意,集合2|30{|03},{1,0,1,2,3{}}A x x x x x B=-<=<<=-,根据集合交集的概念及运算,可得{1,2}A B=.故选:B.4.C【解析】【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B=⊆=,若A B⋂≠∅,且A B⊆/,所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 5.C 【解析】 【分析】解一元二次不等式,求出集合B ,解得集合A ,根据集合的交集运算求得答案. 【详解】由题意解29x <得:33x -<< ,故2N 9{|}{0,1,2}B x x =∈=<,{}||11{A x x x x ==>>或1}x <- , 所以{2}A B =, 故选:C 6.C 【解析】 【分析】先求出集合A ,再根据B A 求解即可.【详解】由题意知:{}22A y y =-≤≤,要满足B A 即[]22B-,,结合选项可知:[]1,1B =-.故选:C. 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 8.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确; 故选:C. 9.D 【解析】 【分析】 解不等式后求交集 【详解】|2|1x -≤,解得13x ≤≤,故[1,3]A =,2024x x +≤-,解得22x -≤<,故[2,2)B =-, [1,2)A B ⋂=故选:D 10.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 11.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解.由x31,得03x <≤, 所以}{N,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 12.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 13.B 【解析】 【分析】求出集合A ,利用集合的非空子集个数公式可求得结果. 【详解】{}{}{}2280,Z 24,Z 1,0,1,2,3A x x x x x x x =--<∈=-<<∈=-,即集合A 含有5个元素,则A 的非空子集有52131-=(个). 故选:B. 14.A 【解析】 【分析】根据题意求出,A B 后运算 【详解】由题意,A B 为对应函数的值域,(0,)A =+∞,1(0,)2B =故1(0,)2A B =故选:A 15.D 【解析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合; 对于C ,π 的近似值没有明确近似到小数点后面几位, 不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117.{}1,2,3,4,5【解析】 【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可. 【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==, 所以{}1,2,3,4,5A B =. 故答案为:{}1,2,3,4,5 18.{x |x >-1} 【解析】 【分析】利用集合的并集运算求解.解:因为集合A ={x |(x -3)(x +1)<0}={x |-1<x <3},B ={x |x >1}, 所以A ∪B ={x |x >-1}. {x |x >-1} 19.3 【解析】 【分析】 由题意可求出11,,11,1a a a a a a -+--+都在M 中,然后计算这些元素是否相等,继而判断M 的元素个数的特点. 【详解】因为若a M ∈,则11aM a +∈-,所以1111111a a M a a a ++-=-∈+--,111111a a M a a--=∈++, 则11211211a a a a M a a -++==∈--+; 当1,0,1a ≠-时,4个元素11,,11,1a a a a a a -+--+中,任意两个元素都不相等, 所以集合M 中至少有4个元素.故可判断出(1)错误,(2)正确,(3)错误,(4)错误, 故答案为:3.20.±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解, 所以280a ∆=-=,解得a =±故答案为:± 21.①②③ 【解析】 【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立. 【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31A B n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③.22.{}0y y >##()0,∞+【解析】【分析】根据指数函数与幂函数的性质,先求出集合A 、B ,然后根据交集的定义即可求解.【详解】解:因为集合{}1,02x A y y x y y ⎧⎫⎪⎪⎛⎫==∈=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,{}12,00B y y x x y y ⎧⎫⎪⎪==≥=≥⎨⎬⎪⎪⎩⎭, 所以{}{}{}000A B y y y y y y ⋂=>⋂≥=>,故答案为:{}0y y >.23.35,88⎡⎤⎢⎥⎣⎦ 【解析】【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】因为()()294sin 32311644x x x f x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦. 因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --.依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦ 24.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去;若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去.故4a =-.故答案为:4-.25.0,1或1-【解析】【分析】根据集合间的关系,运用分类讨论的方法求解参数的值即可.【详解】根据题意知,{}1,1A =-B A ⊆B ∴=∅①时,0a =;B ≠∅② 时,1B a ⎧⎫=⎨⎬⎩⎭,此时, 11a =或11a =-,解得 1a =或1a =- 故答案为:01,或-1.三、解答题26.(1)405a <≤; (2)答案见解析.【解析】【分析】(1)根据绝对值的性质,结合二次根式的性质进行求解即可;(2)根据绝对值的性质、交集的定义, 结合42,3a a -之间的大小关系分类讨论进行求解即可.(1) 32,,2222,2232,2a x a x a x x a a x x x a x ⎧+-≥⎪⎪⎪++-=+--<<⎨⎪-+-≤-⎪⎪⎩所以|2||2|++-x x a 的最小值为32222⨯+-=+a a a ,因此232+≥a a , 所以405a <≤; (2)因为0a >,所以当x a ≥时,|2||2|32++-=-+x x a x a ,4232303a x a a x --+-≥⇒≥; 当2a ≥时,423a a -≥,此时{}42,3a x x a M ∞-⎡⎫≥⋂=+⎪⎢⎣⎭;②当02a <<时,423a a -<,此时{}[),x x a M a ∞≥⋂=+. 27.(1)1{|03A B x x ⋂=-<≤或1}x =; (2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(,1][4,)A =-∞-⋃+∞; ()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.【解析】【分析】先解出不等式2340x x --≥得到集合A ,再根据指数函数单调性解出集合B ,然后根据补集和交集的定义求得答案.【详解】由题意,()()2340140x x x x --≥⇒+-≥,则(,1][4,)A =-∞-⋃+∞, 又2111()40()222x x -⎛⎫->⇒> ⎪⎝⎭,则(),2B =-∞-,R [2,)B =-+∞, 于是()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.29.(1){}23A B x x ⋂=≤≤(2)a ≤【解析】【分析】(1)首先解指数不等式得到{}13A x x =-≤≤,再求A B 即可.(2)首先根据题意得到{}21B x a x a =≤≤+,再根据充分不必要条件求解即可. (1),2a =时,{}25B x x =≤≤,{}23A B x x ⋂=≤≤(2){}2221310124a a a B x a x a ⎛⎫+-=-+>⇒=≤≤+ ⎪⎝⎭, p 是q 的充分不必要条件,则且A B ≠, 所以2a ≤-30.(1)()2,3U A B ⋂=;(2)9.【解析】【分析】 (1)先求不等式解集,再利用集合的补集、交集运算即可(2)转化为最值问题,由基本不等式求解【详解】(1)由已知{}()2602,3B x x x =--<=- ()2,U A =+∞,所以()()2,3U A B ⋂=,(2)()2121222225259b a b a a b a b a b a b a b⎛⎫+=+⋅+=++≥⋅= ⎪⎝⎭, 且仅当13a b ==时取等号, 不等式21m a b +≥恒成立,则9m ≤,故m 的最大值为9.。
高一数学集合练习题含答案一、单选题1.设集合104x A xx ⎧⎫+=≤⎨⎬-⎩⎭,{}1e ,R x B y y x ==-∈,R 为实数集,则()RA B ⋃=( )A .{1x x <-或}1x ≥B .{1x x ≤-或}1x >C .{}4x x ≥D .{}4x x >2.设集合(){}0.5log 10A x x =->,{}24xB x =<,则( )A .A =B B .A B ⊇C .A B B =D .A B B ⋃=3.设实数集为R ,集合{}1,0,1,2A =-,{}230B x x x =-≥,则()R A B ⋂=( )A .{}1,0-B .{}1,2C .{}1,0,1-D .{}0,1,24.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2) B .(-1,2)C .(-2,3)D .(-1,3)5.已知集合{1,0,1}A =-,{|3lg 10}x B x =≥,则A B =( )A .{0}B .{0,1}C .{0,1}-D .{1,0,1}-6.如图,已知集合{A =1-,0,1,2},{|128}xB x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2}7.已知集合{}1A x x =>,()(){}150B x x x =+-≤,则A B =( ) A .(]1,5-B .(]1,5C .[]1,5-D .[]1,58.已知全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{2,3,4}B =,则()U A B =( ) A .{1}B .{4}C .{0,5}D .{0,1,4,5}9.已知集合{}27120A x x x =-+≤,{}20B x x m =+>,若A B ⊆,则m 的取值范围为( ) A .()6,-+∞ B .[)6,-+∞C .(),6-∞-D .(],6∞--10.已知集合{22},{13}A xx B x N x =-<<=∈-<∣∣,则A B =( ) A .{}0,1 B .1,0,1,2C .[)1,2-D .()2,3-11.如图,已知集合A={-8,1},B={-8,-5,0,1,3},则Venn 图中阴影部分表示的集合为( )A .{-5,0,3}B .{-5,1,3}C .{0,3}D .{1,3}12.已知集合[)2,4A =,[]3,5B =,则()R A B =( ) A .(]4,5B .[]4,5C .()[),23,-∞⋃+∞D .(][),23,-∞⋃+∞13.设(){}2log 1A x y x ==+,{}24B x x =≥,则()RAB =( )A .()1,2-B .[)1,2-C .()2,+∞D .()1,-+∞14.已知集合{}31,A a a n n ==-∈Z ,{}31,B b b n n ==+∈Z ,全集U =Z ,则()U A B ⋂=( )A .AB .BC .∅D .Z15.已知全集{}0,1,2,3,4,5U =,集合{}3A x N x =∈<,集合{}0,3,4,5B =,则()UA B ⋂=( )A .{}4,5B .{}3,4,5C .{}0,4,5D .{}0,3,4,5二、填空题16.已知集合{}37A x x =≤<,{}C x x a =>,若A C ⊆,求实数a 的取值范围_______. 17.记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________.18.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 19.已知集合{}2,1,0,1A =--,{}|3B x N x =∈<,则A B =_____.20.设全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6},则ST =__.21.若集合{}3cos23,xA x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.22.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.23.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.24.在下面的写法中:①∅ {}0;②{}{}00,1∈;③0∈∅;④{}{}0,11,0⊆;⑤{}0∅∈,错误..的写法的序号是______. 25.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 三、解答题26.已知集合______,集合{}22,B x m x m m R =<<∈.从下列三个条件中任选一个,补充在上面横线中.①301x A xx ⎧⎫-=<⎨⎬+⎩⎭;②{}12A x x =-<;③{}2230A x x x =--<. (1)当1m =-时,求()RA B ⋂;(2)若A B A ⋃=,求实数m 的取值范围.27.设集合{}4U x x =≤,{}12A x x =-<≤,{}13B x x =≤≤.求: (1)A B ; (2)()U A B ; (3)()()U U A B ⋂.28.已知集合{}1A x a x a =≤≤+,{}2280B x x x =--≤.(1)若A B B ⋃=,求a 的取值范围; (2)若A B =∅,求a 的取值范围.29.已知集合{}13A x x =<≤,{}3e e B y y =≤≤,{}21C x m x m =<<-.(1)求A B .(2)若A C ⋂=∅,求m 的取值范围.30.已知集合{}250A x x x a =-+≤,B =[3,6].(1)若a = 0,求A B ;(2)x ∈B 是 x ∈ A 的充分条件,求实数a 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合A ,B ,再求两集合的并集,然后再求其补集 【详解】 由104x x +≤-,得(1)(4)040x x x +-≤⎧⎨-≠⎩,解得14x -≤<,所以{}14A x x =-≤<,因为当R x ∈时,e 0x >,所以1e 1x -<, 所以{}1B y y =<, 所以{}4A B x x ⋃=<, 所以(){}R4A B x x ⋃=≥,故选:C 2.D 【解析】 【分析】化简集合,A B ,再判断各选项的对错. 【详解】因为0.5{|log (1)0}{|12}A x x x x =->=<<,{}24={|2}xB x x x =<<,所以A B ⊆且A B ≠,所以A 错,B 错,{|12}A B x x A =<<=,C 错, {|2}A B x x B =<=,D 对,故选:D. 3.B【分析】解出B 集合,得到B 的补集的范围,再与A 取交集. 【详解】解得{|30}B x x x =≥≤或,()R 03B =(,),()R {12}A B ⋂=,故选:B. 4.B 【解析】 【分析】先求集合B ,进一步求出答案. 【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B. 5.B 【解析】 【分析】由对数的运算性质,并解指数不等式可得31{|log }2B x x =≥,再由集合的交运算求A B . 【详解】由31{|log }2B x x =≥,而311log 02-<<, 所以{0,1}A B =. 故选:B 6.B 【解析】 【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可. 【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =, 因为{A =1-,0,1,2}, 所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-. 故选:B 7.B 【解析】 【分析】化简集合B ,然后利用交集的定义运算即得.∵集合()(){}{}15015B x x x x x =+-≤=-≤≤,{}1A x x =>, ∴(]1,5A B ⋂=. 故选:B. 8.B 【解析】 【分析】由补集、交集的概念运算 【详解】{0,4,5}UA =,则(){4}U AB ⋂=.故选:B 9.A 【解析】 【分析】先解出集合,A B ,再结合A B ⊆得到关于m 的不等式,求解即可. 【详解】因为{}34,,2m A xx B x A B ⎧⎫==>-⊆⎨⎬⎩⎭∣,所以32m -<,解得6m >-. 故选:A. 10.A 【解析】 【分析】 由交集定义计算. 【详解】{}{12}0,1.A B x x ⋂=∈-<=N ∣故选:A . 11.A 【解析】 【分析】由已知,结合给出的Venn 图可判断阴影部分为∁BA , 根据给到的集合A 和集合B ,可直接进行求解. 【详解】因为集合A={-8,1},B={-8,-5,0,1,3}, Venn 图中阴影部分表示的集合为∁BA={-5,0,3}. 故选:A. 12.B 【解析】 【分析】先求出集合A 的补集,再由交集运算可得答案. 【详解】集合[)2,4A =,[]3,5B =,则()()[),24,R A =-∞⋃+∞ 所以()[]4,5R A B ⋂=, 故选:B. 13.A 【解析】 【分析】根据函数定义域的求解,以及简单二次不等式的求解,解得集合,A B ,再根据集合的补运算和交运算,即可求得结果. 【详解】因为(){}2log 1A x y x ==+{}{}|101x x x x =+>=-,{}24B x x =≥{|2x x =≤-或2}x ≥,故B R{|22}x x =-<<,则()RAB ={}()|121,2x x -<<=-.故选:A. 14.A 【解析】 【分析】根据集合的描述判断集合,A B 的关系,进而判断,U A B 的包含关系,即可得答案. 【详解】由题设,{...,4,1,2,5,8,...}A =--,{...,5,2,1,4,7,...}B =--, 所以A B =∅,而{...,4,3,1,0,2,3,5,6,8,...}UB =---,则U A B ≠⊂, 所以()UA B A =.故选:A15.B 【解析】 【分析】利用集合间的基本运算,即可得到答案; 【详解】{}3,4,5UA =,则(){}U 3,4,5AB ⋂=.故选:B.二、填空题16.(),3-∞【解析】 【分析】根据集合的包含关系画出数轴即可计算. 【详解】 ∵A C ⊆, ∴A 和C 如图:∴a <3.故答案为:(),3-∞.17.()1,2-【解析】 【分析】首先将不等式变形,再对a 与1a -分三种情况讨论,分别求出集合A ,根据集合的包含关系得到不等式组,即可求出参数a 的取值范围; 【详解】解:原不等式220x x a a -+-≤可变形为()()10x a x a -+-≤, 当1a a ,即12a =时,12A ⎧⎫=⎨⎬⎩⎭,满足题意; 当1a a <-,即12a <时,{}1A x a x a =≤≤-,所以112a a ≥-⎧⎨-<⎩,解得1a >-,所以112a -<<;当1a a ,即12a >时,{}1A x a x a =-≤≤,所以21112a a a ⎧⎪<⎪-≥-⎨⎪⎪>⎩,解得122a <<.综上可得1a 2-<<,即()1,2a ∈-; 故答案为:()1,2-18.22±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解,所以280a ∆=-=,解得a =±故答案为:±19.{}0,1【解析】 【分析】由题知{}0,1,2B =,再根基集合交集运算求解即可. 【详解】解:因为{}{}|30,1,2B x N x =∈<=,{}2,1,0,1A =-- 所以A B ={}0,1 故答案为:{}0,120.{}2,4,7,8【解析】 【分析】由已知得可以求得S 和T ,再由交集运算即可解决. 【详解】∵全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6}, ∴{}=2,4,6,7,8S ,{}=1,2,4,5,7,8T , ∴{}2,4,7,8S T =. 故答案为:{}2,4,7,8.21.{}1【解析】 【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果. 【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=, 故答案为:{}1. 22.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】因为()()294sin32311644x x x f x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦23.3 【解析】 【分析】根据题意21a a -+7=,结合7A =,即可求得a . 【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-. 当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去. 当3a =时,满足题意. 故答案为:3. 24.②③⑤ 【解析】 【分析】根据集合与集合的关系,元素与集合的关系确定正确答案. 【详解】①,空集是任何非空集合的真子集,①正确.②,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,②错误. ③,空集没有任何元素,③错误. ④,根据集合元素的无序性可知④正确.⑤,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,⑤错误. 故答案为:②③⑤25.{}3【解析】 【分析】由交集、补集的定义计算. 【详解】由题意{4,3}M =,所以M N ⋂={3}.故答案为:{3}.三、解答题26.(1)(){}1,1R A B x x x ⋂=≤-≥ (2)122m -≤≤ 【解析】【分析】(1)首先分别求两个集合,再求集合的运算;(2)由条件可知B A ⊆,分B =∅和B ≠∅两种情况,求实数m 的取值范围.(1)若选①301x x -<+,则13x ,所以{}13A x x =-<<, 若选②12212x x -<⇔-<-<,得13x ,若选③()()2230130x x x x --<⇔+-<,得13x ,1m =-时,{}21B x x =-<<,{}11A B x x ⋂=-<<(){}1,1R A B x x x ⋂=≤-≥; (2)B A ⊆当B =∅,22m m ≥,得02m ≤≤当B ≠∅,22221,3m m m m ⎧<⎪≥-⎨⎪≤⎩得102m -≤< ∴122m -≤≤. 27.(1){}12x x ≤≤; (2){1x x ≤-或}14x ≤≤; (3){1x x ≤-或}34x <≤.【解析】【分析】(1)(2)(3)根据集合交并补计算方法计算即可.(1){}12A B x x ⋂=≤≤;(2)U A ={x |1x ≤-或24x <≤},()U A B ∴⋃={x |1x ≤-或14x ≤≤};(3)U A ={x |1x ≤-或24x <≤},U B ={x |x <1或3<x ≤4},()()U U A B ∴={x |1x ≤-或34x <≤}.28.(1)[2,3]-(2)(,3)(4,)∞∞--⋃+【解析】【分析】(1)首先解一元二次不等式,求出集合B ,由A B B ⋃=,得A B ⊆,即可得到不等式组,解得即可;(2)由A B =∅,则4a >或12a +<-,解得即可;(1)解:由2280x x --≤,即()()420x x -+≤,解得24x -≤≤,所以{}{}228024B x x x x x =--≤=-≤≤,因为A B B ⋃=,得A B ⊆,则214a a ≥-⎧⎨+≤⎩, 即23a -≤≤,所以a 的取值范围是[2,3]-. (2)解:由A B =∅,则4a >或12a +<-,即4a >或3a <-,所以a 的取值范围是()(),34,-∞-⋃+∞.29.(1){}e 3A B x x ⋂=≤≤(2)[0,)+∞【解析】【分析】(1)根据交集的定义直解,(2)分C =∅和C ≠∅两种情况求解(1) 因为{}13A x x =<≤,{}3e e B y y =≤≤, 所以{}e 3A B x x ⋂=≤≤(2)当C =∅时,满足A C ⋂=∅,则21m m ,得13m ≥, 当C ≠∅时,因为A C ⋂=∅,所以2111m m m <-⎧⎨-≤⎩,或2123m m m <-⎧⎨≥⎩, 解得103m ≤<或m ∈∅, 所以103m ≤<, 综上,0m ≥,即m 的取值范围为[0,)+∞30.(1)[3,5](2)(,6]-∞-【解析】【分析】(1)先化简集合A ,再去求A B ;(2)结合函数25y x x a =-+的图象,可以简单快捷地得到关于实数a 的不等式组,即可求得实数a 的取值范围.(1)当0a =时,{}250[0,5]A x x x =-≤=,又[3,6]B =, 故[0,5][3,6][3,5]A B ==.(2)由x B ∈是x A ∈的充分条件,得B A ⊆,即任意x B ∈,有250x x a -+≤成立函数25y x x a =-+的图象是开口向上的抛物线,故2235306560a a ⎧-⨯+≤⎨-⨯+≤⎩,解得6a ≤-,所以a 的取值范围为(,6]-∞-.。
高一数学集合练习题及答案一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.已知集合{}0,1,2,3A =,集合{}11B x x =-≤,则A B 等于( ) A .{}3B .{}0,1,2C .{}1,2D .{}0,1,2,33.已知集合{}42A x x =-<<,{}29B x x =≤,则A B ⋃=( )A .(]4,3-B .[)3,2-C .()4,2-D .[]3,3-4.设集合{}2260A x Z x x =∈+-≤,{}02B x x =<<,则()R A B ⋂=( )A .[]2,0-B .30,2⎛⎤ ⎥⎝⎦C .{}2,1,0--D .{}2,1--5.设全集{}1,2,3,4,5U =,集合{}1,2A =,{}2,3B =,则()UA B =( ) A .{}4,5B .{}2,3C .{}1D .{}36.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( ) A .{}1 B .{}0,1,2 C .1,0,1,2D .{}1,1,2- 7.已知集合{0,1,2,3}M =,集合{1,0,1,4,6}N =-,则MN =( )A .{}1-B .{0,1}C .{0}D .{1}8.若集合{}220A x x x =--<,{}24B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,29.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( ) A .{}1 B .{}1,2,3 C .{}1,2 D .{}1,0,1- 10.下列关系中正确的是( )A .{}0=∅B .{}0∅⊆C .{}(){}0,10,1⊆D .(){}(){},,a b b a =11.已知集合{}24A x Z x =∈<,{}210B x x =+>,则A B =( )A .{}1B .{}0,1C .{}1,2D .{}0,1,212.设集合{}09A x x =∈≤≤N ,{}1,2,3,6,9,10B =-,则()AA B ⋂=( ).A .{}0,1,4,5,7,8B .{}1,4,5,7,8C .{}2,3,6,9D .∅13.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( )A .[0,2]B .[0,4]C .[2,2]-D .∅14.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,415.已知全集{}0,1,2,3,4,5U =,集合{}3A x N x =∈<,集合{}0,3,4,5B =,则()UA B ⋂=( )A .{}4,5B .{}3,4,5C .{}0,4,5D .{}0,3,4,5二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________.17.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 18.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0}; ④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.19.已知集合{}0,1,2A =,则集合{}3,B b b a a A ==∈=______.(用列举法表示) 20.已知函数()5f x =-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.21.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________.22.已知集合{}2|1A x x ==,{}|10B x ax =-=,若B A ⊆,则实数=a ______.23.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.24.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.25.用描述法表示被4除余3的自然数全体组成的集合A =______.三、解答题26.已知集合{}2|3100A x x x =--<,{}|121B x m x m =+≤≤-.(1)当3m =时,求集合()U A B ;(2)若A B B =,求实数m 的取值范围.27.对于正整数a ,b ,存在唯一一对整数q 和r ,使得a bq r =+,0r b ≤<.特别地,当0r =时,称b 能整除a ,记作|b a ,已知{}1,2,3,,23A =⋅⋅⋅(1)存在q A ∈,使得()202291091q r r =+≤<,试求r 的值;(2)求证.不存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠(3)若B A ⊆,()12card B =(()card B 指集合B 中的元素的个数).且存在,a b B ∈,b a <,|b a ,则称B 为“和谐集”.判断:当7m =时,集合A 中有12个元素并且含有m 的任意子集是否都为“和谐集”,并说明理由.28.已知集合2111x A xx +⎧⎫=<⎨⎬-⎩⎭,{(1)(2)0}B x x x m =-+<. (1)当1m =时,求A B ;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.29.已知集合A ={x |2≤|x |≤m },B ={3|x x -26x +8x >0},C ={2|x x -2x -15=0}. (1)若A C =A ,求实数m 的最小值; (2)若A B =∅,求实数m 的取值范围.30.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围; (2)若p 是q 的充分不必要条件,求a 的取值范围.【参考答案】一、单选题 1.A【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 2.B 【解析】 【分析】由交集运算求解即可. 【详解】{}{}{}1102,0,1,2B x x x x A B =-=≤≤∴⋂=∣故选:B 3.A 【解析】 【分析】先求B ,再求并集即可 【详解】易得{}3|3B x x =-≤≤,故(]4,3A B ⋃=- 故选:A 4.C 【解析】 【分析】求解集合A ,然后进行交集补集运算即可. 【详解】集合()(){}{}|23202,1,0,1A x Z x x =∈-+≤=--,{}02B x x =<<{R|0B x x =≤或}2x ≥,则()R A B ⋂={}2,1,0--故选:C 5.C 【解析】 【分析】直接按照补集和交集的概念运算即可. 【详解】 由题意知:{}1,4,5UB =,则(){}1UA B =.故选:C. 6.C 【解析】首先用列举法表示集合A ,再根据并集的定义计算可得; 【详解】解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C 7.B 【解析】 【分析】运用集合交集的定义进行求解即可. 【详解】因为{0,1,2,3}M =,集合{1,0,1,4,6}N =-, 所以M N ={0,1},故选:B 8.A 【解析】 【分析】分别求出集合A 和B 求的解集,交集运算即可. 【详解】集合{}{}22012A x x x x x =--<=-<<,{}22B x x =-<<,所以A B A =.故选:A . 9.C 【解析】 【分析】求出集合A 的解集,取交集运算即可. 【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =. 故选:C. 10.B 【解析】 【分析】明确∅和{}0的含义,可判断A,B;说明{}0,1是数集,而(){}0,1是点集,判断C; 当在ab 时(){}(){},,a b b a =不成立,判断D;【详解】对于A, {}0是单元素集合,元素为0,而∅是空集,二者不相等,故A 错误; 对于B ,空集为任何一个集合的子集,故{}0∅⊆正确;对于C ,{}0,1 的元素为0,1,而(){}0,1的元素为点()0,1,二者没有包含关系,故错误; 对于D, (,),(,)a b b a 当ab 表示不同的点,故(){}(){},,,a b b a 在ab 时不相等,故错误,11.B 【解析】 【分析】解不等式求得集合,A B ,由此求得A B . 【详解】()()24,220,22x x x x <+-<-<<,所以{}1,0,1A =-,由于1,2B ⎛⎫=-+∞ ⎪⎝⎭,所以{}0,1A B =.故选:B 12.A 【解析】 【分析】根据集合的运算直接可得. 【详解】解:依题意{}0123456789A ,,,,,,,,,=,{}1,2,3,6,9,10B =-, 所以{}2,3,6,9A B ⋂=,故(){}0,1,4,5,7,8AA B ⋂=.故选:A . 13.A 【解析】 【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得. 【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤, 易知20y x =≥,即{|0}B y y =≥ 则{|02}A B x x =≤≤. 故选:A 14.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 15.B 【解析】利用集合间的基本运算,即可得到答案; 【详解】{}3,4,5UA =,则(){}U 3,4,5AB ⋂=.故选:B.二、填空题 16.2-【解析】 【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数.【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =- 故答案为:2-.17.±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解,所以280a ∆=-=,解得a =±故答案为:± 18.①③⑥ 【解析】 【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解. 【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确; 对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确; 对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确. 故答案为:①③⑥.19.{0,3,6}【解析】 【分析】根据给定条件直接计算作答. 【详解】因{}0,1,2A =,而{}3,B b b a a A ==∈,所以{0,3,6}B =. 故答案为:{0,3,6}20.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞21.{1,2,3,4,6,8}【解析】 【分析】先化简集合B ,再求两集合的并集. 【详解】因为B ={x x 是6的正因数}{1,2,3,6}=, 所以{1,2,3,4,6,8}A B =. 故答案为:{1,2,3,4,6,8}. 22.0,1或1- 【解析】 【分析】根据集合间的关系,运用分类讨论的方法求解参数的值即可. 【详解】根据题意知,{}1,1A =-B A ⊆B ∴=∅①时,0a =;B ≠∅② 时,1B a ⎧⎫=⎨⎬⎩⎭,此时, 11a =或11a =-,解得 1a =或1a =-故答案为:01,或-1.23.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+24.{}|23x x <≤【解析】 【分析】先求得A B ,然后求得()A B C . 【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤25.{}|43,N n n k k =+∈【解析】 【分析】用数学式子表示出自然语言即可. 【详解】被4除余3的自然数即为4的整数倍加3, 因此{|43,N}A n n k k ==+∈. 故答案为:{}|43,N n n k k =+∈.三、解答题26.(1){}5 (2)(3),-∞ 【解析】 【分析】(1)求出集合B ,进而求出补集与交集;(2)根据集合交集的结果得到集合的包含关系,进而分类讨论,求出实数m 的取值范围. (1)由题意得,集合{}25A x x =-<<,当3m =时,{}45B x x =≤≤, 所以{2UA x x =≤-或}5x ≥,所以{}()5U AB =.(2)由A B B =,可得B A ⊆,①当B =∅时,可得121m m +>-,解得:2m <;②当B ≠∅时,则满足12112215m m m m +≤-⎧⎪+>-⎨⎪-<⎩,解得:23m ≤<,综上所述:实数m 的取值范围是(3),-∞. 27.(1)20 (2)证明见解析 (3)是,理由见解析 【解析】 【分析】(1)由2022除以91求解; (2)利用反证法证明; (3)利用“和谐集”的求解. (1)解:因为2022912220=⨯+,且q A ∈, 所以q =22,r =20; (2)假设存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠,设(){}(){}1,1,2,3,2,1,2,3f a a f b b =∈=∈, 由已知ab ,由于312,321-=-=, 所以()()()()31,32f f f f ≠≠,不妨设(){}3,1,2,3f c c =∈,且,c a c b ≠≠, 同理()()4,4f b f c ≠≠, 因为{}1,2,3只有三个元素, 所以()4f a =,即()()14f f =, 但413-=,与已知矛盾,所以假设不成立,即不存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠ (3)设{}1211,,...,,7B a a a =,若1,14,21中之一为集合B 的元素,显然为“和谐集”, 现考虑1,14,21都不属于集合B ,构造集合{}{}{}1232,4,8,16,3,6,12,5,10,20B B B ===,{}{}459,18,11,22B B ==,{}13,15,17,19,23B '=,12345,,,,B B B B B 每个集合中的元素都是倍数关系,考虑B B '⊆的情况,也即B '中5个元素全都是B 的元素,则B 中剩下的6个元素必须从12345,,,,B B B B B 这5个集合中选取6个元素,则至少有一个集合有两个元素被选,即集合B 中至少有两个元素存在倍数关系, 综上:当7m =时,集合A 中有12个元素并且含有m 的任意子集都为“和谐集”.28.(1){21}x x -<<;(2)[2,4]∈-m .【解析】【分析】(1)当1m =时,解分式不等式化简集合A ,解一元二次不等式化简集合B ,再利用并集的定义计算作答.(2)由给定条件可得B A ⊆,再借助集合包含关系列式计算作答.(1) 由2111x x +<-,得201x x +<-,解得21x -<<,则{21}A x x =-<<, 当1m =时,()()1{1210}12B x x x x x ⎧⎫=-+<=-<<⎨⎬⎩⎭, 所以{21}A B x x ⋃=-<<.(2)因为“x A ∈”是“x B ∈”的必要条件,则B A ⊆, 当12m ->,即2m <-时,{1}2m B x x =<<-,B A ⊄,不符合题意, 当12m -=,即2m =-时,B =∅,符合题意, 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则212m -≤-<,解得24m -<≤, 综上得:24m -≤≤,所以实数m 的取值范围[2,4]∈-m .29.(1)5(2)(],4∞-【解析】【分析】(1)由并集结果得到{3,5}A -⊆,从而得到不等式组,求出m 的取值范围,得到m 的最小值;(2)由交集结果分A =∅与A ≠∅进行分类讨论,求出m 的取值范围.(1)由题有{3,5}C =-,若A C A ⋃=,则{3,5}A -⊆,则 可知2325m m ⎧≤-≤⎪⎨≤≤⎪⎩,解得:5m ≥,所以m 的最小值为5. (2)()()()(){|240}0,24,B x x x x =-->=⋃+∞,由A B =∅,则①当A =∅时,2m <;②当A ≠∅时,2m ≥,有{|22}A x m x x m =-≤≤-≤≤或,从而有24m ≤≤综上:数m 的取值范围是(],4∞-.30.(1)2,13⎡⎤⎢⎥⎣⎦(2)[]2,3【解析】【分析】(1)解不等式得到解集,根据题意列出不等式组,求出a 的取值范围;(2)先解不等式,再根据充分不必要条件得到(,3)a a 是[]2,9的真子集,进而求出a 的取值范围.(1)因为0a >,由22430x ax a -+<可得:3a x a <<,因为“()1,2x ∀∈,22430x ax a -+<”为真命题,所以()()1,2,3a a ⊆,即1,32,a a ≤⎧⎨≥⎩,解得:213a ≤≤. 即a 的取值范围是2,13⎡⎤⎢⎥⎣⎦. (2)因为0a >,由22430x ax a -+<可得:3a x a <<,21118029x x x -+≤⇔≤≤,因为p 是q 的充分不必要条件,所以(,3)a a 是[]2,9的真子集,所以2,39,a a ≥⎧⎨≤⎩(等号不同时取),解得:23a ≤≤, 即a 的取值范围是[]2,3.。
集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A.{x|x≥3}B.{x|x≥2} C.{x|2≤x<3} D.{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6} C.{3,7} D.{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2 } C.{x|0<x≤2}D.{x|-1≤x≤2} 4. 满足M⊆{,,,},且M∩{,,}={,}的集合M的个数是() A.1 B.2 C.3 D.45.集合A={0,2,a},B={1,}.若A∪B={0,1,2,4,16},则a的值为()A.0 B.1 C.2 D.46.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=()A.ØB.{x|x<-1/2} C.{x|x>5/3} D.{x|-1/2<x<5/3} 7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.10.已知集合A={-4,2a-1,},B={a-5,1-a,9},若A∩B={9},求a的值.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},求x及A∩B. 12.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10小题,每小题5分,共50分。
高一(上)数学同步练习(1)---集合一、选择题1.下列八个关系式①{0}=φ ②φ=0 ③φ {φ} ④φ∈{φ} ⑤{0}⊇φ ⑥0∉φ ⑦φ≠{0} ⑧φ≠{φ}其中正确的个数( )(A )4 (B )5 (C )6 (D )72.集合{1,2,3}的真子集共有( )(A )5个 (B )6个 (C )7个 (D )8个3.集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )(A )(a+b )∈ A (B) (a+b) ∈B (C)(a+b) ∈ C (D) (a+b) ∈ A 、B 、C 任一个 4.设A 、B 是全集U 的两个子集,且A ⊆B ,则下列式子成立的是( ) (A )C U A ⊆C U B (B )C U A ⋃C U B=U (C )A ⋂C U B=φ (D )C U A ⋂B=φ5.已知集合A={022≥-x x } B={0342≤+-x x x }则A B ⋃=( ) (A )R (B ){12≥-≤x x x 或} (C ){21≥≤x x x 或} (D ){32≥≤x x x 或}6.下列语句:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示为{1,1,2};(4)集合{54<<x x }是有限集,正确的是( )(A )只有(1)和(4) (B )只有(2)和(3) (C )只有(2) (D )以上语句都不对7.已知A={1,2,a 2-3a-1},B={1,3},A =⋂B {3,1}则a 等于( ) (A )-4或1 (B )-1或4 (C )-1 (D )48.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )⋃(C U B )=( ) (A ){0} (B ){0,1}(C ){0,1,4} (D ){0,1,2,3,4}9.设S 、T 是两个非空集合,且S ⊄T ,T ⊄S ,令X=S ,T ⋂那么S ⋃X=( ) (A )X (B )T (C )φ (D )S10.设A={x 0152=+-∈px x Z },B={x 052=+-∈q x x Z },若A ⋃B={2,3,5},A 、B 分别为( )(A ){3,5}、{2,3} (B ){2,3}、{3,5}≠⊂(C ){2,5}、{3,5} (D ){3,5}、{2,5}11.设一元二次方程ax 2+bx+c=0(a<0)的根的判别式042=-=∆ac b ,则不等式ax 2+bx+c ≥0的解集为( )(A )R (B )φ(C ){a b x x 2-≠} (D ){ab2-} 12.已知P={04<<-m m },Q={012<--mx mx m ,对于一切∈x R 成立},则下列关系式中成立的是( )13.若M={Z n x n x ∈=,2},N={∈+=n x n x ,21Z},则M ⋂N 等于( ) (A )φ (B ){φ} (C ){0} (D )Z 14.下列各式中,正确的是( ) (A )2}2{≤⊆x x (B ){12<>x x x 且}(C ){Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠ (D ){Z k k x x ∈+=,13}={Z k k x x ∈-=,23}15.设U={1,2,3,4,5},A ,B 为U 的子集,若A ⋂B={2},(C U A )⋂B={4},(C U A )⋂(C U B )={1,5},则下列结论正确的是( ) (A )3B A ∉∉3, (B )3B A ∈∉3, (C )3B A ∉∈3, (D )3B A ∈∈3, 16.若U 、φ分别表示全集和空集,且(C U A )B ⋃A ,则集合A 与B 必须满足( )(A)φ (B)(C)B=φ (D)A=U 且A ≠B17.已知U=N ,A={0302>--x x x },则C U A 等于( )(A )P Q (B )Q P(C )P=Q (D )P ⋂Q=φ≠⊂≠⊂(A ){0,1,2,3,4,5,6} (B ){1,2,3,4,5,6} (C ){0,1,2,3,4,5} (D ){1,2,3,4,5}18.二次函数y=-3x 2+mx+m+1的图像与x 轴没有交点,则m 的取值范围是( ) (A ){346,346+>-<m m m 或} (B ){346346+<<-m m } (C ){626,626+->--<m m m 或} (D ){626626+-><--<m m m }19.设全集U={(x,y )R y x ∈,},集合M={(x,y )122=-+x y },N={(x,y)4-≠x y },那么(C U M )⋂(C U N )等于( )(A ){(2,-2)} (B ){(-2,2)} (C )φ (D )(C U N ) 20.不等式652+-x x <x 2-4的解集是( )(A ){x 2,2>-<x x 或} (B ){x 2>x }(C ){ x 3>x } (D ){ x 2,32≠<<-x x 且} 二、填空题1. 在直角坐标系中,坐标轴上的点的集合可表示为2. 若A={1,4,x},B={1,x 2}且A ⋂B=B ,则x= 3. 若A={x 01032<-+x x } B={x3<x },全集U=R ,则A )(B C U ⋃=4. 若方程8x 2+(k+1)x+k-7=0有两个负根,则k 的取值范围是5. 集合{a,b,c}的所有子集是 真子集是 ;非空真子集是6. 方程x 2-5x+6=0的解集可表示为方程组的解集可表示为⎩⎨⎧=-=+0231332y x y x7.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 。
8.设全集U={x x 为小于20的非负奇数},若A ⋂(C U B )={3,7,15},(C U A )⋂B={13,17,19},又(C U A )⋂(C U B )=φ,则A ⋂B=9.设U={三角形},M={直角三角形},N={等腰三角形},则M ⋂N= M ⋃N= C U M=C U N= C U (M ⋃N )= 10.设全集为⋃,用集合A 、B 、C 的交、并、补集符号表图中的阴影部分。
(1) (2) (3)三、解答题1.设全集U={1,2,3,4},且={x x 2-5x+m=0,x ∈U}若C U A={1,4},求m 的值。
2.已知集合A={a关于x 的方程x 2-ax+1=0,有实根},B={a不等式ax 2-x+1>0对一切x ∈R 成立},求A ⋂B 。
3.已知集合A={a 2,a+1,-3},B={a-3,2a-1,a 2+1},若A ⋂B={-3},求实数a 。
4.已知方程x 2-(k 2-9)+k 2-5k+6=0的一根小于1,另一根大于2,求实数k 的取值范围。
5.设A={x }01)1(2{,04222=-+++==+a x a x x B x x ,其中x ∈R,如果A ⋂B=B ,求实数a 的取值范围。
6.设全集U={x x *,5N x ∈≤且},集合A={x 052=+-q x x },B={x x 2+px+12=0},且(C U A )⋃B={1,4,3,5},求实数P 、q 的值。
7.若不等式x 2-ax+b<0的解集是{32<<x x },求不等式bx 2-ax+1>0的解集。
8.集合A={(x,y )022=+-+y mx x },集合B={(x,y )01=+-y x ,且02≤≤x },又A φ≠⋂B ,求实数m 的取值范围。
第一单元 集合二、填空题答案1.{(x,y)0=⋅y x } 2. 0,2± 3.{x 2<x ,或x ≥3} 4.{7>k k } 5.φ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c};除去{a,b,c}外所有子集;除去φ及{a,b,c}外的所有子集6.{2,3};{2,3}7.{211≤≤-k k } 8.{1,5,9,11} 9.{等腰直角三角形};{等腰或直角三角形},{斜三角形},{不等边三角形},{既非等腰也非直角三角形}。
10.(1) (A ⋃B ));(B A C u ⋂⋂(2)[(C U A )⋃(C U B )]C ⋂;(3)(A ⋂B )⋂(C U C )三、解答题1.m=2×3=6 2.{a 2≥a } 3.a=-14. 提示:令f(1)<0 且f(2)<0解得384415<<-a5.提示:A={0,-4},又A ⋂B=B ,所以B ⊆A (Ⅰ)B=φ时,=∆4(a+1)2-4(a 2-1)<0,得a<-1(Ⅱ)B={0}或B={-4}时,=∆0 得a=-1(Ⅲ)B={0,-4},⎩⎨⎧=--=+-014)1(22a a 解得a=1综上所述实数a=1 或a ≤-16.U={1,2,3,4,5} A={1,4}或A={2,3} CuA={2,3,5}或{1,4,5} B={3,4}(C U A )⋃B=(1,3,4,5),又 B={3,4} ∴C U A={1,4,5} 故A 只有等于集合{2,3} ∴P=-(3+4)=-7 q=2×3=67. 方程x 2-ax-b=0的解集为{2,3},由韦达定理a=2+3=5,b=2×3=6,不等式bx 2-ax+1>0化为6x 2-5x+1>0 解得{x 2131><x x 或}8.由A ⋂B φ≠知方程组,,2001202y x y x y mx x 消去内有解在≤≤⎩⎨⎧=+-+-+得x 2+(m-1)x=0 在0≤x 2≤内有解,04)1(2≥--=∆m 即m ≥3或m ≤-1。
若≥3,则x 1+x 2=1-m<0,x 1x 2=1,所以方程只有负根。
若m ≤-1,x 1+x 2=1-m>0,x 1x 2=1,所以方程有两正根,且两根均为1或两根一个大于1,一个小于1,即至少有一根在[0,2]内。