用构造局部不等式法证明不等式
- 格式:doc
- 大小:418.00 KB
- 文档页数:3
第5讲 基本不等式1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当 时取等号.(3)其中 称为正数a ,b 的算术平均数, 称为正数a ,b 的几何平均数. 2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当 时,x +y 有最小值是 .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当 时,xy 有最大值是 .(简记:和定积最大)常用结论 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号.➢考点1 利用基本不等式求最值[名师点睛]1.通过配凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以配凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 2.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 3.消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围. [典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件33ba b ++,则22a b +的最小值为( ) A .8B .6C .4D .22.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3B .2C .1D .03.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是( ) A .11m n+上的最小值为2 B .mn 的最大值为1C 4D .22m n +的最小值为544.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为( )A .⎣⎡⎭⎫15,+∞B .⎝⎛⎭⎫15,+∞C .⎝⎛⎭⎫-∞,15D .⎝⎛⎦⎤-∞,15 [举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( )A .8B .7C .6D .52.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .63.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为( ) A .40B .1674C .42D .16944.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( )A .2B .2C .2D .65.(多选)(2022·河北保定·一模)下面描述正确的是( ) A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是C.已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+ D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为7126.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是( ) A .114a b+≥B .2212a b +≥C D .10b +<7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a ____________. 8.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________.9.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.10.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a ba b +++的最大值为__________.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++ 的最小值;➢考点2 利用基本不等式证明不等式[典例](2022·全国·高三专题练习)已知,,a b c 都是正数,求证: (1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++.[举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数. (1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c++≥++.2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>. (1)若2a b +=,求1411+++a b的最小值; (2)求证:2222(1)++≥++a b a b ab a b .3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1. (1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=. (1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.➢考点3 基本不等式中的恒成立问题[典例]1.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是( ) A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110n a b b c a c+≥---恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .5[举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b +=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( )A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞2.(2021·浙江·模拟预测)对任意正实数,a b 不等式2(1)2a b ab a bλλ+-++则( ) A .实数λ有最小值1 B .实数λ有最大值1 C .实数λ有最小值12D .实数λ有最大值123.(多选)(2022·全国·高三专题练习)当0x >,0y >,R m ∈时,2222y xm m k x y+>-++恒成立,则k 的取值可能是( ) A .2-B .1-C .1D .24.(2022·全国·高三专题练习)不等式22221122xy yz a a x y z ++-++≤对任意正数x ,y ,z 恒成立,则a 的最大值是__________.5.(2021·重庆一中高三阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________.6.(2022·全国·高三专题练习)若不等式()22x x y a x y +≤+对一切正实数,x y 恒成立,则实数a 的最小值为_____.➢考点4 基本不等式与其他专题综合[名师点睛]有关函数最值的实际问题的解题技巧1.根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. 2.解应用题时,一定要注意变量的实际意义及其取值范围.3.在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解. [典例]1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.2.[2021湖北鄂东南联考]方程(x 2 018+1)(1+x 2+x 4+…+x 2 016)=2 018x 2 017的实数解的个数为________.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米[举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是( ) A .30B .60C .900D .18002.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是( ) A .tan tan tan tan B C B C += B .tan tan tan tan tan tan A B C A B C =++ C .41tan 3A <≤D .tan tan tan A B C 的最小值为43.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.第5讲 基本不等式1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)常用结论 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.(4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号.➢考点1 利用基本不等式求最值[名师点睛]1.通过配凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以配凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 2.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 3.消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围. [典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件336a ba b ++,则22a b +的最小值为( ) A .8B .6C .4D .2【答案】D【解析】因为33ba b ++≥33a b=,即a b =时取等号,所以643a b a b ++≥⋅,所以24a b +≥,2a b +≥,()222122a b a b +≥+=,当且仅当1a b ==时等号成立,所以22a b +的最小值为2 故选:D.2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3 B .2 C .1 D .0【答案】D【解析】因为2x >-,所以20x +>,102x >+,利用基本不等式可得11222022x x x x +=++-≥=++, 当且仅当122x x +=+即1x =-时等号成立.故选:D.3.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是( ) A .11m n+上的最小值为2 B .mn 的最大值为1C 4D .22m n +的最小值为54【答案】AB【解析】∵0,0,2m n m n >>+=,∴()1111111222222n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当n mm n=,即1m n ==时等号成立,故A 正确;2m n +=≥∴1mn ≤,当且仅当1m n ==时,等号成立,故B 正确;(22224m ⎡⎤+≤+=⎢⎥⎣⎦,2=,当且仅当1m n ==时等号成立,最大值为2,故C 错误;()22222m n m n ++≥=,当且仅当1m n ==时等号成立,故D 错误.故选:AB4.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为( )A .⎣⎡⎭⎫15,+∞B .⎝⎛⎭⎫15,+∞C .⎝⎛⎭⎫-∞,15 D .⎝⎛⎦⎤-∞,15 [答案] A [解析] 由x >0,x x 2+3x +1=1x +1x +3,令t =x +1x,则t ≥2x ·1x=2, 当且仅当x =1时,t 取得最小值2. x x 2+3x +1取得最大值15,所以对于任意的x >0,不等式x x 2+3x +1≤a 恒成立,则a ≥15.[举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( )A .8B .7C .6D .5【答案】D【解析】因为13x >,所以3x -1>0,所以()443311153131y x x x x =+=-++≥=--, 当且仅当43131x x -=-,即x =1时等号成立, 故函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为5. 故选:D .2.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .6【答案】C【解析】解:因为0x >,0y >,22x y +=,所以()1211214122244222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即12x =,1y =时取等号;故选:C3.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为( ) A .40 B .1674C .42D .1694【答案】D 【解析】()()222222222214444444a b ab a b a b ab ab a b ++=+++=++-++()()()22222362a b ab ab =++-=+-,又2112902()2222a b ab a b +≤=⋅⋅≤=,当且仅当3,32a b ==时取“=”,则22916936(2)36(2)24ab +-≤+-=,所以当3,32a b ==时,()()2214a b ++的最大值为1694. 故选:D4.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( )A .2B .2C .2D .6【答案】B【解析】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222,当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.5.(多选)(2022·河北保定·一模)下面描述正确的是( ) A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是C .已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为712【答案】AC【解析】对于选项A ,∵0a >,0b >,1a b +=,∴1a b =+≥∴14ab ≤,当且仅当12a b ==时取等号,∴22221log log log log 24a b ab +=≤=-,∴A 正确;对于选项B :因为1ab =,所以22a b a a+=+,又01a <<,所以由对勾函数的单调性可知函数()2=+h a a a在()0,1上单调递减,所以()()3,h a ∈+∞,即23+>a b ,故B 不正确; 对于选项C ,根据题意,已知()()3121x y x x y +=+++-,则()()()2112212331212x x y x x y x x y x x y +⎛⎫+++++=++≥+⎡⎤ ⎪⎣⎦++++⎝⎭()21212++=++x x y x x y,即1==x y时,等号成立,所以32x y +≥+C 正确;对于选项D ,()()2222032x y x y xy x y x y xy +---+=⇒+-+=-,令0x y t +=>,所以214t t -≥-,所以1732412xy xy -≥-⇒≥,此时1,2712x y xy ⎧+=⎪⎪⎨⎪=⎪⎩无解,所以选项D 不正确,故选:AC .6.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是( ) A .114a b+≥B .2212a b +≥ CD .10b +<【答案】AB【解析】对于A :因为001a b a b >>+=,,,所以()11111124b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当b a a b =,即12a b ==时取等号,所以114a b+≥成立.故A 正确;对于B :因为001a b a b >>+=,,,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号.所以()22212122a b a b ab ab +=+-=-≥成立.故B 正确; 对于C :因为001a b a b >>+=,,,所以()()113a b +++=,所以()()311a b =+++≥记u =0u >,所以21111336u ab b =+++++≤+=,所以0u <≤故C 错误;对于D :因为0,b >所以10+>b .故D 错误. 故选:AB7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a____________. 【答案】 6-3【解析】a ,b 为正实数, 且2a b +=,222221111a b b a a b a b +-+∴+=++++2111a b a b =++-++2111a b =+++ ()()1211131a b a b ⎛⎫=++++ ⎪+⎝⎭()2111331ba ab ⎛⎫+=+++ ⎪+⎝⎭ (1133≥++=当且仅当()2112b aa b a b ⎧+=⎪⎨+⎪+=⎩即6a =-4b =时取“=”故答案为:6-38.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________. 【答案】9 【解析】()()()()41414411911x y x y x y x y x y xy yx y x y -+⎡⎤-+⎛⎫⎡⎤⎣⎦++=++=-++++ ⎪⎢⎥---⎣⎦⎝⎭≥, 当且仅当32x y =⎧⎨=⎩时等号成立,取等条件满足1x y >>,所以()41x y x y xy y -+++-的最小值为9.故答案为:99.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.【答案】8【解析】解:0m n >>,所以()()2224m n n m m n n ⎡⎤-+-≤=⎢⎥⎣⎦,当且仅当m n n -=,即2m n =时取等号;所以214()m n n m ≥-,所以()()42422448114m m m m n nm m +≥+-⨯≥+==,当且仅当2244m m =,即1m =时取等号,所以()481m m n n+≥-,当且仅当1m =、12n =时取等号;故答案为:810.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a b a b +++的最大值为__________. 【答案】23【解析】1111111111211111111a b a b a b a b a b a b +-+-⎛⎫+=+=-+-=-+ ⎪++++++++⎝⎭. 因为0a >,0b >,且1a b +=,所以()1111111111311a b a b a b ⎛⎫⎛⎫+⋅=++++ ⎪ ⎪++++⎝⎭⎝⎭()1111142222311333b a a b ⎛++⎛⎫=++≥+=+= ⎪ ++⎝⎭⎝,当且仅当11111b a a b a b ++⎧=⎪++⎨⎪+=⎩即12a b ==时取等.所以114222111133a b a b a b ⎛⎫+=-+≤-= ⎪++++⎝⎭.,即11a b a b +++的最大值为23. 故答案为:23.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++ 的最小值;【答案】274【解析】由222111[()(2)(3)]462x y z y z x+++++ 222(111)++2111[()1(2)1(3)1]462x y z y z x ≥+⨯++⨯++⨯2111[(23)()]462x y z y z x=+++++21232323[3()]623x y z x y z x y z x y z++++++=+++212332[3(3)]62323y x z x z y x y x z y z =+++++++2381(3)24≥+=.所以222111()(2)(3)462x y z y z x +++++≥274,当且仅当231x y z ===时等号成立,综上,222111()(2)(3)462x y z y z x +++++的最小值为274.➢考点2 利用基本不等式证明不等式[典例](2022·全国·高三专题练习)已知,,a b c 都是正数,求证: (1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++. 【解】(1)()()2222244a b ab c abc a b ac ab bc abc ++-=+++-()()()()22222222b a ac c a b bc c b a c a b c =-++-+=-+-,∵,,a b c 都是正数,∴()()220b a c a b c -+-≥, 当且仅当“a b c ==”时等号成立,∴()()24a b ab c abc ++≥.(2)()()()11111112a b b c c a a b b c c a a b b c c a ⎛⎫++=+++++++⎡⎤ ⎪⎣⎦++++++⎝⎭132a b b c b c c a c a a b b c a b c a b c a b c a ⎡++++++⎤⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎝⎭⎣⎦132⎛≥+ ⎝ ()19322222=+++=, 当且仅当“13a b c ===”时等号成立,∴11192a b b c c a ++≥+++. [举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数. (1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c++≥++. 【解】(1)因为24a a+24=322a a a ++≥,当且仅当“2a =”时等号成立,所以当2a =时,24a a+的最小值为3.(2)因为2bc ac c a b +≥=,同理2ac ab a b c +≥,2bc ab b a c +≥, 所以三式相加得22()bc ac ab a b c a bc ⎛⎫++≥++ ⎪⎝⎭,所以bc ac aba b c a b c++≥++,当且仅当“a b c ==”时等号成立 2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>. (1)若2a b +=,求1411+++a b的最小值; (2)求证:2222(1)++≥++a b a b ab a b .【解】(1)因为0,0a b >>,所以10,10a b +>+>, 又2a b +=,所以1++14a b +=,所以14114114(1)19()[(1)(1)][5](54)1141141144b a a b a b a b a b +++=++++=++≥+=++++++ 当且仅当14(1)112b a a b a b ++⎧=⎪++⎨⎪+=⎩,即1353a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号,所以1411+++a b 的最小值为94.(2)因为22222a b a a b +≥①,222a b ab +≥②,22222a b b ab +≥③,所以,由①②③,同向不等式相加可得:222222222222a b a b a b ab ab ++≥++,当且仅当ab a b ==,即1a b ==时取等号. 即2222(1)++≥++a b a b ab a b 成立.3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1. (1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值. 【解】(1)111abc abc abcbc ac ab a b c a b c++=++=++ 222222222222b c a c a b a b c +++≤++=++,当且仅当1a b c ===时等号成立. (2)依题意,,R a b c +∈,11,abc bc a==,所以a b c =+≥=b c =时等号成立. 所以23322,2a a ≥≥,所以a 的最小值为232,此时23222a b c ===.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=. (1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.【解】(1)由a b c ++≥,当且仅当a b c ==时,取得等号. 又3a b c ++=,所以3313abc ⎛⎫≤= ⎪⎝⎭.故当且仅当1a b c ===时,abc 取得最大值1.(2)证明:要证3333a b b c c a abc ++≥,需证2223a b c c a b++≥.因为()222222a b c a b c a b c c a b c a b c a b ⎛⎫⎛⎫⎛⎫+++++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()26a b c ≥=++=,即2223a b c c a b++≥,当且仅当1a b c ===时取得等号.故3333a b b c c a abc ++≥.➢考点3 基本不等式中的恒成立问题[典例]1.(2022·全国·高三专题练习)若对任意220,1xx a xx >≥++恒成立,则实数a 的取值范围是( ) A .[1,)-+∞ B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞【答案】C【解析】解:因为0x >,所以22221131x x x x x ==++++,当且仅当1x x =即1x =时取等号,因为221x a x x ≥++恒成立,所以23a ≥,即2,3a ⎡⎫∈+∞⎪⎢⎣⎭; 故选:C2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110n a b b c a c+≥---恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .5【答案】C【解析】解:2110n a b b c a c+≥---等价于2110()a c n a b b c ⎛⎫+-≥⎪--⎝⎭, ()110110()a c a b b c a b b c a b b c ⎛⎫⎛⎫+-=+-+- ⎪ ⎪----⎝⎭⎝⎭10()111111b c a b a b b c --=++≥++--故得到211,n n N +∈则n 的最大值是4.故选:C. [举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b +=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( )A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞【答案】D【解析】因为0a >,0b >,191a b+=,所以()199101016a a b a b a b a b b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当9b a a b =,即4a =,12b =时取等号.由题意,得241186x x m ≥-++-,即242x x m --≥-对任意的实数x 恒成立,又()2242266x x x --=--≥-,所以6m -≥-,即6m ≥. 故选:D .2.(2021·浙江·模拟预测)对任意正实数,a b不等式2(1)2a b ab a bλλ+-++则( ) A .实数λ有最小值1 B .实数λ有最大值1 C .实数λ有最小值12D .实数λ有最大值12【答案】C【解析】2(1)2a b ab a b λλ+-++故222a b ab ab a b a b λ+⎛⎫- ⎪++⎝⎭,()()22022a b a b ab a b a b -+-=≥++, 当a b =时,不等式恒成立;当ab时,222aba b a b ab a bλ+≥=+-+12=,a b =时等号成立,a b12=,故12λ≥. 故选:C.3.(多选)(2022·全国·高三专题练习)当0x >,0y >,R m ∈时,2222y x m m k x y+>-++恒成立,则k 的取值可能是( )A .2-B .1-C .1D .2【答案】AB【解析】因为0x >,0y >,所以222y x x y +≥=,当且仅当2x y =时,等号成立. 因为()222111m m k m k k -++=--++≤+.若2222y xm m k x y+>-++恒成立,则12k +<,解得1k <. 故选:AB.4.(2022·全国·高三专题练习)不等式22221122xy yz a a x y z ++-++≤对任意正数x ,y ,z 恒成立,则a 的最大值是__________. 【答案】1 【解析】因为222222212222xy yz xy yz xy yz x y z x y y z xy yz +++==++++++≤,当x y z ==时取等号,所以 2222xy yz x y z +++的最大值是12,即211122a a +-≥, 解得112a -≤≤,所以a 的最大值是1.故答案为:15.(2021·重庆一中高三阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________. 【答案】2【解析】解:因为0,0x y >>,则()2220x xy y x y xy -+=-+>, 则()2222x y a x xy y +-+≤,即2222x y a x xy y+-+≤, 又22222211x y xy x xy y x y +=-+-+, 因为222x y xy +≥,所以22112xy x y -≥+,所以22121xy x y≤-+, 即22222x y x xy y +≤-+,当且仅当x y =时,取等号,所以2222max2x y x xy y ⎛⎫+= ⎪-+⎝⎭, 所以2a ≥,即实数a 的最小值是2. 故答案为:2.6.(2022·全国·高三专题练习)若不等式()2x x y a x y +≤+对一切正实数,x y 恒成立,则实数a 的最小值为_____. 【答案】2【解析】()()22222=22x x y a x y x x y x x y x y +≤+∴+≤+++,当且仅当=2x y 时取等号,0,0x y >>0x y ∴+>()22x x y a x y +≤+max2x ya y ⎫∴≥⎪⎪⎝⎭ 22222x x y x yx y x y ++≤=++max2=2x y a y ⎫∴≥⎪⎪⎝⎭,a ∴的最小值为2 故答案为:2➢考点4 基本不等式与其他专题综合[典例]1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________. 【答案】[ 【解析】因函数()f x 在(),-∞+∞内单调递增,则R x ∀∈,42()cos 2sin 033f x x a x '=--≥,即42sin cos 233a x x ≤-,整理得242sin sin 33a x x ≤+, 当sin 0x =时,则203≤成立,R a ∈, 当sin 0x >时,42sin 33sin a x x ≤+,而42214sin (2sin )233sin 3sin 3x x x x +=+≥, 当且仅当12sin sin x x=,即2sin 2x 时取“=”,则有423a ≤, 当sin 0x <时,42sin 33sin a x x ≥+,而42214sin [(2sin )]233sin 3sin 3x x x x +=--+≤--, 当且仅当12sin sin x x -=-,即2sin 2x =-时取“=”,则有423a ≥-, 综上得,424233a -≤≤所以实数a 的取值范围是4242[,]33-. 故答案为:4242,33⎡⎤-⎢⎥⎣⎦2.[2021湖北鄂东南联考]方程(x 2 018+1)(1+x 2+x 4+…+x 2 016)=2 018x 2 017的实数解的个数为________.[答案] 1 [解析] 由题意知x >0,∴(x 2 018+1)(1+x 2+x 4+…+x 2 016)≥ 2x 2 018·1×12(21·x 2 016+2x 2·x 2 014+…+2x 2 016·1)=2 018x 2 017,当且仅当x =1时等号成立,因此实数解的个数为1.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米【答案】C【解析】由题意知,8,12PB QB ==,设,,PMB QMB BM x ∠=∠==αβ,则812tan ,tan x x==αβ,所以()212844tan tan 12896961x x x PMQ x x x x x -∠=-===≤=++⋅+βα,当且仅当96x x =,即x =10,所以BM 大约为10米.故选:C. [举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是( ) A .30 B .60C .900D .1800【答案】B【解析】23300010()Q C f Q Q Q +==3300010Q Q =+23060≥=⨯=,当且仅当3300010Q Q =,即当100Q =时等号成立. 所以f (Q )的最小值是60. 故选:B.2.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是( ) A .tan tan tan tan B C B C += B .tan tan tan tan tan tan A B C A B C =++ C .41tan 3A <≤D .tan tan tan A B C 的最小值为4【答案】ABC【解析】解:因为()sin sin sin cos sin cos sin sin A B C B C C B B C =+=+=, 两边同除cos cos B C 得tan tan tan tan B C B C +=,故A 正确;由均值不等式tan tan tan tan B C B C +=≥tan tan 4B C ≥当且仅当tan tan 2B C ==时取等号,()tan tan tan tan 1tan tan B CA B C B C+=-+=--,所以tan tan tan tan tan tan A B C A B C ++=,故B 正确;tan tan 1tan 1tan tan 1tan tan 1B C A B C B C ==+--,由tan tan 4B C ≥,所以110tan tan 13B C <≤-,所以得31tan 1ta 1n tan 14A B C =+≤-<,故C 正确;22tan tan 1tan tan 12tan tan t 1ta t n t 1a n t n a n an a A B C B C B C B B C C ==-++--,由tan tan 13B C -≥且1y x x =+在[)3,+∞上单调递增,所以tan tan tan A B C 的最小值为163,故D 错误. 故选:ABC3.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.【答案】 4 48 【解析】解:设BM x =,则34x x AN =+,则123AN x=+, 则()12484843324232448AMPN S x x x x x x ⎛⎫=++=++⋅= ⎪⎝⎭, 当且仅当483x x=,即4x =时等号成立,故矩形花坛的AMPN 面积最小值为48. 即当4BM =时,矩形花坛的AMPN 面积最小,最小面积为48. 故答案为:4;48.。
近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。
其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。
局部不等式倒推法局部不等式往往用于轮换求和的和式证明中,当整体的性质不好估计时,可以考虑探求局部的性质,利用局部推动整体,从而促进整个问题的解决,从中也体现了数学哲学观。
而有些辅助式的构造是可以借助待定系数法3333333333332222,,,,a b c d R a b c d b c a d c a b d a b c da b c d b c a d c a b d+∈+++++++++++≥+++++++++++例1 设求证:分析 直接证明无疑是在开玩笑,一般人像我一样肯定会害怕的,那么我们设想把四元过渡到三元,利用局部不等式证明,分析333a b c a b c ++++这种结构,发现是二次型的分式,所以我们若能证明3332223a b c a b c a b c ++++≥++,那么其它三个不等式也具备这种形式了,再累加的话就能证明原不等式了。
那或许有疑问,我们为什么要选取2223a b c ++呢,而不是其它的式子,其实这也是靠猜靠感觉,但也不是空穴来风,因为注意到333a b c a b c ++++是二次型的分式,所以我们一定要选二次型的辅助式,而且333a b c a b c ++++又是关于,,a b c 的式子,又由整个和式的轮换对称性,我们就考虑构造2223a b c ++了,下面给出证明:由柯西不等式,得33322222222()()()()()3x y z x y z x y z x y z x y z ++++≥++++≥++⋅所以就证明了3332223x y z x y z x y z ++++≥++ 最后把4条不等式相加就得到了原不等式。
证毕!例2 ,,2x y z ++>设分析 此题又是三元轮换求和,只是这道题的难度比上一道有所增加,因为求证的是严格大于,而没有取等的情况。
同样,我们考虑局部不等式。
证明:我们结合待定系数法,先设想证明是不是有2xx y zαααα≥++①其中α是待定参数。
证明不等式的基本方法现实世界中的量,相等是相对的、局部的,而不等的绝对的、普遍的。
不等式的本质是研究“数量关系”中的“不等关系”。
对于两个量,我们常要比较它们之间的大小,或者证明一个量大于另一个,这就是不等式的证明。
不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如柯西不等式、平均值不等式等等,其中还需要用一些技巧性高的代数变形。
在这一部分我们主要来学习一些证明不等式的基本方法。
不等式是数学竞赛的热点之一。
由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。
而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。
证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。
但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。
【知识概要】证明不等式的常用方法有:⒈比较法:依据实数的运算性质及大小顺序之间的关系,通过两个实数的差或商的符号(范围)确定两个数的大小关系的方法。
基本解题步骤是:作差(商)—变形—判号(范围)—定论。
证题时常用到配方、因式分解、换元、乘方、恒等式、重要不等式、优化假设、放缩等变形技巧。
⒉分析综合法:所谓“综合”指由“因”导“果”,从已知条件出发,依据不等式的性质、函数的性质、重要不等式等逐步推进,证得所要证的不等式。
所谓“分析”指的是执“果”索“因”,从欲证不等式出发,层层推求使之成立的充分条件,直至已知事实为止。
一般先用分析法分析证题思路,再用综合法书写证明过程。
⒊重要不等式法:主要有均值不等式、柯西不等式、排序不等式等。
⒋换元法:适当引入新变量,通过代换简化原有结构,实现某种变通,给证明的成功带来新的转机。
具体地讲,就是化超越式为代数式,化无理式为有理式,化分式为整式,化高次式为低次式等等。
构造局部不等式法证明不等式
有些不等式的证明,若从整体上考虑难以下手,可构造若干个结构完全相同的局部不等式,逐一证明后,再利用同向不等式相加的性质,即可得证。
例1. 若,,求证:
分析:由a,b在已知条件中的对称性可知,只有当,即时,等号才能成立,所以可构造局部不等式。
证明:
同理,
∴
例2. 设是n个正数,求证:。
证明:题中这些正数的对称性,只有当时,等号才成立,构造局部不等式如下:。
将上述n个同向不等式相加,并整理得:。
例3. 已知均为正数,且,求证:。
证明:因均为正数,故,。
又∵,
∴把以上各个同向不等式相加,整理得:
故。
例4. 设,且,求证:。
(第36届IMO)
证明:由a,b,c在条件中的对称性知,只有当时,才有可能达到最小值,此时刚好。
所以,可构造如下局部不等式。
∵,
,
,
例5. 设,且,求证:。
证明:由a,b,c在条件中的对称性知,只有当时,才可能达到最小值1,此时刚好。
所以,可构造如下局部不等式。
∵
∴
即。
不等式是高等数学中的一个重要工具。
运用它可以对变量之间的大小关系进行估计,并且一些重要的不等式在现代数学的研究中发挥着重要作用。
这里首先介绍几个常用的不等式,然后再介绍证明不等式的一些方法。
几个重要的不等式 1.平均值不等式设12,,,n a a a 非负,令111()(0)nrr r kk M a a r n =⎛⎫=≠ ⎪⎝⎭∑(当r<0且至少有一0ka =时,令()0r M a =),111()()nkk A a M a a n ===∑,112()()111nn H a M a a a a -==++,11()nnk k G a a =⎛⎫= ⎪⎝⎭∏,称r M 是r 次幂平均值,A 是算数平均值,H 是调和平均值,G 是几何平均值,则有()()()H a G a A a ≤≤,等式成立的充要条件是12,na a a ===;一般的,如果s>0,t<0,则有()()()t s M a G a M a ≤≤,等式成立的充要条件是12,na a a ===。
2.赫尔德(Holder )不等式设()0,0,1,2,,,1,2,,j i j a a i n j m>>==,且11mjj a==∑,则1111111()()()()m mnnna a a a m m iiii i i i a a a a ===≤∑∑∑,等式成立的充要条件是(1)()(1)()11,1,2,,m i i nnm kki i a a i n aa=====∑∑。
3.柯西-许瓦兹(Cauchy-Schwarz )不等式设,,1,2,,i i a b i n =为实数,则112222111||n nni i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑。
4.麦克夫斯基(Minkowsk)不等式 设()0,1,2,,,1,2,,,1j i a i n j m r >==>,则111(1)()(1)()111[()][()][()]nnnm r r m r r r r iiiii i i a aa a===++≤++∑∑∑,等式成立的充要条件是(1)()(1)()11()(),1,2,,()()rm ri i nnr m r kki i a a i n aa=====∑∑。
两道经典代数不等式的多种解法长沙市明德中学 邓朝发 2019年3月6日 有两道道经典的代数不等式,在很多奥数资料上面都出现过,但是用到的解法过于单一,甚至于太繁琐。
笔者在竞赛教学中,集学生的智慧偶得灵感,经过研究发现,此两道不等式有多种解法,而且这些解法的过程相当精妙、相当优雅、相当有韵味。
高兴之余,情不自禁,特以此文分享,作初等数学学习、鼓励学生交流之用。
题目:已知12123,,..,0,..1n n x x x x x x x >=,证明:11(1)nii ix n x=≥-+∑方法一: 反证法解1: 不妨假设11(1)ni i ix n x =<-+∑,进一步211(1)11ni i i x n n n x n x =->≥--+-+∑; 把1x 用23,,...,n x x x 替换,可得:1(1)1,2,3..,)11ni i k k i x n n k n n x n x ≠->≥-=-+-+∑;取他们乘积:11(1)1nnk k n n n x =->--+∏进一步:12...1n x x x <与条件矛盾!,进而原不等式成立! 解2:不妨假设=(1)ii ix y n x -+,进一步:(1)(1,2,..)1i i i n y x i n y -==- 从而1(1)11ni i i n y y =-=-∏,不妨假设1111(1)n nii i i ix y n x ==<⇔<-+∑∑, 此时:1111(1)nn iii i i x y n x ==<⇔<-+∑∑,从而121n i i y y =<-∑; 把1y 用23,,...,n y y y替换,可得:(1)1,2,3..,)ni ii ky yn k n ≠>≥-=∑;对n个式子做乘积:1(1)nnik yn =>-∏从而:1(1)11nii in y y =-<-∏,矛盾!进而原不等式成立!以上两种都是反证法,只是对结构处理不同,所以这里归结为一类方法。
证明不等式的基本方法现实世界中的量,相等是局部的、相对的,而不等则是普遍的、绝对的,不等式的本质是研究“数量关系”中的“不等关系”.对于两个量,我们常常要比较它们之间的大小,或者证明一个量大于另一个量,这就是不等式的证明.不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如平均不等式,柯西不等式等,其中还需用到一些技巧性高的代数变形.本节将介绍证明不等式的一些最基本的方法.比较法比较法一般有两种形式;(1)差值比较欲证A ≥B .只需证A —B ≥0; (2)商值比较若B>0,欲证A ≥B ,只需证BA≥1. 在用比较法时,常常需要对式子进行适当变形,如因式分解、拆项、合并项等. 例l 实数x 、y 、z 满足1-=++zx yz xy ,求证:485222≥++z y x .例2 设+∈R c b a ,,,试证:对任意实数x 、y 、z ,有:)())()((2222zx bac yz a c b xy c b a a c c b b a abc z y x ++++++++≥++,并指出等号成立的充要条件.例3 设+∈R c b a ,,,试证: b a a c c b cb ac b a c b a +++≥222.例4 设+∈R c b a ,,,1222=++c b a ,求abc c b a cb a S )(2111333222++-++=的最小值.说明先猜后证是处理许多极值问题的有效手段.猜,一猜答案,二猜等号成立的条件;证明的时候要注意等号是否能取到.有时我们直接证明不等式A ≤B 比较困难,可以试着去找一个中间量C ,如果有A ≤C 及C ≤B 同时成立,自然就有A ≤B 成立.所谓“放缩”即将A 放大到C ,再把C 放大到B 或者反过来把B 缩小到C 再缩小到A .不等式证明的技巧,常体现在对放缩尺度的把握上.例5 证明:对任意+∈R c b a ,,,均有abc abca c abc cb abc b a 1111333333≤++++++++.例6 设),,2,1(1n i a i =≥,求证:)1(12)1()1)(1(2121n nn a a a n a a a +++++≥+++ .所谓分析法就是先假定要证的不等式成立,然后由它出发推出一系列与之等价的不等式(即要求推理过程的每一步都可逆),直到得到一个较容易证明的不等式或者一个明显成立的不等式.分析法是一种执果索因的证明方法,在寻求证明思路时尤为有效.例7 若0,,≥∈y R y x ,且2)1()1(+≤+x y y .求证;2)1(x y y ≤-.例8 设+∈R c b a ,,,求证:ab b a abc c b a 233-+≥-++.引入参数法引入适当的参数,根据题中式子的特点,将参数确定,从而使不等式获得证明. 例12 设+∈R q p ,,且233=+q p ,求证:2≤+q p .例13 设+∈R c b a ,,,且12222=++c b a ,求证:24333≥++c b a .例14 设z y x ,,是3个不全为零的实数,求2222z y x yzxy +++的最大值.标准化(归一化)当不等式为齐次式的时候,常可设变量之和为k (某个常数),这样不仅简化了式子,而且增加了条件,有助于我们解决问题.例15 设c b a ,,是正实数,求证:8)(2)2()(2)2()(2)2(222222222≤++++++++++++++b a c b a c a c b a c b c b a c b a .例16 已知0,02=++>++c bx ax c b a 有实根,求证:{}{}c b a c b a c b a ,,max 49,,min 4≤++≤.习题1.设R z y x ∈,,,求证:[][]2222222222222)()()()()()(zx yz xy z y x z y x zx yz xy z y x z y x ++-++++≥++-++++.2.设+∈R c b a ,,,求证:333888111c b a c b a c b a ++≤++.3.设实数10021,,,a a a 满足: (1)010021≥≥≥≥a a a ; (2)10021≤+a a ;(3)10010043≤+++a a a . 求21002221a a a +++ 的最大值.4.如果+∈R c b a ,,,求证:2222222)())()((ca bc ab a ca c c bc b b ab a ++≥++++++.5.设0,,≥z y x ,求证:xyz z y x z y x z y x z y x 3)()()(222≥-++-++-+.并确定等号成立的条件.6.设+∈R c b a ,,,求证:49)(1)(1)(1)(222≥⎥⎦⎤⎢⎣⎡+++++++x z z y y x zx yz xy .7.求证:161cos sin 1010≥+αα.变量代换法变量代换是数学中常用的解题方法之一.将一个较复杂的式子视为一个整体,用一个字母去代换它,从而使复杂问题简单化.有时候.有些式子可以用三角换元,从而使问题简化.当问题的条件或结论中出现“222r y x =+”,“222r y x ≤+”,“22x r -”或“1≤x ”等形式时,可以考虑用“sin α”与“cos α”代换;问题的条件或结论中出现“22x r +”.“22r x -”形式时,可作“αtan r x =”或“αsec r x =”代换等.在作代换时,要特别注意α的取值范围是由原变量x 的取值范围决定.例l 已知00≤α≤900,求证:49sin sin 452≤+-≤αα.例2 已知实数y x ,满足096422=+--+y x y x ,求证:996121922≤+++≤y x y x .例3 设c b a ,,是三角形的三边长,求证:0)()()(222≥-+-+-a c a c c b c b b a b a .已知。
不等式的证明方法摘要不等式的形式与结构多种多样,其证明方法繁多,技巧性强,也没有通法,所以研究范围极广,难度极大.目前国内外研究者已给出很多不等式的证明方法,已有文献分别就不等式的性质、各种证明方法及应用作了论述.论文以现有研究成果为基础,整理和归纳了常用的不等式证明方法,包括构造几何图形、构造复数、构造定比分点、构造主元、构造概率模型、构造方差模型、构造数列、构造向量、构造函数、代数换元、三角换元、放缩法、数学归纳法,让每一种方法兼具理论与实践性.旨在使学生对不等式证明问题有一个较为深入的了解,进而在解决相关不等式证明问题时能融会贯通、举一反三,达到事半功倍的效果,同时为从事教育的工作者提供参考.关键词:不等式;证明;方法Methods for Proving InequalityAbstract:The form of structure of inequality is diversity, and the proving methods of it are various which requires lots of skills, and there is no common way, so it is a extremely difficult study. Researchers have been given a lot of inequality proof methods at home and abroad, the existing literature, respectively, the nature of inequality, certificate of various methods and application are discussed. The paper on the basis of existing research results and summarizes the commonly used methods of inequality proof, including structural geometry, structure complex, the score point, tectonic principal component, structure, tectonic sequence probability model, structure of variance model, vector construction, constructor, algebra in yuan, triangle in yuan, zoom method, mathematical induction, making every kind of method with both theory and practice. The aim is to make the student have a more thorough understanding on the inequality problems , and in solving the problem of relative inequality proof can digest the lines, to achieve twice the result with half the effort, at the same time provide a reference for engaged in education workers.Key words: inequality; proof; method目录1 引言 (1)2 文献综述 (1)2.1 国内外研究状况 (1)2.2 国内外研究评价 (2)2.3 提出问题 (2)3 构造法 (2)3.1 构造几何图形 (2)3.2 构造复数 (3)3.3 构造定比分点 (4)3.4 构造主元,局部固定 (5)3.5 构造概率模型 (5)3.6 构造方差模型 (6)3.7 构造数列 (7)3.8 构造向量 (8)3.9 构造函数 (8)4 换元法 (10)4.1 代数换元 (10)4.2 三角换元 (11)5 放缩法 (11)5.1 添加或舍弃一些正项(或负项) (12)5.2 先放缩再求和(或先求和再放缩) (12)5.3 先放缩,后裂项(或先裂项再放缩) (13)5.4 放大或缩小因式 (13)5.5 固定一部分项,放缩另外的项 (14)5.6利用基本不等式放缩 (14)6 数学归纳法 (15)7 结论 (16)7.1主要发现 (16)7.2启示 (16)7.3 局限性 (16)7.4 努力方向 (17)参考文献 (18)1引言不等式具有丰富的内涵和突出的地位,并且它与数学理论、现实生活、科学研究有着紧密的联系.加之,不等式的形式与结构多种多样,其证明方法繁多,技巧性强,有些不等式用一般的方法(如比较法、分析法、综合法)很难证出来,或者是论证过程很冗长,亦或根本证不出来[1].于是,人们追寻不等式与其它知识的相互联系,构造新颖巧妙的组合,在不同知识体系的交汇处探究问题,逐步提高知识的“整合”能力,把需证明的不等式加以转换,使之以特殊的行之有效的方法得以证明,在此基础上还要注意从不同角度去分析不等式的结构与特征,应用联系、变化、对立统一的观点恰当地将问题转化,从而使不等式的证明化难为易[10].探讨不等式证明的不同方法是一项有意义的工作,下文通过典型的例题,揭示了一些不等式证明方法在解题中的应用,旨在进一步拓宽人们证明不等式的能力.2文献综述2.1国内外研究状况国内许多专家、学者研究过不等式的证明方法.在其一般方法(比较法、分析法、综合法)的基础上.早在1987年,闻厚贵就在文[1]编著了不等式证法,该书将不等式的证明方法整理归类.1990年,严镇军在文[2]中编著了不等式,该书归纳了不等式的性质、证明技巧以及应用.1987年,易康畏在文[3]中编著了不等式的图解、证明及演绎,该论著利用图解的形式详细的分析证明了不同的不等式.2009年,刘美香在文[4]中讨论了构造概率模型证明不等式.2003年,赵会娟、尹洪武在文[5]中研究了不等式证明的几种特殊方法.2004年,李文标在文[6]中浅谈了证明不等式的几种非常规方法;朱胜强在文[7]中探讨了不等式证明的几类非常规方法.2008年余焌瑞在文[8]中研究了构造法在不等式中的运用.2002王廷文、王瑞在文[9]中讨论了构造函数证明不等式.1997年,王廷文在文[10]中总结了构造法证明不等式.2007年,常椒凤在文[11]中讨论了数学解题中的图形构造法;同年,王保国在文[12]中介绍了不等式证明的六种非常规方法;黄俊峰在文[13]中介绍了利用向量的性质证明不等式.2008年,谭景宝在文[14]中介绍用构造法证明不等式;在文[15]中周燕华就利用转换视角、构造主元证明不等式的方法给出了系统、详尽的举例论证.2008年,耿道永在文[16]中提出了有关不等式的几种新颖构造性证法.2.2国内外研究评价从查到的国内外文献来看,国内外研究者对不等式证明方法介绍了很多,文献[1-17]分别就不等式的性质、不同证明方法及应用作了论述,文献中阐述一种或几种不等式证明方法,一些文献写理论较多,一些文献写例子较多,理论很少,而且许多方法有名称不一而本质一样的情形,如判别式法、构造函数法在形式上都是根据二次函数的性质来进行分解求解的,因此可以归为构造函数法.所以,有必要重新整理和归纳不等式证明方法,让每一种方法兼具理论与实践性.2.3提出问题不等式的证明问题,就其方法而言,没有定法可套,有较大的灵活性和技巧性.而且不等式证明历来是中学、特别是高中数学教学的一个重点和难点.因此在前人研究不等式证明方法的基础上,试图完整地整理出常用的几类方法,使之系统化,并在此基础上探寻新的证明方法.3构造法所谓构造法,就是指通过对条件和结论充分细致的分析,抓住问题的特征,联想熟知的数学模型,然后变换命题,恰当地构造辅助元素,它可以是图形、函数、方程、或其等价命题等,以此架起一座连接条件和结论的桥梁,从而使问题得以解决的数学方法.构造法本质上是化归思想的运用,但它常常表现出简捷、明快、精巧、新颖等特点,使数学解题突破常规,具有很强的创造性.3.1构造几何图形有些不等式若是按常规的代数方法证明,则繁难无比.若是能揭去不等式抽象的面纱,恰当地赋予几何意义,并构造出相应的几何图形,将题设条件及数量关系直接在图形中得到体现,使条件与结论的关系明朗化,就能直观揭露出不等式问题的内在实质,由此获得具体、形象、简洁的证明方法.构造几何图形证明不等式,关键是构造出恰当的几何图形,把不等式由图形来表示出来.常用到“两点间直线段最短”,“三角形中大边对大角”,“三角形两边之和大于第三边”,“直角三角形斜边大于直角边”等几何知识.例1已知正数满足条件,求证:111a b c a b c ,,,,,111a a b b c c k +=+=+=.2111ab bc ca k ++<分析:如果我们把,,均看作三个矩形的面1ab 1bc 1ca 积,看作边长为的正方形的面积,从中构造出前面的这2k k 三个矩形.证明:构造边长为的正方形(如图1),且令k ABCD ,,,,DF a =1DG AH b==AG BH b ==1BE c =1CF a =,并作出相应的矩形Ⅰ,Ⅱ,Ⅲ.由,可得. 图1ABCD S S S S I IIIII >++2111ab bc ca k ++<利用数形结合解题的关键是理解代数式的几何意义,把已知条件或要证不等式中的代数量直观化为某个图形中的几何量,即构造出一个符合条件的几何图形,便可应用该图形的性质及相应的几何知识证明不等式.因此,对于函数的图象和常见曲线要熟记,以便在应用时,能够得心应手,信手拈来.3.2构造复数复数之间不存在大小关系,但复数的模、实部、虚部作为实数,它们之间是可以比较大小的,因此复数的模、实部、虚部各自或彼此之间存在一系列不等关系.构造复数证明不等式的思路是,根据待证不等式和已知条件构造复数,然后代入复数模的不等式中,再把模的不等式化为无理不等式或线段不等式.当求证的不等式中出现“平方和的算术根”的形式的时候很容易联想到复数的模.从而可通过构造复数并利用复数模的性质来证明不等式.121212Z Z Z Z Z Z +≥+≥-例2 设,,.a b c ∈R )a b c +≥++分析:根据求证式的结构特点,联想复数模的性质.121212Z Z Z Z Z Z +≥+≥-证明:构造复数,,,则1Z a bi =+2Z b ci =+3Z c ai =+, , 1Z =2Z =3Z =n,()()123Z Z Z a b c b c a i ++=+++++)b c a b c =+≥++而,所以123123Z Z Z Z Z Z ++≥++.)a b c ≥++构造复数证明不等式有很大的局限性,只有当不等式出现“平方和算术根”时,我们才考虑构造复数.3.3构造定比分点设,是直线上的两点,点是上不同于,的任意一点,则存在一个实数1P 2P l P l 1P 2P 使,叫做点分有向线段所成的比.显然,当点在线段上时,λ21PP P P λ=λP 21P P P 12PP ;当点在线段或的延长线上时,.如果这条直线就是轴,且λ>0P 12PP 21P P λ<0l x ,,在轴上的实数分别为,, (其中),则的充要条1P P 2P x 1p p 2p 12p p <12p p p <<件是.这样,我们就可以将证明一个不等式的问题转化为对一个实数的符号的判λ>0断问题.例3 求证:.()()()()222341221x x x x ---≤≤++分析:此题我们通常用判别式法去证.如果设,,分别是有向4-()()()()2223221x x x x --++1线段上的三点,则可通过定比的值确定内、外分点来证得.λ证明:设,,分别对应数轴上的点,,,分有向线段4-()()()()2223221x x x x --++11P P 2P P 所成的比为,则12PP λ,()()()()()()()()()()222222234221312321221x x x x x x x x x x λ--++++==--+-++所以,或不存在,故点不是的外分点;0λ≥λP 21P P当时,;当时,;当不存0λ>()()()()222341221x x x x ---<<++0λ=()()()()2223221x x x x --=-4++λ在时,.()()()()22231221x x x x --=++综上所述,可知 .()()()()222341221x x x x ---≤≤++3.4构造主元,局部固定一些不等式的证明,若从整体上考虑很难入手,则当条件或结论中出现多个变量时,我们可以选取其中一个变量为主元局部固定,抓住这个主元逐一证明不等式.通常是先暂时固定某些变量,而考查个别变量的变化、结果,然后再确定整个问题的结果.例4 设,函数,求证:当时,.1a ≤()2f x ax x a =+-1x ≤()54f x ≤分析:该问题一般是通过绝对值不等式的几次放缩来证明,但我们若换一个视角,以为主元,将题中关于的函数看成的一次函数,则原命题的陈述方式可改为:一a x a 次函数的最值不超过.()()21g a x a x =-+54证明:设,,.()()21g a x a x =-+[]1,1a ∈-[]1,1x ∈-当,即时,.显然成立.210x -=1x =±()1g a =±()()54f x g a =≤当时,是的一次函数,故只需证明.210x -≠()g a a ()514g ±≤因为,所以,即;()22151124g x x x ⎛⎫=+-=+- ⎪⎝⎭()5114g -≤≤()11g ≤而,所以,即.()22151124g x x x ⎛⎫-=-++=--+ ⎪⎝⎭()5114g -≤-≤()514g -≤综上所述, ,即.()54g a ≤()54f x ≤3.5构造概率模型概率论是研究随机现象的一门数学分支,它既有其独特的概念和方法,又与其它学科分支有着密切的联系.因此在解答有关数学问题时,若能依据题设条件构建概率i 模型,可使这些数学问题简捷巧妙解决.构造概率模型解题,关键在于要找到恰当的概率模型.一旦运用成功,它能从某些方面体现出问题的本质规律和数学的内在美,往往给人以耳目一新的感觉.例5 已知.0,2x π⎡⎤∈⎢⎥⎣⎦2≥分析:原式即,由条件知,.于是只需42sin cos 21sin cos x xx x+≥++0sin 1x ≤≤0cos 1x ≤≤证,亦只需证成立,显然利用概2sin cos 1sin cos x x x x +≥++sin cos sin cos 1x x x x +-≤率模型来证极为简单.证明:设两独立事件和,即,,A B ()sin P A x =()cos P B x =则 ,()()()()P A B P A P B P AB +=+-sin cos sin cos 1x x x x =+-≤于是 .2sin cos 1sin cos x x x x +≥++因为,故,.即得,所以0,2x π⎡⎤∈⎢⎥⎣⎦sin 0x ≥cos 0x ≥42sin cos 21sin cos x x x x +≥++.2≥对于一类涉及与的不等式,常可考虑利用概率性质及加法公式01()01P A ≤≤,()()()()P A B P A P B P AB +=+-或来证.其关()()()()()()()()P A B c P A P B P C P AB P BC P AC P ABC ++=++---+键是求证式要符合概率加法公式的基本形式.3.6构造方差模型方差(其中是个数据,,,的()()()222122n x x x x x x Sn-+-++-=x n 1x 2x nx 平均数),是用于描述数据波动情况的一个量.方差的表达式可以写成.()()222212122n n x x x xx x nS n++++++-=ng显然有(当且仅当时等号成立).利用方差这一变式,我们可20S≥12nx x x x====以通过构造方差来解决一类有关个实数的和与其平方和之间的关系问题.n例6 设,证明:.(2003年全国高中352x≤≤+<联赛试题)证明:设原不等式的左边为()u0u>方差是2S=,()()21114044x u⎡⎤=+-≥⎢⎥⎣⎦352x≤≤所以u≤≤===故,原不等式成立.u<通过构造方差模型,使得复杂的无理不等式的证证明问题得以简捷解决.3.7构造数列一个不等式有时涉及多个变量.如果能根据题设条件将某些变量看成是数列的项.则可借助数列中项之间的关系来沟通变量间的联系,使问题获解.通过构造等比数列或等差数列.将不等式中出现的多个变量都用公比或公差来表示.实现了化多元为一元.从而简化了不等式证明的难度.有些不等式中含有与自然数有关的变量,这时如果将这一变量看成是某一数列的项数,构造数列,则可结合数列的知识来证明不等式.例7 求证:131212654321+<-⋅⋅nnn.分析:这是一道不等式的证明题,若我们总是在不等式的圈子里转悠,问题不能圆满的解决.跳出这个圈子,我们不难发现这是一个自然数有关的命题,那么,解决它的方法不外乎两种,一是利用数学归纳法;二是构造数列.我们来构一个数列{}n a.证明: 令=n a 132********+⋅-⋅⋅n nn ,则()()()()431213222221+⋅++⋅+=⎪⎭⎫⎝⎛+n n n n a a n n =1419281242028122323>++++++n n n n n n 所以,n n a a >+1,从而有,1121=>>>>--a a a a n n n .因此原不等式得证.3.8构造向量向量这部分知识由于独有的形与数兼备的特点,使得向量成了数形结合的桥梁.对于某些不等式的证明,若能依据不等式的条件和结论,将其转化为向量形式,利用向量和及数量积关系式,往往避免复杂的凑配技巧,使证明过程直观n m n m⋅≤⋅而又容易理解.例8 已知,.,a b R +∈1a b +=≤证明:设,,则()1,1=m n =,,.m n ⋅= m =2n = 由,得m n m n ⋅≤⋅≤构造向量时,要充分考虑待证不等式的结构特征,才能有的放矢.3.9构造函数函数揭示了变量之间的对应关系,同样也蕴含着变量之间的不等关系.我们常常利用一次函数的线性性质、二次函数的最值以及函数的单调性等性质证明某些不等式问题.如果能根据题目的条件与所证的不等式的结构特征.合理构造函数,常可使原本复杂的证明变得简便易行.构造函数证明不等式.其关键在于寻找恰当的函数模型.这往往需要将所证的不等式直接改造成函数关系式,或者将其看成某一函数解析式中的系数满足的关系.来探求函数解析式.3.9.1构造一次函数由一次函数的图像可知,如果,,则对一切均b kx y +=()0f m >()0f n >(,)x m n ∈有.我们将这一性质称为一次函数的保号性.利用一次函数的保号性可以证明()0f x >一些不等式.例9 已知、、,求证:.1a <1b <1c <2abc a b c +>++分析:首先将不等式化为并整理得20abc a b c +--->,可将其看成是关于的一次函数式.(1)20bc a b c -+-->a 证明:构造函数,这里、、,则.()(1)2f x bc x b c =-+--1b <1c <1x <1bc <因为,(1)12(1)(1)(1)0f bc b c bc b c -=-+--=-+-+->,(1)12(1)(1)0f bc b c b c =-+--=-->所以,一次函数,当时,图象在轴的上方.这就是()(1)2f x bc x b c =-+--(1,1)x ∈-x 说,当、、时,有,即.1a <1b <1c <(1)20bc a b c -+-->2abc a b c +>++从上例的证明可以看出,构造一次函数证明不等式时,可按下列步骤进行:⑴将不等式先移项使右边为零;⑵将不等号左边的式子整理成关于某一未知数的一次式;x ()0f x >⑶根据的取值范围,确定与的符号,确定当时的符x (,)m n ()f m ()f n (,)x m n ∈()f x 号进而证得不等式.构造一次函数证明不等式,其实质是将一个不等式的证明问题转化为确定解析式某个变量在两个特殊值处的符号问题,从而收到了以简驭繁的效果.3.9.2构造二次函数通过对所证不等式的观察、分析,构造出二次方程.证明中借助于二次方程的判别式,从而使不等式得证.则恒成立的充要条件是,),0(x f 2>++=a c bx ax )(设二次函数02≥++c bx ax ,根据这一等价关系,我们可以将关于其中一个不等式的证明转化为对0ac 4-b 2≤=∆另一个不等式的证明.例10 若,求证:.b a 10<<112+<-a b b分析:结论即,可将左式看成是以为主元的二次函数(其中0112>++-a b b b ),再予以证明.aa 10<<证明:令,由,得.构造二次函数x b =b a 10<<)1,0(ab x ∈=.其对称轴为.1,0(,11)(2a x a x x x f ∈++-=21=x ⑴当,即时,f(x)在(0,a1)上单调递减.211≤a 2≥a 于是 =)1(1111122+=++-a a a a a 0)(x f >)(a 1f >⑵当,即时,211>a 20<<a 有 041-1121()(>+=〉a f x f 综上,当时,恒成立,即不等式成立.1,0(a x ∈011)(2>++-=a x x x f 112+<-a b b 4换元法通过对所证不等式添设辅助元素,使原来的未知量(或变量)变换成新的未知量(或变量),从而更容易达到证明的目的,这种证明不等式的方法称之为换元法.换元法多用于条件不等式的证明,换元法分为代数换元和三角换元.此法证明不等式的一般步骤是:(1)认真分析不等式,合理换元;(2)证明换元后的不等式;(3)得证后,导出原不等式.4.1代数换元对于那些具有一定结构特点的代数式,可以巧设某些代数式换元,把冗长而又复杂的不等式化为简单明了的代数式,则可简洁明快的解决问题.例11 设求证:.,,,+∈R c b a ()()()c b a b a c a c b abc -+⋅-+⋅-+≥分析:经过观察,我们发现,把中的两个互换,不等式不变,说明这是一个对称c b a ,,不等式,如果我们令则原不等式可化为:=-+=y a c b x ,,b a c -+,c b a z -+=.()()()xyz x z z y y x 8≥+⋅+⋅+这是一个较简单而且容易与已知不等式联系的不等式,因而可以按上述换元证明不等式.证明:令,则c b a z b a c y a c b x -+=-+=-+=,,,.()z y a +=21(),21z x b +=()y x c +=21时,有;,,,+∈R c b a 0<∴xyz 当()()()xyz x z z y y x 8≥+⋅+⋅+当时,有(否则中必有两个不为正值,不妨设,0>xyz +∈R z y x ,,z y x ,,0≤x ,则,这与矛盾),0≤y 0≤c 0>c 因此,02>≥+xy y x ,02>≥+yz z y ,02>≥+zx x z ,()()()xyz x z z y y x 8≥+⋅+⋅+综上所述,恒有,()()()xyzx z z y y x 8≥+⋅+⋅+把代入上式得: z y x ,,()()()c b a b a c a c b abc -+⋅-+⋅-+≥4.2三角换元三角换元除了要正确换元外,还要熟练掌握三角函数的诱导公式以及三角函数的有界性等必要知识.对于含有根式的不等式或带有绝对值符号的不等式,可用三角换元法.把问题变成了熟悉的求三角函数值域.为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要.如变量x 、y 适合条件时,则可作三角代换、化为三角问题.)(0r r y x 222>=+θrcos x =θrsin y =例12 若求证: .,122≤+y x 2222≤-+y xy x 分析:由知点在圆的内部或边界上,因此可以考虑变换:,122≤+y x ()y x ,122=+y x .,sin θr x =θcos r y =()πθ20,10<≤≤≤r 证明:设 , 则,sin θr x =θcos r y =()πθ20,10<≤≤≤r .222y xy x -+θθ2sin 2cos 2+=r ⎪⎭⎫ ⎝⎛-≤42cos 22πθr 22r ≤2≤5放缩法在不等式证明中,经常用“舍掉一些正(负)项”而使不等式的各项变小(大),或在分式中利用放大或缩小分式的分子、分母,从而达到证明的目的.这种证明不等式的方法称之为放缩法.在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果.但放缩的范围较难把握,常常出现放缩后得不出结论或得到相反的现象.因此,使用放缩法时,如何确定放缩目标尤为重要.要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点.掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法.5.1添加或舍弃一些正项(或负项)若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负值,多项式的值变小.由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的.例13 已知求证:*21().n n a n N =-∈*122311...().23n n a a an n N a a a +-<+++∈证明: 111211111111.,1,2,...,,2122(21)2 3.222232k k k k k kk k a k n a +++-==-=-≥-=--+- 1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈本题在放缩时就舍去了,使分式值变小,从而使和式得到化简.22k -5.2先放缩再求和(或先求和再放缩)若分子, 分母同时存在变量, 要设法使其中之一变为常量.分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.具体可根据题目特征,选择先放缩再求和(或先求和再放缩).例14函数f (x )=,求证:f (1)+f (2)+…+f (n )>n +.xx 414+)(2121*1N n n ∈-+分析:此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.证明:由f(n)= =1-nn414+1111422n n>-+⋅得f(1)+f(2)+…+f(n)>n22112211221121⋅-++⋅-+⋅-.)(2121)2141211(41*11Nnnnnn∈-+=++++-=+-评注:本题通过左边的合理变形和放缩,最终和右边式子的结构特征一致,轻松得到了所证结果.5.3先放缩,后裂项(或先裂项再放缩)若不等式证明中涉及较复杂的分式,可根据题目特征,对分式作适当的放缩,以便于裂项化简分式(或先裂项再放缩),达到证明目的.例15 已知a n=n ,求证:<3.∑nk=1证明:<1+∑nk=∑nk=∑nk=2<1+=∑nk=21nk=+=1+ (-)∑nk=2=1+1-<2<3.评注:本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.5.4放大或缩小因式若因式中存在变量时,可以选择适当放缩使其中一部分变为常量,具体可根据题目特征选择放大或缩小因式.例16 已知数列满足求证:{}na2111,0,2n na a a+=<≤1211().32nk k kka a a++=-<∑n证明 22112131110,,,.2416n na a a a a a +<≤=∴=≤≤ 2311,0,16k k a a +∴≥<≤≤当时1211111111()()().161632nn k k k k k n k k a a a a a a a ++++==∴-≤-=-<∑∑评注:本题通过对因式放大,而得到一个容易求和的式子,最终2k a +11()nk k k a a +=-∑得出证明.例17 设)1(433221+++⨯+⨯+⨯=n n a n 求证:2)1(2)1(2+<<+n a n n n 证明:∵ n n n n =>+2)1(212)21()1(2+=+<+n n n n ∴ 212)1(+<+<n n n n ∴ , ∴2)12(31321++++<<++++n a n n 2)1(2)1(2+<<+n a n n n 评注:本题利用,对中每项都进行了放缩,从而得到可以212n n +<<n a 求和的数列,达到化简的目的.5.5固定一部分项,放缩另外的项一些不等式的证明,如若从整体考虑很难入手,通常可以先暂时固定某些项,而通过放缩个别项来达到化简和证明的目的.例18 求证:2222111171234n ++++< 证明:21111(1)1n n n n n<=---2222211111111151171()().1232231424n n n n ∴++++<++-++-=+-<- 评注:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处.5.6利用基本不等式放缩针对一些特殊形式的不等式,我们可以运用基本不等式(例:)m na a≤+进行放缩求解.例19 已知对任何正整数都成立.54na n=-1>m n,,只要证.1>51mn m na a a>++因为,,54mna mn=-(54)(54)2520()16m na a m n mn mn=--=-++故只要证5(54)12520()16mn mn m n->+-+++即只要证202037m n+->因为,558m na a m n≤+=+-558(151529)m n m n<+-++-202037m n=+-所以命题得证.评注:本题通过化简整理之后,再利用基本不等式由放大即可.m na a≤+6数学归纳法一个与自然数n有关的数学命题,如果:(1)能证明当(是使命题成立的最小整数)时,命题成立;kn=k(2)假设当(的任意正整数)时,命题成立,证明当时,命kn=kk≥1kn+=题成立.那么可以断言,这个数学命题对所有自然数n都成立.这种证明不等式的方法称之为数学归纳法.例20 证明不等式 (n ∈N).nn2131211<++++证明:①当n=1时,左边=1,右边=2.左边<右边,不等式成立.②假设n=k时,不等式成立,即.kk2131211<++++那么当n=k+1时,11131211++++++k k1112112+++=++<k k k k k .()()12112111+=++=++++<k k k k k k 这就是说,当n =k +1时,不等式成立.综上所述:由①、②可知,原不等式对任意自然数n 都成立.评注:这里要注意,当n =k +1时,要证的目标是,当代入归纳假设后,就是要证明:1211131211+<++++++k k k .12112+<++k k k 7结论7.1主要发现不等式的证明问题,就其方法而言,没有定法可套,有较大的灵活性和技巧性.而且不等式证明历来是中学、特别是高中数学教学的一个重点和难点.本文系统地归纳整理了几大类不等式的证明方法.如若学生在掌握不等式的基础知识以后,能够灵活应用文中几类方法,以其为指导,不等式问题将能够迎刃而解,使得解决不等式问题时思路清晰,运算简便.尤其是应用构造法,架起一座连接条件和结论的桥梁,在解决一些非常规不等式时作用很大.7.2 启示从文中可以看出不等式与几何图形、复数、概率、方差、数列、向量、函数有着密切的联系,在处理不等式问题时,若能灵活运用这些思想与方法,则会取得事半功倍的效果.教师在讲解具体数学内容和方法时,应该高度重视不等式方法的挖掘和渗透,重视理论和实践的结合,让学生切实领悟其价值,滋生应用的意识.同时学生在解题和学习的过程中也应认真思考,发现和归纳不等式的新方法.7.3局限性本文把理论和实践相结合,归纳了几类不等式证明的方法在解题中的应用,其中主要工作属归结概括,在一些方面存在局限性,一是在不同知识体系间寻求“交汇”跨度大、难度高,不易发现其中的本质联系;二是由于本文整理归纳了较多不等式的证明方法,多则不精,广而不深.7.4努力方向不等式的证明方法种类繁多,不同知识体系间的跨度大、难度高.在教学实践中,并不是短时间可以全部学习掌握的,需要长期学习并积累,而对于不等式的证明方法新的研究与发展,则要在大量的实践中不断摸索.。
利用导数证明不等式之构造函数法题型一:移项作差构造函数1、解题思路第一步:判断所证明不等式是否符合移项作差构造函数的特点 将证明不等式()()f xg x >(()()f xg x <( 的问题转化为证明()()0f xg x ->(()()0f x g x -< ,进而构造函数()()()h x f x g x =-。
第二步:符合后构造函数,利用导数研究函数的单调性; 第三步:函数问题转化回不等式问题,得出结论。
[点拨]构造的函数前提是要可导,求导过程较容易,多是整式且最多利用二次求导研究其单调性问题。
比如:不等式11ln 2x x x -+<(证明时,直接移项作差构造的函数()11ln 2x x f x x -+=-(求导过于复杂且无法利用导数快速研究其单调性;2、经典例题例1:(2019春-苏州期末)已知函数()ln(1)f x x x =+-,求证:当1x >-时,恒有11ln(1)1x x x -≤+≤+.[思路分析]第一步:判断不等式特点,右边不等式移项作差直接可以利用已知函数证明,左边不等式移项作差构造函数1()ln(1)11g x x x =++-+(,可直接求导研究函数单调性,都符合移项作差构造函数特点;第二步:分别利用导数求解函数()y f x =和()y g x =的单调性和最值; 第三步:转化回不等式问题,得出结论. [解析]证明:()1()1111xf x x x x '=-=->-++( ∴当10x -<<时,()0f x '>,即()f x 在(1,0)x ∈-上为增函数 当0x >时,()0f x '<,即()f x 在(0,)x ∈+∞上为减函数, 故函数()f x 的单调递增区间为(1,0)-,单调递减区间(0,)+∞, 于是函数()f x 在(1,)-+∞上的最大值为max ()(0)0f x f ==,因此,当1x >-时,()(0)0f x f ≤=,即ln(1)0x x +-≤,∴ln(1)x x +≤(右边得证),现证左边,令1()ln(1)11g x x x =++-+,则2211()1(1)(1)xg x x x x '=-=+++ 当(1,0)x ∈-时,()0g x '<;当(0,)x ∈+∞时,()0g x '>,即()g x 在(1,0)x ∈-上为减函数,在(0,)x ∈+∞上为增函数, 故函数()g x 在(1,)-+∞上的最小值为min ()(0)0g x g ==, ∴当1x >-时,()(0)0g x g ≥=,即1ln(1)101x x ++-≥+( ∴1ln(1)11x x +≥-+,综上可知,当1x >-时,有11ln(1)1x x x -≤+≤+。
构造函数法证明不等式的八种方法.doc构造函数法是一种证明不等式的有效方法。
构造函数法是通过构造函数来证明不等式的真实性。
构造函数是函数的一种特殊形式,它是根据不等式中的条件和限制而构造出来的函数。
构造函数法的基本思路是,通过构造函数将原不等式转化为更容易证明的形式,进而通过对构造函数的研究来证明原不等式的真实性。
本文将介绍构造函数法证明不等式的八种方法。
一、线性函数法线性函数法是基于线性函数的构造函数法,它是构造函数法中最简单的方法之一。
线性函数法的思路是,构造一个线性函数,使得该函数在不等式限制下达到最大值或最小值。
例如,证明如下不等式:$$\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\geq\frac{3}{2}$$将不等式两边都乘以$2(b+1)(c+1)(a+1)$得:$$2a(c+1)(b+1)+2b(a+1)(c+1)+2c(b+1)(a+1)\geq 3(a+1)(b+1)(c+1)$$此时,可以构造如下的线性函数$f(x,y,z)$:容易发现,$f(x,y,z)$在限制条件$x,y,z\geq 0$,$xy+yz+zx=3$下,达到最大值$\frac{3}{2}$。
因此,原不等式成立。
二、对数函数法对数函数法是基于对数函数的构造函数法,它常用于证明形如$a^x+b^y+c^z\geq k$的不等式,其中$a,b,c,x,y,z,k$均为正实数。
对数函数法的思路是,构造一个对数函数,使得该函数满足$g(x,y,z)\leq\ln(a^x+b^y+c^z)$,进而证明$g(x,y,z)\leq\ln k$,从而得到原不等式的证明。
例如,证明如下不等式:考虑构造如下的对数函数:$$g(x)=\ln\left(\frac{4a^3x+6}{5a^2x+2ax+5}\right)-\frac{3}{4}\ln x$$不难证明,$g(x)$在$x\geq 1$时单调递减且$g(1)=0$,因此$g(x)\leq 0$。
高考数学证明法高二第一篇:高考数学证明法高二數學证明法(高二)明确复习目标1.理解不等式的性质和证明;2.掌握分析法、综合法、比较法证明简单的不等式。
建构知识网络1.比较法证明不等式是最基本的方法也是最常用的方法。
比较法的两种形式:(1)比差法:步骤是:①作差;②分解因式或配方;③判断差式符号;(2)比商法:要证a>b且b>0,只须证 a 1。
b说明:①作差比较法证明不等式时,通常是进行通分、因式分解或配方,利用各因式的符号或非负数的性质进行判断;②证幂、乘积的不等式时常用比商法,证对数不等式时常用比差法。
运用比商法时必须确定两式的符号;2.综合法:利用某些已经证明过的不等式(如均值不等式,常用不等式,函数单调性)作为基础,再运用不等式的性质推导出所要证的不等式的方法。
3.分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明这个不等式的问题转化为这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
这种证明方法叫做分析法。
要注意书写的格式, 综合法是分析法的逆过程4.对较复杂的不等式先用分析法探求证明途径,再用综合法,或比较法加以证明。
5.要掌握证明不等式的常用方法,此外还要记住一些常用不等式的形式特点,运用条件,等号、不等号成立的条件等。
经典例题做一做【例1】(1)已知a,b∈R,求证:a2+b2+1>ab+aa22b22(2)设a>0,b>0,求证()+()≥a2+b2.ba【例2】已知a+b+c=0,求证:ab+bc+ca≤0.1111【例3】已知∆ABC的三边长为a,b,c,且m为正数.求证:abc+>.a+mb+mc+m【例4】设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两根x1、x2满足1<x1<x2<1.a(1)当x∈(0,x1)时,证明x<f(x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,求证x0<x1.2【研讨.欣赏】已知a>1,m>0,求证:loga(a+m)>loga+m (a+2m).提炼总结以为师1.比较法是一种最重要的、常用的基本方法,其应用非常广泛,一定要熟练掌握.步骤是:作差→变形(分解因式或配方)→判断符号.对于积或幂的式子可以作商比较,作商比较必须弄清两式的符号.2.对较复杂的不等式需要用分析法,分析使不等式成立的充分条件,再证这个条件(不等式)成立.3.综合法是最简捷明快的方法,常需用分析法打前站,用分析法找路,综合法写出.有时也需要几种方法综合运用.4.要熟练掌握均值不等式、四种平均值之间的关系,记住一些常用的不等式,记住它们的形式特点、证明方法和内在联系。
局部不等式法证明不等式例1. 若a b R ,∈*,a b +=2,求证:212123a b +++≤分析:由a ,b 在已知条件中的对称性可知,只有当a b ==1,即213a +=时,等号才能成立,所以可构造局部不等式。
证明:2133213332132332a a a a +=+≤++=+···()() 同理,21332b b +≤+() ∴212133233223a b a b +++≤+++=()() 例2. 设x x x n 12,,…,是n 个正数,求证:x x x x x x x x x x n n n 122223122112++++≥+-… ++…x n 。
证明:题中这些正数的对称性,只有当x x x n 12===…时,等号才成立,构造局部不等式如下:x x x x x x x x x x x x x x x x n n n n n n 12221223321212112222+≥+≥+≥+≥--,,…,,。
将上述n 个同向不等式相加,并整理得:x x x x x x x x x x x n n n n 122223122112++++≥+++-……。
例3. 已知a a a n 12,,…,均为正数,且a a a n 121+++=…,求证: a a a a a a a a a n n 121222232112++++++≥…。
证明:因a a a n 12,,…,均为正数,故a a a a a a 12121214+++≥, a a a a a a a a a a a a n n n n 222323221144+++≥+++≥,…,。
又∵a a a a a a a a a n n 12231124441212++++++=+++=……(), ∴把以上各个同向不等式相加,整理得:a a a a a a a a a a a a n n n 121222232112121+++++++≥+++=…… 故a a a a a a a a a n n 121222232112++++++≥…。
三. 从条件特征入手构造函数证明例3.若函数y = f (x)在R 上可导且满足不等式 x f (x) >- f (x)恒成立,且常数a ,b 满足 a >b ,求证:• a f (a) >b f (b)四. 主元法构造函数精品教学课件设计 | Excellent teaching plan高二培优讲义1构造函数法证明不等式的七种方法利用导数研究函数的单调性极值和最值, 再由单调性来证明不等式是函数、 导 数、不等式综合中的一个难点, 也是近几年考试的热点。
解题技巧是构造辅助函数, 把不等式的证明转化为利用导数研究函数的单调性或求最值, 从而证得不等式,而 如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介 绍构造函数法证明不等式的七种方法。
1 例5.已知函数f(x) ae xx 2 2(1) 若f(x)在R 上为增函数,求a 的取值范围 (2) 若 a=1,求证:x > 0 时,f(x)>1+x一.移项法、作差法构造函数 1 2 例1.已知函数f (x) x 2 In x.求证:在区间(1, )上,函数f(x)的图象在2 23 函数g(x) x 的图象的下方• 六.对数法构造函数(选用于幕指数函数不等式)1 _!例6.证明:当x 0时,(1 x) x七 .构造形似函数二.换元法构造函数证明 1 例2.证明:对任意的正整数n ,不等式ln( 1)n例7:证明当b a e,证明a b b a都成立.例&已知m n 都是正整数,且1m n,证明:(1 m)n(1n)经典题选 1.已知函数f (x)ln(11 ◎axx),求证:对任意的正数 a 、b ,1 x恒有In a In b 2.已知函数 f(x)In (x 1) x ,求证:当x1时,恒有例4.已知函数f(x) ln(1 x) x, g(x) xlnxa b 设0 a b,证明:o g (a) g(b) 2g(—一) (b a) l n2.2 五.构造二阶导数函数证明导数的单调性(1)求函数f (x)的单调区间;1(2)若不等式(1 -)n a e对任意的n N*都成立(其中e是自然对数的底数) n 求a的最大值.ln x k7.已知函数f(x) x (k为常数,e=2.71828是自然对数的底数),曲线y f(x) e 在点(1, f (1))处的切线与x轴平行.(I)求k的值;(n)求f(x)的单调区间;xf (x),其中f (x)为f (x)的导函数.证明:对任意x 0,g(x)6.已知函数f(X) •如b,曲线yX 1 X f (X)在点(1,f (1))处的切线方程为精品教学课件设计ln(x 1) | Excellent teaching plan(I)求a, b的值;(II)证明:当x>0 ,且x1时,f(x) ln xx 14.已知函数f (x) ^X22ax (a 1)ln x , a 1 .证明:若a 5,则对任意x1, x2(0, X2,有f(xj f(X2)X1X225.已知函数f (x) xlnx ax (2a 1)x a R.1(1)当a —时,求f (x)的单调区间;2(2)若函数f (X)在[1, )单调递减,求实数a的取值范围8.设函数f (x) ax n (1 x) b(x 0), n为正整数,a,b为常数,曲线y f(x)在(1,f (1))处的切线方程为x y 1.(1)求a,b的值;⑵求函数f (x)的最大值;1⑶证明:f(X).ne1 1 答案:3. (1)增(-1,0)减(0, + s) (2) a <花-1 ; 5. (1)减(0, +^) (2) a迁;n n 6.a=b=1 ;7. (1) k=1 (2)增(0,1)减(1, + s) ;8. (1) a=1, b=0; ( 2) ----------------------------------------------------------------------------n+1(n+1 )3.已知函数f(x)ln2(1 x)(川)设g(x)。
导数之构造函数法证明不等式 1、移项法构造函数 【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=, 则xx x x F 12)(2--='=x x x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <, 故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。
用构造局部不等式法证明不等式
有些不等式的证明,若从整体上考虑难以下手,可构造若干个结构完全相同的局部不等式,逐一证明后,再利用同向不等式相加的性质,即可得证。
例1. 若a b R ,∈*,a b +=2,求证:212123a b +++≤
分析:由a ,b 在已知条件中的对称性可知,只有当a b ==1,即213a +=时,等号才能成立,所以可构造局部不等式。
证明:213321333213233
2a a a a +=+≤++=+···()() 同理,2133
2b b +≤+() ∴212133233223a b a b +++≤
+++=()()
例2. 设x x x n 12,,…,是n 个正数,求证:x x x x x x x x x x n n n 1222231221
12++++≥+-… ++…x n 。
证明:题中这些正数的对称性,只有当x x x n 12===…时,等号才成立,构造局部不等式如下: x x x x x x x x x x x x x x x x n n n n n n 122212233212121
12222+≥+≥+≥+≥--,,…,,。
将上述n 个同向不等式相加,并整理得:
x x x x x x x x x x x n n n n 1222231221
12++++≥+++-……。
例3. 已知a a a n 12,,…,均为正数,且a a a n 121+++=…,求证:
a a a a a a a a a n n 121222232112
++++++≥…。
证明:因a a a n 12,,…,均为正数,故a a a a a a 12121214
+++≥, a a a a a a a a a a a a n n n n 222323221144
+++≥+++≥,…,。
又∵a a a a a a a a a n n 12231124441212
++++++=+++=……(), ∴把以上各个同向不等式相加,整理得:
a a a a a a a a a a a a n n n 12122223211212
1+++++++≥+++=…… 故a a a a a a a a a n n 121222232112
++++++≥…。
例4. 设a b c R ,,∈*,且abc =1,求证:
111333a b c b c a c a b ()()()+++++≥32。
(第36届IMO )
证明:由a ,b ,c 在条件中的对称性知,只有当a b c ===1时,才有可能达到最小值32,此时刚好1412
3a b c b c bc ()+=+=。
所以,可构造如下局部不等式。
∵14214133a b c b c bc a bc a
()+++≥=, 14214133b a c a c ac b ac b
()+++≥=, 14214133c a b a b ab c ab
c ()+++≥=, ∴
11111114333a b c b c a c a b a b c b c bc a c ac a b ab ()()()()()+++++≥++-+++++ =++≥=1211132132
3()a b c abc 例5. 设a b c R ,,∈*,且a b c ++=2,求证:a b c b c a c a b
222
1+++++≥。
证明:由a ,b ,c 在条件中的对称性知,只有当a b c ===23
时,才可能达到最小值1,此时刚好a b c b c 24
+=+。
所以,可构造如下局部不等式。
∵a b c b c a b c a c a b c a b a b c 222444
+++≥+++≥+++≥,, ∴a b c b c a c a b a b c a b c 22212
++++++++≥++() 即a b c b c a c a b 222
1+++++≥。