集合间的基本关系与运算
- 格式:doc
- 大小:426.00 KB
- 文档页数:12
第二讲 集合之间的基本关系及其运算一.知识盘点知识点一:集合间的基本关系注意:1.A B A B B AA B A B A B A B =⇔⊆⊆⎧⊆⎨⊂⇔⊆≠⎩且且2.涉及集合间关系时,不要忘记空集和集合本身的可能性。
3.集合间基本关系必须熟记的3个结论(1)空集是任意一个集合的子集;是任意一个非空集合的真子集,即,().A B B Φ⊆Φ⊂≠Φ(2)任何一个集合是它自身的子集,空集只有一个子集即本身 (3)含有n 个元素的集合的子集的个数是2n 个,非空子集的个数是21n - ;真子集个数是21n - ,非空真子集个数是22n -。
知识点二:集合的基本运算运算 符号语言 Venn 图 运算性质交集{}|A B x x A =∈∈且x B()(),AB A A B B ⊆⊆ (),AA A AB B A ==A B A A B =⇔⊆ A Φ=Φ并集{}|A B x x A x B =∈∈或()(),A A B B A B ⊆⊆ (),A A A A B B A ==,A B B A B A A =⇔⊆Φ=补集{}|U C A x x U x A =∈∉且,U U C U C U =ΦΦ=()(),U U U C C A A A C A U ==()U AC A =Φ()()()U U U C A B C A C B = ()()()U U U C A B C A C B =二.例题精讲Ep1.下列说法正确的是A. 高一(1)班个子比较高的同学可以组成一个集合B. 集合{}2|,x N x x ∈= 则用列举法表示是{}01,UAC. 如果{}264,2,m m ∈++2, 则实数m 组成的集合是{}-22,D. {}{}(){}222||,|x y xy y x x y y x =====解析:A.与集合的确定性不符;B.对;C.与集合的互异性不符;D 。
{}2|x y x R == ,{}{}2||0y y x y y ==≥ ,(){}2,|x y y x = 是二次函数2y x = 的点集Ep2.已知集合A={}2|1log ,kx N x ∈<< 集合A 中至少有三个元素,则A.K>8B.K ≥ 8C.K>16D.K ≥ 16解析:由题设,集A 至少含有2,3,4三个元素,所以2log 4k> ,所以k>16.Ep3.已知集合M={}{}2|,|,x y x R N x x m m M =∈==∈ ,则集合M 、N 的关系是A.M N ⊂B.N M ⊂C.R M C N ⊆D.R N C M ⊆ 解析:[]1,1M =- ,{}|01N x x =≤≤ ,故选B.Ep4.已知集合M={}0,1 ,则满足M N M = 的集合N 的个数是 A.1 B.2 C.3 D.4 解析:M N M =,故N M ⊆ ,故选D.Ep5已知集合{}{}2|1,|1M x x N x ax ==== ,如果N M ⊆ ,则实数a 的取值集合是{}.1A {}.1,1B - {}.0,1C {}.1,0,1D -解析:{}1,1M =- , N M ⊆,故N 的可能:{}{}{},1,1,1,1Φ-- ,故a 的取值集合{}1,0,1-Ep6.已知集合{}{}2|20180,|lg(3)A x x x B x N y x =-+≥=∈=- ,则集合A B 的子集的个数是解析:{}|02018A x x =≤≤ ,{}{}|3-x>00,1,2B x N =∈= ,故{}0,1,2A B = 故子集个数328=A.4B.7C.8D.16Ep7.已知集合{}{}2|2,|M x x x N x x a =<+=> ,如果M N ⊆ ,则实数a 的取值范围是.(,1]A -∞- .(,2]B -∞ .[2,)C +∞ .[1,)D -+∞解析:{}|12M x x =-<< ,M N ⊆,故1a ≥-Ep8.已知集合{}2|30A x N x x *=∈-< 则满足B A ⊆ 的集合B 的个数是 A.2 B.3 C.4 D.8 解析:{}{}|03=12A x N x *=∈<<, ,故选CEp9.已知集合{}{}|12,|13,M x x N x x M N =-<<=≤≤=则.(1,3]A - B.(1,2]- .[1,2)C D.(2,3]解析:选CEp10.如果集合{}{}(1)2|10,|log 0,x A x x B x -=-≤≤=≤则A B={}.|11A x x -≤< {}.|11B x x -<≤ {}.0C {}.|11D x x -≤≤ 解析:{}10||0111x B x x x x ⎧->⎫⎧==≤<⎨⎨⎬-≤⎩⎩⎭,故选D.Ep11.设集合 {}{}2|11,|,,()R A x x B y y x x A A C B =-<<==∈=则{}.|01A x x ≤< {}.|10.B x x -<< {}|01C x x =<< {}.|11D x x -<<解析:{}|01B y y =≤<,则{}|01R C B y y =<≥或y,(){}{}{}|11|01|10R AC B x x y y y x x =-<<<≥=-<<或 选B.Ep12.已知集合{}{}2|11,|20,A x x B x x x =-<<=--<则 )R C A B =(.(1,0]A - .[1,2)B - .[1,2)C .(1,2]D解析:{}|12B x x =-<< ,{}|11R C A x x x =≤-≥或 (){}|12R C A B x x =≤< ,选C.三.总结提高1.题型归类(1)2个集合之间的关系判断(2)已知2个集合之间的关系,求参数问题 (3)求子集或真子集的个数问题 (4)2个有限集之间的运算(5)1个有限集和1个无限集之间的运算 (6)2个无限集之间的运算(7)已知集合的运算结果,求参数问题 2.方法总结(1)判断集合间关系的方法a.化简集合,从表达式中寻找两个集合之间的关系b.用列举法表示集合,从元素中寻找关系c.利用数轴,在数轴上表示出两个集合(集合为数集),比较端点之间的大小关系,从而确定两个集合之间的关系。
集合的三种基本关系集合的三种基本关系是包含关系、相等关系和互斥关系。
在数学中,集合是由一些确定的元素所组成的整体。
而元素则是构成集合的基本单位。
集合的关系是指集合之间的联系和相互作用。
包含关系是指一个集合包含另一个集合的所有元素。
用符号表示为A⊆B,表示集合A是集合B的子集或者等于集合B。
例如,集合A={1,2,3},集合B={1,2,3,4,5},则可以说集合A包含于集合B,即A⊆B。
在包含关系中,集合A的元素是集合B的子集。
相等关系是指两个集合具有完全相同的元素。
用符号表示为A=B,表示集合A和集合B的元素完全一样。
例如,集合A={1,2,3},集合B={1,2,3},则可以说集合A等于集合B,即A=B。
在相等关系中,集合A和集合B的元素完全相同。
互斥关系是指两个集合没有任何共同的元素。
用符号表示为A∩B=∅,表示集合A和集合B没有任何共同的元素。
例如,集合A={1,2,3},集合B={4,5,6},则可以说集合A和集合B互斥,即A∩B=∅。
在互斥关系中,集合A和集合B没有任何共同的元素。
集合的关系可以通过图形表示,如Venn图。
Venn图是一种用来表示集合之间关系的图形工具。
它由一系列的圆或椭圆组成,每个圆代表一个集合,圆内的元素属于该集合,圆之间的重叠部分表示集合之间的关系。
通过Venn图可以清楚地展示集合之间的包含关系、相等关系和互斥关系。
除了这三种基本关系,集合还可以通过运算来产生其他关系。
常见的集合运算有并集、交集和补集。
并集是指将两个或多个集合中的所有元素合并在一起形成一个新的集合。
交集是指两个或多个集合中共有的元素组成的新集合。
补集是指一个集合中不属于另一个集合的元素组成的新集合。
集合的三种基本关系是包含关系、相等关系和互斥关系。
通过这些关系,我们可以描述集合之间的联系和相互作用。
集合的关系可以通过符号表示,也可以通过图形工具如Venn图来展示。
此外,还可以通过集合运算产生其他关系。
高中数学知识总结高中数学集合知识总结集合语言是现代数学的基本语言,使用集合语言可以简洁、准确地表达数学的一些相关内容.以下是小编搜集整合了高中数学集合知识,希望可以帮助大家更好的学习这些知识。
高中数学知识总结篇1一、集合间的关系1.子集:如果集合A中所有元素都是集合B中的元素,则称集合A为集合B的子集。
2.真子集:如果集合AB,但存在元素a∈B,且a不属于A,则称集合A是集合B的真子集。
3.集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。
子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:AB(或BA),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的知识点见集合间的基本关系二、集合的运算1.并集并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}2.交集交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}3.补集三、高中数学集合知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
专题01 集合、集合间的关系、集合的运算一、知识结构思维导图二、学法指导与考点梳理1.集合的概念及其表示⑴.集合中元素的三个特征:①.确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了.②.互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的.③.无序性:即集合中的元素无顺序,可以任意排列、调换。
⑵.元素与集合的关系有且只有两种:属于(用符号“∈”表示)和不属于(用符号“∉”表示).⑶.集合常用的表示方法有三种:列举法、Venn图、描述法.(4).常见的数集及其表示符号2. 集合间的基本关系A B (或B A )【名师提醒】子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集. 3. 集合之间的基本运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为 全集 ,全集通常用字母 U 表示;【名师提醒】1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1,非空真子集n2-2个. 2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UUAB A B U ⇔=∅⇔= .3.奇数集:{}{}{}21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z . 4. 德▪摩根定律:①并集的补集等于补集的交集,即()=()()UUU A B A B ; ②交集的补集等于补集的并集,即()=()()U UU A B A B .【名师点睛】1.判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.2. 集合中的元素具有三个特性,求解与集合有关的字母参数值(范围)时,需借助集合中元素的互异性来检验所求参数是否符合要求.3.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识.4.利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合(含参数),另一个为静集合(具体的),解答时常借助数轴来建立变量间的关系,需特别注意端点问题.5.求集合并集的两种基本方法:(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴求解.6.求集合交集的方法为:(1)定义法,(2)数形结合法.(3)若A,B是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.三、重难点题型突破考点1 集合的概念及其表示归纳总结:与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是(数轴)数集、(平面直角坐标系)点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.例1.(1)(集合的确定性)下面给出的四类对象中,能组成集合的是()A.高一某班个子较高的同学B.比较著名的科学家C.无限接近于4的实数D.到一个定点的距离等于定长的点的全体【答案】D【解析】选项A,B,C所描述的对象没有一个明确的标准,故不能构成一个集合,选项D的标准唯一,故能组成集合.故选:D.(2).(集合的确定性)(多选题)考察下列每组对象,能构成集合的是( )A.中国各地最美的乡村;B.直角坐标系中横、纵坐标相等的点;C.不小于3的自然数;D.2018年第23届冬季奥运会金牌获得者. 【答案】BCD【解析】A 中“最美”标准不明确,不符合确定性,BCD 中的元素标准明确,均可构成集合,故选BCD 【变式训练1】(集合的互异性)在集合{1A =,21a a --,222}a a -+中,a 的值可以是 ( )A .0B .1C .2D .1或2【答案】A【解析】当a =0时,a 2﹣a ﹣1=﹣1,a 2﹣2a +2=2,当a =1时,a 2﹣a ﹣1=﹣1,a 2﹣2a +2=1,当a =2时,a 2﹣a ﹣1=1,a 2﹣2a +2=2, 由集合中元素的互异性知:选A .【变式训练2】(集合的互异性)若1{2-∈,21a a --,21}a +,则(a = ) A .1- B .0C .1D .0 或1【答案】B【答案】解:①若a 2﹣a ﹣1=﹣1,则a 2﹣a =0,解得a =0或a =1, a =1时,{2,a 2﹣a ﹣1,a 2+1}={2,﹣1,2},舍去,∴a =0; ②若a 2+1=﹣1,则a 2=﹣2,a 无实数解;由①②知:a =0.故选:B . 考点2 元素与集合的关系(1)属于:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . (2)不属于:如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A . (3)常见的数集及表示符号归纳总结:(1)判断集合间的关系,要注意先对集合进行化简,再进行判断,并且在描述关系时,要尽量精确. (2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系(要注意区间端点的取舍),进而转化为参数所满足的关系,常用数轴、V enn 图等来直观解决这类问题. 例2.(1)(元素与集合的关系)(多选题)下列关系中,正确的有( ) A .∅∪{0} B .13Q ∈C .Q Z ⊆D .{}0∅∈【答案】AB【解析】选项A:由空集是任何非空集合的真子集可知,本选项是正确的; 选项B:13是有理数,故13Q ∈是正确的; 选项C:所有的整数都是有理数,故有Z Q ⊆,所以本选项是不正确的;选项D; 由空集是任何集合的子集可知,本选项是不正确的,故本题选AB. (2)(元素个数问题)集合12{|3A x Z y x =∈=+,}y Z ∈的元素个数为( ) A .4B .5C .10D .12【思路分析】根据题意,集合中的元素满足x 是整数,且12x+3是整数.由此列出x 与y 对应值,即可得到题中集合元素的个数.【解析】由题意,集合{x ∈Z |y =12x+3∈Z }中的元素满足x 是整数,且y 是整数,由此可得 x =﹣15,﹣9,﹣7,﹣6,﹣5,﹣4,﹣2,﹣1,0,1,3,9;此时y 的值分别为:﹣1,﹣2,﹣3,﹣4,﹣6,﹣12,12,6,4,3,3,1, 符合条件的x 共有12个,故选:D .例3.(单元素集合)若集合A ={x |x 2+ax +b =x }中,仅有一个元素a ,求a 、b 的值. 【答案】解:∵集合A ={x |x 2+ax +b =x }中,仅有一个元素a , ∴a 2+a 2+b =a 且△=(a ﹣1)2﹣4b =0解得a =31,b =91. 故a 、b 的值分别为31,91.【变式训练1】(1)(元素与集合的关系)下列关系中,正确的个数为( )R ;②13Q ∈;③0{0}=;④0N ∉;⑤Q π∈;⑥3Z -∈.A .6B .5C .4D .3【思路分析】利用元素与集合的关系及实数集、有理数集、自然数集的性质直接求解. 【答案】解:由元素与集合的关系,得:在①中,√5∈R ,故①正确;在②中,13∈Q ,故②正确;在③中,0∈{0},故③错误;在④中,0∈N ,故④错误;在⑤中,π∉Q ,故⑤错误;在⑥中,﹣3∈Z ,故⑥正确.故选:D .(2)(元素个数问题)已知集合{1A =,2,3,4,5},{(,)|B x y x A =∈,y A ∈,x y <,}x y A +∈,则集合B 中的元素个数为( ) A .2B .3C .4D .5【思路分析】通过集合B ,利用x ∈A ,y ∈A ,x <y ,x +y ∈A ,求出x 的不同值,对应y 的值的个数,求出集合B 中元素的个数.【解析】因为集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x <y ,x +y ∈A }, 当x =1时,y =2或y =3或y =4;当x =2时y =3; 所以集合B 中的元素个数为4.故选:C .【点睛】本题考查集合的元素与集合的关系,考查基本知识的应用. 【变式训练2】(二次函数与集合)设集合A ={x |ax 2+2x +1=0,a ∈R } (1)当A 中元素个数为1时,求:a 和A ;(2)当A 中元素个数至少为1时,求:a 的取值范围; (3)求:A 中各元素之和. 【思路分析】(1)推导出a =0或⎩⎨⎧=-=∆≠0440a a ,由此能求出a 和A .(2)当A 中元素个数至少为1时,a =0或⎩⎨⎧≥-=∆≠0440a a ,由此能求出a 的取值范围.(3)当a =0时,A 中元素之和为21-;当a <1且a ≠0时,A 中元素之和为a2-;当a =1时,A 中元素之和为﹣1;当a >1时,A 中无元素.【答案】解:(1)∵集合A ={x |ax 2+2x +1=0,a ∈R },A 中元素个数为1, ∴a =0或⎩⎨⎧=-=∆≠0440a a ,解得a =0,A ={21-}或a =1,A ={﹣1}.(2)当A 中元素个数至少为1时,a =0或⎩⎨⎧≥-=∆≠0440a a ,解得a ≤1,∴a 的取值范围是(﹣∞,1]. (3)当a =0时,A 中元素之和为21-;当a <1且a ≠0时,A 中元素之和为a2-; 当a =1时,A 中元素之和为﹣1;当a >1时,A 中无元素. 考点3 集合间的基本关系 1.集合A 中含有n 个元素,则有(1)A 的子集的个数有2n 个.(2)A 的非空子集的个数有2n -1个.(3)A 的真子集的个数有2n -1个.(4)A 的非空真子集的个数有2n -2个.2.空集是任何集合的子集,因此在解A ⊆B (B ≠∅)的含参数的问题时,要注意讨论A =∅和A ≠∅两种情况,前者常被忽视,造成思考问题不全面.例4.(1).(2020·全国高一)(空集是任何非空集合的子集)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是______.【答案】(],3-∞【解析】由B A ⊆可得:当B =∅,则121m m +>-,∴2m <,当B ≠∅,则m 应满足:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解得23m ≤≤,综上得3m ≤; ∴实数m 的取值范围是(],3-∞.故答案为:(],3-∞.(2).(空集)如果2{|10}A x ax ax =-+<=∅,则实数a 的取值范围为( ) A .04a <<B .40<≤aC .40≤<aD .40≤≤a【思路分析】由A =∅得不等式ax 2﹣ax +1<0的解集是空集,然后利用不等式进行求解. 【答案】解:因为A ={x |ax 2﹣ax +1<0}=∅,所以不等式ax 2﹣ax +1<0的解集是空集, 当a =0,不等式等价为1<0,无解,所以a =0成立.当a ≠0时,要使ax 2﹣ax +1<0的解集是空集,则{a >0△=a 2−4a ≤0,解得0<a ≤4.综上实数a 的取值范围0≤a ≤4.(3)(子集与真子集)已知集合1{|42k M x x ==+,}k Z ∈,1{|24k N x x ==+,}k Z ∈,则( ) A .M N =B .M ⊊NC .N ⊊MD .M∩N=∅【思路分析】将集合M ,N 中的表达式形式改为一致,由N 的元素都是M 的元素,即可得出结论. 【答案】M ={x |x =k4+12,k ∈Z }={x |x =k+24,k ∈Z },N ={x |x =k2+14,k ∈Z }={x |x =2k+14,k ∈Z },∵k +2(k ∈Z )为整数,而2k +1(k ∈Z )为奇数,∴集合M 、N 的关系为N ⊊M .故选:C .【变式训练1】.(1)(2019·浙江省温州中学高一月考)(子集与真子集个数问题)已知集合21,,{1}A a a =-,若0A ∈,则a =______;A 的子集有______个.【答案】0或1- 8【解析】∵集合21,,{1}A a a =-,0A ∈,∴0a =或2101a a ⎧-=⎨≠⎩,解得0a =或1a =-.A 的子集有328=个.故答案为:0或1-,8.(2)若集合2{|20}A x x x m =-+==∅,则实数m 的取值范围是( ) A .(,1)-∞-B .(,1)-∞C .(1,)+∞D .[1,)+∞【解析】∵A ={x |x 2﹣2x +m =0}=∅,∴方程x 2﹣2x +m =0无解,即△=4﹣4m <0, 解得:m >1,则实数m 的范围为(1,+∞),故选:C .【点睛】此题考查了空集的定义,性质及运算,熟练掌握空集的意义是解本题的关键. 考点4 集合的基本运算1.由所有属于集合A 或属于集合B 的元素组成的集合叫A 与B 的并集,记作A ∪B ;符号表示为A ∪B ={x |x ∈A 或x ∈B } 2.并集的性质A ∪B =B ∪A ,A ∪A =A ,A ∪∅=A ,A ⊆A ∪B .3.对于两个给定的集合A 、B ,由所有属于集合A 且属于集合B 的元素组成的集合叫A 与B 的交集,记作A ∩B 。
1.2集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆B或B⊇A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B。
3、真子集:如果A ⊆B,且A ≠B,那么集合A称为集合B的真子集,A⊂≠B .4、设A ⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作S C A5、元素与集合、集合与集合之间的关系6、有限集合的子集个数(1)n个元素的集合有n2个子集(2)n个元素的集合有n2-1个真子集(3)n个元素的集合有n2-1个非空子集(4)n个元素的集合有n2-2个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A⋂B。
8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A⋃B。
9、集合的运算性质及运用【知识应用】1.理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x∈A能推出x∈B。
【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1},B=Z (2)A={1,3,5,15},B={x|x是15的正约数}【L】例2.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m取值范围。
【C】例3. 已知集合A⊆{0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一一写出。
2.解题方法:证明2个集合相等的方法:(1)若A、B两个集合是元素较少的有限集,可用列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足的条件是否一致,若均一致,则两集合相等。
(2)利用集合相等的定义证明A⊆B,且B⊆A,则A=B.【J】例1.下列各组中的两个集合相等的有()(1)P={x|x=2n,n∈Z}, Q={x|x=2(n-1),n∈Z}(2)P={x|x=2n-1,n∈N+}, Q={x|x=2n+1,n∈N+}(3) P={x|2x-x=0}, Q={x|x=1(1)2n+-,n∈Z}【L】例2.已知集合A={x|x=12kπ+4π,k∈Z},B={x|x=14kπ+2π,k∈Z},判断集合A与集合B是否相等。
集合中的运算和关系集合是数学中的一个基本概念,它是由一些确定的、互不相同的对象构成的整体。
集合中的运算和关系是研究集合性质和结构的重要内容。
一、集合的运算集合的运算包括并集、交集、差集和补集等。
1.并集:设A、B是两个集合,它们的并集记为A∪B,表示A和B中所有元素的集合。
2.交集:设A、B是两个集合,它们的交集记为A∩B,表示同时属于A和B的元素的集合。
3.差集:设A、B是两个集合,它们的差集记为A-B,表示属于A但不属于B的元素的集合。
4.补集:设U是一个全集,A是U的一个子集,A的补集记为A’,表示U中不属于A的元素的集合。
二、集合的关系集合之间的关系主要包括包含关系、相等关系和不相交关系等。
1.包含关系:设A、B是两个集合,如果A中的所有元素都属于B,则称A包含于B,记为A⊆B。
如果A包含于B且B包含于A,则称A等于B,记为A=B。
2.相等关系:设A、B是两个集合,如果A包含于B且B包含于A,则称A等于B,记为A=B。
3.不相交关系:设A、B是两个集合,如果A和B没有共同的元素,则称A和B不相交,记为A∩B=∅。
三、集合的性质1.确定性:集合中的元素是确定的,不含有不确定性。
2.互异性:集合中的元素是互不相同的。
3.无序性:集合中的元素没有顺序。
四、集合运算的性质1.结合律:对于集合的并集、交集和差集运算,都满足结合律。
2.交换律:对于集合的并集、交集和差集运算,都满足交换律。
3.分配律:对于集合的并集和交集运算,满足分配律。
五、集合的关系的性质1.自反性:对于任意集合A,A包含于A。
2.对称性:对于任意集合A、B,如果A包含于B,则B包含于A。
3.传递性:对于任意集合A、B、C,如果A包含于B且B包含于C,则A包含于C。
以上是集合中的运算和关系的基本知识点,希望对你有所帮助。
习题及方法:1.习题:设集合A={1, 2, 3},集合B={2, 3, 4},求A∪B、A∩B、A-B、A’。
课前案1.集合与元素(1)集合元素的三个特征:、、.(2)元素与集合的关系是或关系,用符号或表示.(3)集合的表示法:、、.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A的所有元素都是集合B的元素x∈A⇒x∈BA B或B A 真子集集合A是集合B的子集,且集合B中至少有一个元素不属于AA⊆B,且存在x0∈B,x0∉AA B或B A 相等集合A,B的元素完全相同A⊆B,B⊆AA=B 空集不含任何元素的集合.空集是任何集合A的子集任意x,x∉∅,∅⊆A ∅3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B=A∩B=∁U A=(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅.(4)∁U(∁U A)=A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).课中案一、目标导引[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( ) (2)若{x 2,1}={0,1},则x =0,1.( ) (3){x |x ≤1}={t |t ≤1}.( )(4)对于任意两个集合A ,B ,(A ∩B )⊆(A ∪B )恒成立. ( ) (5)若A ∩B =A ∩C ,则B =C .( ) [教材衍化]1.(必修1P12A 组T3改编)若集合P ={x ∈N |x ≤ 2 021},a =22,则( ) A .a ∈P B .{a }∈P C .{a }⊆P D .a ∉P2.(必修1P11例9改编)已知U ={α|0°<α<180°},A ={x |x 是锐角},B ={x |x 是钝角},则∁U (A ∪B )=________.3.(必修1P44A 组T5改编)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为________.[易错纠偏](1)忽视集合中元素的互异性致误; (2)忽视空集的情况致误; (3)忽视区间端点值致误. 1.已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________.2.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则A ∩B =________,A ∪B =________,(∁R A )∪B =________.3.已知集合M ={x |x -2=0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________. 二典型例题集合的含义(1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .6 D .9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A .92 B .98 C .0 D .0或98(3)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.与集合中的元素有关问题的求解步骤1.(2020·温州八校联考)已知集合M={1,m+2,m2+4},且5∈M,则m的值为() A.1或-1 B.1或3 C.-1或3 D.1,-1或32.已知集合A={x|x∈Z,且32-x∈Z},则集合A中的元素个数为________.集合的基本关系(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C 的个数( ) A.1 B.2 C.3 D.4(2)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.1.(变条件)在本例(2)中,若A⊆B,如何求解?2.(变条件)若将本例(2)中的集合A改为A={x|x<-2或x>5},如何求解?1.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆P C.∁R P⊆Q D.Q⊆∁R P2.(2020·绍兴调研)设A={1,4,2x},B={1,x2},若B⊆A,则x=________.3.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为________.集合的基本运算(高频考点)集合的基本运算是历年高考的热点,每年必考,常和不等式的解集、函数的定义域、值域等相结合命题,主要以选择题的形式出现.试题多为低档题.主要命题角度有:(1)求集合间的交、并、补运算;(2)已知集合的运算结果求参数.角度一求集合间的交、并、补运算2019·高考全国卷Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}(2)(2020·浙江高考模拟)设全集U=R,集合A={x|x2-x-2<0},B={x|1<x<3},则A∪B=________,∁U(A ∩B)=________.角度二已知集合的运算结果求参数(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2 C.a≥-1 D.a>-1(2)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0 }C.{1,3} D.{1,5}(1)集合运算的常用方法①若集合中的元素是离散的,常用Venn图求解.②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.(2)利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到.②若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.[提醒]在求出参数后,注意结果的验证(满足互异性).1.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3] B.(-2,3] C.[1,2) D.(-∞,-2]∪[1,+∞)2.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=________.核心素养系列 数学抽象——集合的新定义问题定义集合的商集运算为A B ={x |x =m n ,m ∈A ,n ∈B }.已知集合A ={2,4,6},B ={x |x =k2-1,k∈A },则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9解决集合新定义问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________.课后案 [A 组]1.已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( ) A .1 B .2 C .3 D .42.(2020·温州十五校联合体联考)已知集合A ={}x |e x ≤1,B ={}x |ln x ≤0,则A ∪B =( ) A .(-∞,1] B .(0,1] C .[1,e] D .(0,e]3.已知全集U =A ∪B ={x ∈Z |0≤x ≤6},A ∩(∁U B )={1,3,5},则B =( ) A .{2,4,6} B .{1,3,5} C .{0,2,4,6} D .{x ∈Z |0≤x ≤6} 4.设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,6} D .{x ∈R |-1≤x ≤5} 5.已知全集为R ,集合A ={x |x 2-5x -6<0},B ={x |2x <1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}6.已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,1) D .(-∞,1)∪(3,+∞) 7.设U ={x ∈N *|x <9},A ={1,2,3},B ={3,4,5,6},则(∁U A )∩B =( ) A .{1,2,3} B .{4,5,6} C .{6,7,8} D .{4,5,6,7,8}8.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{-1,2,3,5}B .{-1,2,3}C .{5,-1,2}D .{2,3,5}9.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( ) A .147 B .140 C .130 D .11710.已知全集U =R ,集合A ={x |x 2-3x +2>0},B ={x |x -a ≤0},若∁U B ⊆A ,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,2]C .[1,+∞)D .[2,+∞)11.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________. 12.已知全集U =R ,集合A ={x |-1≤x ≤3},集合B ={x |log 2(x -2)<1},则A ∪B =________;A ∩(∁U B )=________.13.设集合A ={n |n =3k -1,k ∈Z },B ={x ||x -1|>3},则B =________,A ∩(∁R B )=________. 14.设全集为R ,集合M ={x ∈R |x 2-4x +3>0},集合N ={x ∈R |2x >4},则M ∩N =________;∁R (M ∩N )=________.15.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m =________,n =________. 16.设全集U ={x ∈N *|x ≤9},∁U (A ∪B )={1,3},A ∩(∁U B )={2,4},则B =________. 17.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3},若C ∩A =C ,则a 的取值范围是________.[B 组]1.已知全集U 为R ,集合A ={x |x 2<16},B ={x |y =log 3(x -4)},则下列关系正确的是( ) A .A ∪B =R B .A ∪(∁U B )=R C .(∁U A )∪B =R D .A ∩(∁U B )=A .2.集合A ={x |y =ln(1-x )},B ={x |x 2-2x -3≤0},全集U =A ∪B ,则∁U (A ∩B )=( )A .{x |x <-1或x ≥1}B .{x |1≤x ≤3或x <-1}C .{x |x ≤-1或x >1}D .{x |1<x ≤3或x ≤-1} 3.(2020·浙江新高考联盟联考)已知集合A ={1,2,m },B ={1,m },若B ⊆A ,则m =________,∁A B =________.4.函数g (x )=⎩⎪⎨⎪⎧x ,x ∈P ,-x ,x ∈M ,其中P ,M 为实数集R 的两个非空子集,规定f (P )={y |y =g (x ),x ∈P },f (M )={y |y =g (x ),x ∈M }.给出下列四个命题:①若P ∩M =∅,则f (P )∩f (M )=∅; ②若P ∩M ≠∅,则f (P )∩f (M )≠∅; ③若P ∪M =R ,则f (P )∪f (M )=R ; ④若P ∪M ≠R ,则f (P )∪f (M )≠R . 其中命题不正确的有________.5.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,求A ∩B .6.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.课后案答题纸1 2 3 4 5 6 7 8 9 1011. 12. A ∪B =________;A ∩(∁U B )=________.13、 B =________,A ∩(∁R B )=_14. M ∩N =________;∁R (M ∩N )=________. 15. m =________,n =________.16. B =________. 17.B 组1 23. m =________,∁A B =________.4.5.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,求A ∩B .6.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.。
集合的五种基本运算集合的五种基本运算包括并集、交集、差集、补集和笛卡尔积。
下面将对这五种运算进行详细介绍。
1. 并集:并集是指将两个或多个集合中的所有元素组合起来形成一个新的集合。
符号表示为"A∪B",表示集合A和集合B的并集。
并集操作将去除重复元素,只保留一个。
例如,如果集合A={1,2,3},集合B={3,4,5},则A∪B={1,2,3,4,5}。
2. 交集:交集是指取两个集合中相同的元素形成一个新的集合。
符号表示为"A∩B",表示集合A和集合B的交集。
交集操作将保留两个集合中共有的元素,去除不同的元素。
例如,如果集合A={1,2,3},集合B={3,4,5},则A∩B={3}。
3. 差集:差集是指从一个集合中去除与另一个集合中相同的元素形成一个新的集合。
符号表示为"A-B",表示集合A和集合B的差集。
差集操作将保留集合A中与集合B不同的元素。
例如,如果集合A={1,2,3},集合B={3,4,5},则A-B={1,2}。
4. 补集:补集是指一个集合中不属于另一个集合的元素形成的集合。
符号表示为"A'"或"A^c",表示集合A的补集。
补集操作将保留集合A中不在另一个集合中的元素。
例如,如果集合A={1,2,3},集合B={3,4,5},则A'={1,2}。
5. 笛卡尔积:笛卡尔积是指将两个集合中的所有元素按照一定规律组合起来形成一个新的集合。
符号表示为"A×B",表示集合A和集合B的笛卡尔积。
笛卡尔积操作将取两个集合中的元素进行组合,形成一个新的集合。
例如,如果集合A={1,2},集合B={a,b},则A×B={(1,a),(1,b),(2,a),(2,b)}。
这五种基本的集合运算在数学和计算机科学中都有广泛的应用。
它们可以用来解决集合之间的关系、求解问题和进行数据分析。
高一数学集合之间的关系与运算【本讲主要内容】集合之间的关系与运算子集、全集、补集、交集、并集等概念,集合的运算性质。
【知识掌握】 【知识点精析】1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。
记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A注:B A ⊆有两种可能: (1)A 是B 的一部分;(2)A 与B 是同一集合。
(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。
(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。
记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。
注:空集是任何集合的子集。
Φ⊆A空集是任何非空集合的真子集。
Φ A 若A ≠Φ,则Φ A任何一个集合是它本身的子集。
A A ⊆ 易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。
如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。
如Φ⊆{0}。
不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。
3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。
知识要点:(1)一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.即:,A x ∈∀则B x ∈⇔B A ⊆(2)如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B. 即:B A ⊆且,0A x ∈∃但B x ∉0⇔A B .(3)如果集合A 与集合B 的元素相同,则称集合A 与集合B 为等集。
即:B A ⊆且BA ⊇⇔B A =(4)把不含任何元素的集合叫做空集.记作:φ.并规定:空集合是任何集合的子集.(5)如果集合A 中含有n 个元素,则集合A 有2n 个子集.题例方法例1.下列各组集合,表示相等集合的是( )①M ={(3,2)},N ={(2,3)};②M ={3,2},N ={2,3};③M ={(1,2)},N ={1,2}.A .①B .②C .③D .以上都不对例2.设全集U=R ,集合M={x|x >1},P={x|x 2>1},则下列关系中正确的是 ( )A.M=P B .P ⊂M C.M ⊂P D .(C U M )⋂P=ø例3.满足条件{1,2}A ⊆{1,2,3,4,5}的集合A 共有 个。
例4.集合A={x|-2≤x ≤5},B={x|m+1≤x ≤2m-1},(1)若B ⊆A,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.巩固练习:1.已知集合A ={x|-1<x<2},B ={x|0<x<1},则( )A .A>B B .A BC .B AD .A =B2.已知集合A={0,2,3},B={x|x=ab,a 、b ∈A 且a ≠b},则B 的子集的个数是 ( )A .4B .8C .16D .153.若全集U={1,2,3},则集合A 的真子集共有( )A .3个B .5个C .7个D .8个知识要点:(1)一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:A ∪B.即有:A ∪B={x|x ∈A 或x ∈B }(2)一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:A ∩B.即有:A ∩B={x|x ∈A 且x ∈B }(3)一般地,如果一个集合U 含有所研究问题中涉及的所有元素,称U 为所研究问题的全集.(4)一般地,集合A 是全集U 的一个子集,由全集U 中不属于A 的元素组成的集合,称为对于全集U 集合A 的补集。
2023-10-29•集合与元素•集合间的关系•集合的基本运算•特殊集合及其关系•集合的基数目录01集合与元素集合由若干个确定的、不同的元素所组成的整体。
元素集合中的每一个成员,通常用小写字母表示。
集合的定义把集合的元素一一列举出来,用大括号{}括起来,如{1,2,3}。
列举法用集合的代表元素来表示集合,如所有偶数的集合可表示为{x|x=2n,n∈Z}。
描述法集合的表示方法属于如果一个元素是集合的成员,就说这个元素属于集合,记作a∈A。
不属于如果一个元素不是集合的成员,就说这个元素不属于集合,记作a ∉A。
元素与集合的关系02集合间的关系子集与真子集子集如果一个集合A的所有元素都是集合B的元素,那么我们称A是B的子集,记为A⊆B。
真子集如果A⊆B,且A≠B,那么我们称A是B的真子集,记为A⊈B。
相等集合如果两个集合A和B的元素完全相同,那么我们称A和B相等,记为A=B。
相等集合是一个对称关系,即如果A=B,那么B=A。
如果集合A和B的元素中存在相同的元素,那么我们称A和B有交集,记为A∩B。
交集并集补集如果集合A和B的所有元素合并在一起,那么我们称A 和B 有并集,记为A∪B。
如果全集中不属于集合A 的元素组成的集合称为A 的补集,记为∁UA。
03交集、并集与补集020103集合的基本运算交、并、补的运算律•交、并、补的运算律定义•交集运算律:A ∩ B = {x | x ∈ A 且 x ∈ B};•并集运算律:A ∪ B = {x | x ∈ A 或 x ∈ B};•补集运算律:A' = {x | x ∉ A}。
•交、并、补的运算律证明•交集运算律证明:设x属于A且x属于B,则x必定属于A∩B,因此A∩B包括所有既属于A又属于B的元素;•并集运算律证明:设x属于A或x属于B,则x必定属于A∪B,因此A∪B包括所有属于A或属于B的元素;•补集运算律证明:设x不属于A,则x必定不属于A',因此A'包括所有不属于A的元素。
第二节 集合之间的关系及基本运算【考纲要求】1 理解符号,,⊆⊇ , ,,,U A B A B C A 的含义,并能用这些符号表示集合与集合间的关系。
2 掌握集合的交、并、补集的运算。
【考点解析】1 Venn 图:用平面上封闭曲线的内部来表示一个集合。
注:(1)Venn 图可以形象直观地表示集合间的关系。
(2)封闭曲线可以是椭圆、圆、矩形、正方形等。
2 集合之间的关系(1)子集:若集合A 的任意一个元素都是集合B 的元素,则集合A 交集合B 的子集,记作:A B ⊆或B A ⊇,读作:“A 包含于B ”或“B 包含于A ”。
(如图所示)注:①任何一个集合A 都是它本身的子集,即A A ⊆② 当集合A 不是集合B 的子集时,记作:A B ⊆或B A ⊇ 读作:“A 不包含于B ”或“B 不包含于A ”③ 空集是任何集合的子集.(2)真子集:若集合A 是集合B 的子集,并且集合B 中至少有一个元素不属于集合A ,则集合A 是集合B 的子集,记作:A B 或B A ,读作:“A 真包含于B ”或“B 真包含于A ”。
(如图所示)B AA B注:空集是任何非空集合的真子集(3)集合相等:两个集合的元素完全相同,记作:A=B (如图所示)(4)集合之间关系的性质① 对于集合A 、B 、C ,若,A B B C ⊆⊆,则A C ⊆②对于集合A 、B 、C ,A B ,B C ,则A C③ 若,,A B B A ⊆⊆则A=B ;反之,若A=B ,则,,A B B A ⊆⊆ 3 集合的运算(1)交集:给定两个集合A 、B ,由属于A 且属于B 的所有元素构成的集合,记作:A B ,即{|}A B x x A x B =∈∈ 且(若图所示)交集的性质: ① A B B A = ②A A A = ③ A ∅=∅ ④ 若A B ⊆,则A B A = ⑤ 若A B A = ,则A B ⊆(2)并集:给定两个集合A,B,由属于集合A 或属于集合B 的所有元素构成的集合,记作:A B ,即{|}A B x x A x B =∈∈ 或(如图所示)注:(1)并集定义中的“或”有三层含义:① 元素x 属于A 但不属 B (A )于B ②元素x 属于B 但不属于A ③元素x 属于A 且属于B(2)在求集合的并集时,同时属于和的公共元素,在并集中只列举一次。
集合之间的关系和基本运算知识点一:1、集合与集合之间的“包含”关系:A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集记作:)(A B B A ⊇⊆或读作:A 包含于B ,或B 包含A当集合A 不包含于集合B 时,记作 A B用Venn)(A B B A ⊇⊆或2、A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即⎩⎨⎧⊆⊆⇔=A B BA B A注:任何一个集合是它本身的子集 3、真子集的概念:若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集 记作:A B (或B A )读作:A 真包含于B (或B 真包含A ) 4、空集的概念 不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
例:1.写出下列各集合的子集及其个数{}{}{},,,,,,a a b a b c ∅2.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M ⊆N,求k 的取值范围.⊆ BA3.已知含有3个元素的集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,{}2,,0B a a b =+,若A=B,求20102010a b +的值.4.已知集合{}|03A x x =<<,{}|4B x m x m =<<-,且B A ⊆,求实数m 的取值范围.知识点二:集合的基本运算 并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(Union ) 记作:A ∪B读作:“A 并B ”即: A ∪B={x|x ∈A ,或x ∈B}Venn说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。
1.2集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆B或B⊇A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B。
3、真子集:如果A ⊆B,且A ≠B,那么集合A称为集合B的真子集,A⊂≠B .4、设A ⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作S C A5、元素与集合、集合与集合之间的关系6、有限集合的子集个数(1)n个元素的集合有n2个子集(2)n个元素的集合有n2-1个真子集(3)n个元素的集合有n2-1个非空子集(4)n个元素的集合有n2-2个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A⋂B。
8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A⋃B。
9、集合的运算性质及运用【知识应用】1.理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x∈A能推出x∈B。
【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1},B=Z (2)A={1,3,5,15},B={x|x是15的正约数}【L】例2.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m取值范围。
【C】例3. 已知集合A⊆{0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一一写出。
2.解题方法:证明2个集合相等的方法:(1)若A 、B 两个集合是元素较少的有限集,可用列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足的条件是否一致,若均一致,则两集合相等。
(2)利用集合相等的定义证明A ⊆B,且B ⊆A ,则A=B.【J 】例1. 下列各组中的两个集合相等的有( )(1)P={x|x=2n,n ∈Z}, Q={x|x=2(n-1),n ∈Z}(2)P={x|x=2n-1,n ∈N +}, Q={x|x=2n+1,n ∈N +}(3) P={x|2x -x=0}, Q={x|x=1(1)2n+-,n ∈Z}【L 】例2. 已知集合A={x|x=12k π+4π,k ∈Z},B={x|x=14k π+2π,k ∈Z},判断集合A 与集合B 是否相等。
【C 】例3. 设集合A={x|32x x --≤0},集合B={x|(x-3)(x-2) ≤0},判断A 与B 相等吗?3.理解方法:如果集合A 中的元素都包含于集合B ,并且集合B 中有集合A 所没有的元素,那么集合A就是集合B的真子集。
【J】例1.设集合A={2,8,a}, B={2, 2a-3a+4},且B⊂≠A,求A的值。
【L】例2. 满足{a}⊆M⊂≠{a,b,c,d}的集合M有哪几个?【C】例3. 集合M={x|x=3k-2,k∈Z},P={y|y=3x+1,x∈Z},S={z|z=6m+1,m∈Z}之间的关系是_______________。
4.理解方法:通俗的讲,A⊆S,那么将集合S中的元素去除掉集合A中的元素,所剩余下来的元素组成的集合就是S的子集A的补集。
【J】例1.设集合A={1,2,3,4,},集合U={1,2,3,4,5,6},那么C A=_______u【L】例2.若U=Z,A={x|x=2k,k∈Z},B={x|x=2k+1.k∈Z},则u C A=_______,u C B=________【C 】例3.不等式组210360x x ->⎧⎨-≤⎩的解集为A ,U=R ,试求u C A5.理解方法:元素与集合的关系是属于与不属于的关系,用∈表示;集合与集合之间的关系是包含(⊆)、真包含(⊂≠),相等(=)的关系。
【J 、L 】例1. 在下列各式中错误的个数是( )①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}A.1个B.2个C.3个D.4个【C 】例2 设A 、B 为两个集合,下列四个命题:(1)A ⊄B ⇔对任意x ∈A,有x ∉B (2)A ⊄B ⇔A ⋂B=∅(3)A ⊄B ⇔B ⊄A (4)A ⊄B ⇔存在x ∈A ,使得x ∉B ,其中真命题的序号( )A.(1)(2)B. (3)(4)C. (1)(2)(3)D. (4)6.应用类。
主要记住子集个数,那么真子集的个数就是子集个数减去本身(也就是1个),非空子集个数就是子集个数减去空集(也是1个),非空真子集个数就是子集个数减去空集和本身(也就是减去2个)。
如果记忆不牢靠,可以用列举法列举一个或多个元素较少的集合,来找出它的集合的个数,推出子集个数。
【J】例1集合A={x|0≤x<3且x∈Z}的真子集的个数是( )A.5B.6 C.7D.8【L】例2集合{a,b,c,,d,e,f}的子集个数______,真子集个数_____,非空子集个数______,非空真子集个数_______.【C】例3同时满足:(1)M⊆{1,2,3,4,5,};(2)a∈M,则6-a∈M的非空集合M有个。
7.理解方法:简单的说,就是将集合A与集合B中共有的元素找出来,将这些元素组成的集合就是集合A与集合B的交集。
(注意:不能仅认为A⋂B中的任一元素都是都是A 与B的公共元素,同时还有A与B的公共元素都属于A⋂B的含义,这就是文字定义中“所有”二字的含义,而不是“部分”公共元素。
当A与B没有公共元素时,不能说A与B没有交集,而是它们的交集为∅。
【J】例1设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M⋂N=________ 例2如果集合U={1,2,3,4,5,6,7,8},A={2,5,8},B={1,3,5,7}那么(C A)u⋂B=______【L】例3已知A={-4,2a-1,2a},B={a-5,1-a,9},A⋂B={9},a=_______ 【C】例4设集合A={2a,-3,9},B={4,-3,8},{}若求实数a的值⋂=-4,3A B例5已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么M⋂N=_________8.解题方法:集合A与集合B的并集就是将集合A中的元素与集合B的元素加起来所组成的集合。
也就是说,如果我们已知了两个集合,那么它们所包含的所有不同元素组成的就是这个集合的并集。
并集的符号语言中的“或”与生活语言中的“或”的含义是不同的,生活用语中的“或”是只取其一,并不兼存,而并集中的“或”则是可兼有的。
包含3种情形:(1)x∈A,且x∉B;(2)x∈B,且x∉A (3)x∈A且x∈B。
【J】例1若集合A={1,3,x},B={1,2x},A⋃B={1,,3,x},则x可以为________ 例2 集合M={x|-3<x<1},N={x|x≤-3},则M⋃N=_________【L】例3集合A={x|2x+3x+2≥0},B={x|m2x-4x+m-1>0,m∈R},若A⋂B=∅,且A⋃B=A,求m的取值范围。
【C】例4集合A={0,2,a},B={1,2a},若A⋃B={0,1,2,4,16},则a的值为_______例5集合A={x<a},B={x|1<x<2},且A⋂(C B)=R,则实数a的取值范围是______R9. 理解类:A ⋂A=A ⋃A=AA ⋂∅=∅,A ⋃∅=AA ⋂B=B ⋂A A ⋃B=B ⋃AA ⋃ u C A=U A ⋂ u C A= ∅u C (u C A )=Au C (A ⋂B )=( u C A) ⋃( u C B) u C (A ⋃B )=( u C A) ⋂( u C B)A ⋂B=A ⇔A ⊆B A ⋃B=A ⇔B ⊆A.要熟练掌握这些运算性质,建议运用文氏图形帮助理解记忆。
并且在运用时,要注意检验元素的互异性。
在解题时,要一步一步来求出集合,最终得出我们要求的集合,有括号的先求括号里的。
若是求一个值的取值范围,一般可以先求出一个集合,在通过2个集合的关系,求出另一个集合,列出关系可求的所求值。
【J 】例1 已知集合A={x|2x +3x+2≥0},B={x|m 2x -4x+m-1>0,m ∈R},若A ⋂B=∅,且A ⋃B=A ,求m 的取值范围。
【L 】例2 已知集合M={x|31x x +<-0},N={x|x ≤-3},则集合{x|x ≥1}=( ) A M ⋂N B M ⋃N C R C (M ⋂N) D R C (M ⋃N)【C】例3设A={x|2x+4x=0},B={2x+2(a+1)x+2a-1=0,若A B=B,求a的取值范围。
总结:(1)熟练掌握与应用文氏图,将题目与文氏图结合,更容易求出答案(2)要求出某一个含有元素字母的集合,要求元素字母取值范围,往往是利用题目中所给的集合间的关系或者集合与元素之间的关系来找出元素字母的取值范围。
练习题:1 集合P={x|2≤x≤10},Q={x|a-1≤x≤2a+2},Q⊆P,求a的取值范围2 A={x|2x-3x+2=0},B={x|2x-ax+3a-5=0},A⋂B=B,求a的取值范围。
3 已知集合{1,2,3,4,},写出这个集合的所以子集4 已知集合A={x|a2x-3x+1=0,a∈R},(1)若A是空集,求a的取值范围(2)若A至多有一个元素,求a的取值范围5 集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A⋃B)⋂(C C)=________u6 A={x,2x,2y-1},B={0,|x|,y},若A=B,求x,y的值。