高压变频器与低压变频器的选择

  • 格式:pdf
  • 大小:98.36 KB
  • 文档页数:2

下载文档原格式

  / 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高压变频器的选择

高压变频器的种类繁多,其分类方法也多种多样。按着中间环节有无直流部分,可分为交交变频器和交直交变频器;按着直流部分的性质,可分为电流型和电压型变频器;按着有无中间低压回路,可分为高高变频器和高低高变频器;按着输出电平数,可分为两电平、三电平、五电平及多电平变频器;按着电压等级和用途,可分为通用变频器和高压变频器;按着嵌位方式,可分为二极管嵌位型和电容嵌位型变频器等等。

目前高压变频器技术采用领先技术的是采用IGCT技术的电压型高压变频器,由于在变频器的直流环节采用了电容元件而得名,随着技术的进步,高压变频器可以实现四象限运行,也能实现矢量控制,已经成为当前传动系统调速的主流产品。

另一种是目前市场上各厂家普遍采用的单元串联型变频器,这是近几年才发展起来的一种电路拓扑结构,它主要由输入变压器、功率单元和控制单元三大部分组成。采用模块化设计,由于采用功率单元相互串联的办法解决了高压的难题而得名,可直接驱动交流电动机,无需输出变压器,更不需要任何形式的滤波器。

6KV变频器,可以有15个或者18个功率单元组成,每相由5或者6台功率单元相串联,并组成Y形连接,直接驱动电机。每台功率单元电路、结构完全相同,可以互换,也可以互为备用。

变频器的输入部分是一台移相变压器,原边Y形连接,副边采用延边三角形连接,共15到18副三相绕组,分别为每台功率单元供电。它们被平均分成Ⅰ、Ⅱ、Ⅲ三大部分,每部分具有5到6副三相小绕组,之间均匀相位偏移8.5或者10度。

缺点:

1、由于变压器采用延边三角形接法,实现8.5度或者10度的移相,由于工艺原因造成相应的误差,使得变压器内部环流大,发热量高,变压器效率低,从而整个系统效率下降。

2、由于随着负载率的不同,不是所有的功率单元都输出功率,导致谐波不能互相抵消。因此在低于额定负载时,谐波增加很快。由于同样原因,使得启动转矩较小,电机抖动及发热较大,噪声也较高。

3、由于需要保护电机不受共模电压的影响需要将电机接地,因此将共模电压引到了变压器上,使得变压器承受了更大的电应力,使得变压器可靠性降低,寿命降低。

4、由于引入了复杂的移相隔离变压器,使得成本增加。需制造复杂而昂贵的移相变压器。驱动元器和连线多。相应长期使

用中故障必然多,维护复杂且工作量大。

5、变压器的效率降低,影响了整个系统的效率,并随负载率的降低效率更要降低。

6、如果变压器损坏,维修极复杂,费用极高。总费用至少在购价的45%左右。

7、移相主变压器接点太多,接线复杂,系统的内阻和损耗增大。

8、输出电压波形在额定负载时尚好,低于35Hz以下畸变突出,谐波含量大增。

9、电机从0Hz起动时振动大,电机温度高,不能快加速。

10、功率因数低,谐波污染大。

11、动态特性软,响应速度慢,加速和减速时间长。

12、不易用于含有制动工况的机械转动和能量回馈的四象限运行,且无法实现制动。

13、装置的体积太大,重量大,安装占地面积大。

14、低频段或轻负载时波形畸变大,输出三相电压非对称性频摆加大。

15、电机磁链脉动增大,电机中性点与变频器中性点出现电位差,谐波剧增。

16、变压器来承受共模电压对绝缘的冲击和谐波热能。

高压变频器的选型注意事项

1.选择过高电压等级的弊端

选择过高的电压等级造成投资过高,回收期长。电压等级的提高,电机的绝缘必须提高,使电机价格增加。电压等级的提高,使变频器中电力半导体器件的串联数量加大,成本上升。

可见,对于200~2000kW的电机系统采用6kV、10kV电压等级是极不经济、很不合理的。

2.变频器容量与整流装置相数关系

变频器装置投入6kV电网必须符合国家有关谐波抑制的规定。这和电网容量和装置的额定功率有关。

短路容量在1000MVA以内,1000kW装置12相(变压器副边双绕组)即可,如果24相功率就可达2000kW,12相基本上消除了幅值较大的5次和7次谐波。

整流相数超过36相后,谐波电流幅值降低不显著,而制造成本过高。如果电网短路容量2000MVA,则装置容许容量更大。

3.把最高电压降到3kV以下可节约大量投资

从电力电子器件特性及安全系数考虑电压等级的必要性,受电力电子器件电压及电机允许的dv/dt限制,6kV变频器必须采用多电平或多器件串联,造成线路复杂,价格昂贵,可靠性差。对于6kV变频器若是用1700VIGBT,以美国罗宾康的PERFE CTHARMONY系列6kV高压变频器为例,每相由5个额定电压为690V的功率单元串联,三相共60只器件。若是用3300V器件,也需3串共30只器件,数量巨大。另一方面装置电流小,器件的电流能力得不到充分利用,以560kW为例,6kV电机电流仅60A左右,而1700V的IGBT电流已达2400A,3300V器件电流达1600A,有大器件不能用,偏要用大量小器件串联,极不合理。即使电机功率达2000kW,电流也只有140A左右,仍很小。

国外的中压变频器有多个电压等级:1.1kV,2.3kV,3kV,4.2kV,6kV,它们主要由电力电子器件的电压等级所确定。

输出同样功率的变频器,使用较高电压或较多单元串联所花的代价大于用较低电压,较少数量而电流较大单元的代价,也就是说在器件电流允许条件下应尽可能选用低的电压等级。

4.隔离变压器问题

为了隔离、改善输入电流及减小谐波,现在所有的中压“直接变频”器都不是真正的直接变频,其输入侧都装有输入变压器,这种配置短时间内不会改变。既然输入侧有变压器,变频器和电机的电压就没有必要和电网一样,非用10kV和6kV不可,功率2500kW以下电压可以不超过3kV,因此就有了变频器和电机的合理电压等级问题。

200kW~800kW以下的变频调速宜选用380V或660V电压等级。它线路简单,技术成熟,可靠性高,dv/dt小,价格便宜。仍以560kW电机为例,630kW660V的低压变频器约35万,而同容量6000V中压变频器约90万。实现的方法有低-低,低-高,高-低和高-低-高等几种形式。由于电机,变压器的价格远低于变频器,即使更换电机、变压器也合理。

5.原有6kV高压电机如何与3.5kV变频器电压配套

自建国以来传统的6kV高压电机是已投产的主要产品,为了推广3.5kV变频器不可能再花钱更换电机,这里提出一个简便方案,以供参考。

制造厂原有6kV电机一般均为星形接线,其相绕组承受实际电压为3468V,故只要将绕组改接成三角形其它不变。配3.5kV变频器就把变频器电压从6kV下降到3.5kV,从表3可见4.5kV器件不串联就可承受3kV耐压。如果用1.7kV器件3串即可。制造成本将下降30%。而我国目前30MW机组最大电机2500kW采用3.5kV电压完全合理。