克里金插值方法介绍 武汉大学 高等水文学
- 格式:ppt
- 大小:1.44 MB
- 文档页数:107
克里金插值方法-Kriging 插值-空间统计-空间分析1.1 Kriging 插值克里金插值(Kriging 插值)又称为地统计学,是以空间自相关为前提,以区域化变量理论为基础,以变异函数为主要工具的一种空间插值方法。
克里金插值的实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。
克里金插值包括普通克里金插值、泛克里金插值、指示克里金插值、简单克里金插值、协同克里金插值等,其中普通克里金插值是最为常用的克里金插值方法。
以下介绍普通克里金插值的原理。
包括普通克里金方法在内的各种克里金插值方法的使用前提是空间数据存在着显著的空间相关性。
判断数据空间相关性是否显著的工具是半变异函数(semi-variogram ),该函数以任意两个样本点之间的距离h 为自变量,在h 给定的条件下,其函数值估计方法如下:2||||1()[()()]2()i j i j s s h h z s z s N h γ-==-∑其中()N h 是距离为h 的样本点对的个数。
()h γ最大值与最小值的差m a x m i n γγ-可以度量空间相关性的强度。
max min γγ-越大,空间相关性越强。
如果()h γ是常数,即max min 0γγ-=,则说明无论样本点之间的距离是多少,样本点之间的差异不变,也就是说样本点上的值与其周围样本点的值无关。
在实际操作中,会取一些离散的h 值,当||s s ||i j -接近某个h 时,即视为||||i j s s h -=。
然后会通过这些离散点拟合成连续的半变异函数。
拟合函数的形式有球状、指数、高斯等。
在数据存在显著的空间相关性的前提下,可以采用普通克里金方法估计未知点上的值。
普通克里金方法的基本公式如下:01ˆ()()()n i ii Z s w s Z s ==∑普通克里金方法的基本思想是:通过调整i s 的权重()i w s ,使未知点的估计值0ˆ()Z s 满足两个要求:1.0ˆ()Z s 是无偏估计,即估计误差的期望值为0,2.估计误差的方差达到最小。
克里金(kriging)插值的原理与公式推导
克里金插值是一种空间插值方法,用于估计未知区域的数值,其
原理是基于空间数据的空间相关性来进行插值。
具体来说,克里金插
值假设空间数据在不同位置之间具有一定的相关性,即在空间上相邻
的点具有相似的数值。
克里金插值利用这种相关性来进行插值,从而
可以更准确地估计未知位置的数值。
克里金插值的公式推导涉及到半变异函数的定义,通常使用高斯
模型、指数模型或球形模型来描述数据的空间相关性。
在推导过程中,会利用已知数据点的数值和位置信息,以及半变异函数的参数来构建
插值模型,进而估计未知位置的数值。
克里金插值的公式可以表示为:
\[Z(u) = \sum_{i=1}^{n} \lambda_i \cdot Z(u_i)\]
其中,\(Z(u)\)为未知位置的数值,\(Z(u_i)\)为已知数据点的
数值,\(\lambda_i\)为插值权重,通过半变异函数及数据点之间的空
间距离计算得出。
除了基本的克里金插值方法外,还有一些相关的扩展方法,如普通克里金、泛克里金等,这些方法在建模和插值的过程中考虑了更多的因素,如均值趋势、空间方向等,使得插值结果更加准确和可靠。
总的来说,克里金插值是一种常用的空间插值方法,适用于各种地学环境下的数据分析与建模。
在实际应用中,需要根据具体数据的特点选择合适的插值方法和模型参数,以获得准确的插值结果。
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1].因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z *(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数.其中Z (x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量"针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z (x i )和Z (x j )的协方差函数.2 方法步骤克里金插值法的应用步骤如下:1、输入原始数据,即采样点,下面以输入三个采样点求待估插值为例来进行说明。
克里金插值法原理克里金插值法是一种用于插值运算的重要数学方法,它可以根据已知的数据点来求出某函数在某一特定点的值,受到许多工程师和科学家的广泛应用。
本文旨在介绍克里金插值法的原理、它的优点和应用,以及一些计算机实际应用中的解决方案。
(正文)一、里金插值法的原理克里金插值法是拟合多个已知的数据点,以获取其中某一点的未知函数值的有效方法。
它的核心思想是采用差商的形式来求出拟合的函数的系数,从而求出拟合函数的值。
可以这样来理解:在一组给定的数据点中,求出它们之间的差商,再根据差商来求出拟合数据点的函数值。
克里金插值法的标准公式可以这样表示:P(x) = P0 +(x-x0)[ (P1-P0)/(x1-x0) ] +(x-x0)(x-x1)[ (P2-P1)/(x2-x1)/(x2-x0) ] ++ (x-x0)(x-x1)…(x-xn-1)[ (Pn-Pn-1)/(xn-xn-1)/(xn-xn-2)…(xn-x0) ] 这个公式是基于差商求出数据点的函数值的,其中P0, P1, P2,…, Pn代表的是已知的数据点,x0, x1, x2,…, xn代表的是已知的数据点的坐标。
二、里金插值法的优点克里金插值法具有如下优点:1、算简单:克里金插值法只需要用简单的算法计算即可求出拟合函数的函数值,而且结果对应的误差比较小。
2、合精度高:克里金插值法的拟合精度比较高,能够很好的拟合多个数据点。
3、泛应用:克里金插值法受到了广泛的应用,在计算机科学、工程计算、统计分析以及数据拟合等领域都有重要的应用。
三、里金插值法的应用1、合数据:克里金插值法可以用来拟合有限的数据,从而得到比较精确的拟合函数。
2、解方程:克里金插值法还可以用来求解某个函数的零点,这对于求解一些复杂的方程也可以有效的应用。
3、算机实际应用:克里金插值法在计算机科学中有重要的应用,如图像处理、信号处理等。
在图像处理中,克里金插值法可以用来进行图像放大、缩小等操作,从而获得更加精细的图像。
克里金是一种什么方法克里金(Kriging)是一种地质统计学的插值方法,最早由法国地质学家G.M. 克里金(Georges Matheron Krige)于1951年提出,用于空间数据的插值和预测。
克里金插值方法是基于统计学原理和空间相关性的推断方法,在地质学、地理学、地球科学等领域广泛应用。
克里金方法主要应用于连续空间数据的插值,即根据已知的离散点数据推断未知位置的数值,例如地质勘查、大气污染监测、地下水位预测等。
其基本原理是基于已知数据点的空间相关性进行位置预测,预测结果不仅考虑到周围点的值,还考虑到点与点之间的空间自相关性。
克里金方法通常包括以下几个步骤:1. 变异函数模型化:首先需要对已知数据点的空间变异性进行建模。
通过对数据进行统计分析,使用半方差函数(semivariogram)来描述变量之间的空间相关性。
半方差函数是指变量之间的差异程度与距离之间的关系,通过实测数据点的数值差异可以估计半方差函数。
常见的半方差函数有指数模型、高斯模型和球状模型等。
2. 方差-协方差矩阵的计算:根据已知数据点的空间坐标和数值,通过半方差函数估计方差-协方差矩阵。
方差-协方差矩阵用于描述变量之间的协方差关系,便于后续的预测计算。
3. 克里金方程的建立:基于已知数据点的方差-协方差矩阵,建立克里金方程。
克里金方程是一个权重函数,用于计算未知位置处的预测值。
克里金方程考虑到空间数据点之间的距离和空间自相关性,通过调整权重系数,能够提高模型的拟合度。
4. 预测结果的计算:通过克里金方程,对未知位置处的数值进行预测。
在预测过程中,通过已知数据点对未知点进行加权平均,权重系数由克里金方程决定。
根据已知数据点的空间位置和数值,以及未知位置的空间坐标,计算出未知位置处的预测值。
5. 不确定性的估计:克里金方法不仅可以提供预测值,还可以通过计算半方差函数的拟合误差来估计预测结果的不确定性。
通过估计半方差函数的置信限,可以得到预测结果的置信区间,从而对预测结果的准确程度进行评估。
克里金插值克里金(Kriging)插值克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。
克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。
该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。
它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。
但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高。
克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。
常规克里金插值其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。
块克里金插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸现象。
按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金(Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。
在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。
克里金插值方法克里金插值方法(Kriging Interpolation)是一种常用的空间插值技术,用于预测未知位置的属性值。
它是由南非地质学家克里金(Danie G. Krige)在20世纪60年代提出的。
克里金插值方法通过对已知点周围的样本点进行空间插值,推断出未知点的属性值,从而实现对空间数据的预测。
克里金插值方法的基本思想是建立一个局部的空间模型,考虑样本点之间的空间相关性,并利用这种相关性来预测未知点的属性值。
它的核心思想是将空间数据看作是一个随机场,通过对随机场的统计分析来确定未知点的属性值。
克里金插值方法的具体步骤如下:1. 数据收集:首先需要收集一定数量的已知点数据,这些数据应该包含未知点的属性值以及其空间坐标。
2. 变异函数拟合:根据已知点的属性值和空间坐标,建立变异函数模型。
变异函数描述了样本点之间的空间相关性,可以采用不同的函数形式进行拟合,如指数函数、高斯函数等。
3. 半变异函数计算:通过对已知点之间的差异进行半变异函数计算,确定样本点之间的空间相关性。
4. 克里金权重计算:根据已知点的属性值、空间坐标和半变异函数,计算未知点与已知点之间的空间权重。
5. 属性值预测:利用已知点的属性值和克里金权重,对未知点进行属性值预测。
预测值可以根据不同的权重计算方法得到,如简单克里金、普通克里金、泛克里金等。
6. 模型验证:对预测结果进行验证,可以使用交叉验证等方法评估预测的准确性。
克里金插值方法在地质学、环境科学、农业、地理信息系统等领域广泛应用。
它可以用于地下水位、气象数据、土壤污染等空间数据的插值预测。
克里金插值方法不仅可以提供对未知点的预测值,还能估计预测误差,并提供空间数据的空间分布图。
尽管克里金插值方法具有很多优点,但也存在一些限制。
首先,克里金插值方法假设样本点之间的空间相关性是平稳的,即在整个研究区域内具有一致性。
然而,在实际应用中,样本点之间的空间相关性可能会随着距离的增加而变化。
克里金插值法的基本做法
克里金插值法是一种空间插值方法,用于估计地理空间上某一点的未知数值。
其基本做法包括以下几个步骤:
1. 数据收集,首先,需要收集一定数量的已知数值点的数据,这些数据通常是在地理空间上具有坐标位置的点上观测得到的。
这些数据可以是地面测量、遥感获取、传感器监测等手段得到的。
2. 半变异函数的拟合,接下来,需要对所收集到的数据进行半变异函数的拟合。
半变异函数描述了地点之间的变异程度,是克里金插值法的关键。
通过拟合半变异函数,可以得到地点之间的空间相关性。
3. 克里金插值模型的建立,在获得半变异函数后,可以建立克里金插值模型。
这个模型可以根据已知点的数据和半变异函数的拟合结果,对未知点进行插值估计。
4. 插值估计,最后,利用建立的克里金插值模型,对未知点进行插值估计。
通过模型计算,可以得到未知点的估计数值,并且估计值的精度也可以通过模型得到。
需要注意的是,克里金插值法的基本做法是基于对空间数据的
模型化和空间相关性的分析,因此在实际应用中需要根据具体的数
据特点和空间变异性进行适当的调整和参数设定。
同时,对于较大
规模的数据集,也需要考虑计算效率和模型精度之间的平衡。
总之,克里金插值法是一种常用的空间插值方法,通过合理的数据处理和
模型建立,可以对地理空间上的未知数值进行较为准确的估计。
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域对区域化变量进行无偏最优估计的一种方法,是地统计学的主要容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G . Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n,2,1)(,(),(11niijjiniijxxCxxCλμλ,(3)式中,C(x i,x j)是Z(x i)和Z(x j)的协方差函数。
克里金插值算法原理克里金插值算法是一种常用的地统计学方法,用于估计未知位置的属性值。
它基于空间自相关性的假设,通过已知点的属性值来推断未知点的属性值。
克里金插值算法的原理可以简单概括为以下几个步骤。
1. 数据收集和预处理在进行克里金插值之前,首先需要收集一定数量的已知点数据。
这些数据应该包含位置信息和对应的属性值。
收集到的数据应该经过预处理,包括数据清洗、异常值处理和数据转换等步骤,以确保数据的准确性和可靠性。
2. 空间自相关性分析克里金插值算法的核心思想是基于空间自相关性。
通过分析已知点之间的空间关系,可以确定属性值在空间上的变异性。
常用的方法是计算半方差函数,该函数描述了不同点对之间的属性值差异。
半方差函数的图像可以反映出属性值的空间相关性,从而确定合适的插值模型。
3. 插值模型的建立根据半方差函数的图像,可以选择合适的插值模型。
常用的插值模型包括球型模型、指数模型和高斯模型等。
选择合适的插值模型需要考虑数据的空间特征和变异性。
插值模型的建立可以通过拟合半方差函数来实现,拟合的结果可以用于后续的插值计算。
4. 插值计算在插值计算阶段,需要根据已知点的属性值和位置信息,以及插值模型的参数,推断未知点的属性值。
克里金插值算法通过对已知点进行加权平均来估计未知点的属性值。
加权平均的权重由插值模型和已知点与未知点之间的距离决定。
距离越近的已知点权重越大,距离越远的已知点权重越小。
5. 结果验证和误差分析插值计算完成后,需要对结果进行验证和误差分析。
可以通过交叉验证等方法来评估插值结果的准确性和可靠性。
误差分析可以帮助我们了解插值误差的分布情况,从而对插值结果进行修正和优化。
克里金插值算法的原理基于空间自相关性的假设,通过已知点的属性值来推断未知点的属性值。
它在地统计学、地质学、环境科学等领域有着广泛的应用。
通过合理选择插值模型和进行结果验证,克里金插值算法可以提供准确可靠的空间插值结果,为决策提供科学依据。