典型材料的熔体静电纺丝研究
- 格式:pdf
- 大小:373.74 KB
- 文档页数:4
静电纺丝技术的影响因素及应用研究综述静电纺丝技术是一种利用高电压将高聚物溶液或熔体喷射到地面或异极上,使高分子物质在电场作用下形成纤维的工艺方法。
这种技术可以制备直径几百纳米的纤维,因此被广泛应用于纺织、过滤、医药、环保等领域。
静电纺丝技术的影响因素包括原料性质、纺丝工艺参数、环境因素等,这些因素对纤维的形貌、尺寸和性能都有显著影响。
本文将对静电纺丝技术的影响因素及应用研究进行综述,以期为相关领域的研究提供参考。
一、影响因素1. 原料性质原料的性质对静电纺丝的纤维形貌和性能有重要影响。
一般来说,溶液浓度、表面张力、导电性等因素都会影响纤维的形态和尺寸。
溶液浓度过高会使得纤维变粗,而表面张力过大则会导致纤维断裂。
在静电纺丝工艺中,需要对原料进行适当的处理和选择,以满足所需的纤维性能要求。
2. 纺丝工艺参数静电纺丝的工艺参数包括电压、流量、喷射距离等,这些参数会直接影响纤维的形貌和尺寸。
一般来说,电压越高,纤维的直径越小,喷射距离越远则会使纤维变粗。
在静电纺丝过程中,需要对工艺参数进行合理调节,以获得所需的纤维形态和尺寸。
3. 环境因素静电纺丝的环境因素对纤维的形态和性能也有一定影响。
温度和湿度会影响纤维的拉伸性能和断裂强度。
在制备纳米纤维时,一般需要在相对较干燥的环境中进行,以减少纤维的断裂和变形。
二、应用研究1. 纺织应用静电纺丝技术可以制备直径几百纳米的纤维,因此在纺织领域有广泛应用。
利用静电纺丝技术可以制备纳米纤维布料,具有较好的透气性和过滤性能,可以用于防护服、口罩等领域。
2. 医药应用3. 环保应用静电纺丝技术可以制备高效过滤材料,具有较好的分离效果和稳定性,可用于环境污染物的捕捉和分离。
利用静电纺丝技术可以制备纳米纤维滤膜,具有较高的比表面积和孔隙率,可用于废水处理、空气净化等领域。
静电纺丝技术是一种重要的纳米材料制备方法,具有广泛的应用前景。
在静电纺丝技术的研究和应用中,需要重点关注原料性质、工艺参数和环境因素对纤维的影响,以提高纤维的形态和性能。
静电纺丝纳米材料的制备与应用研究静电纺丝技术是一种简单、有效的制备纳米材料的方法,对于制备催化剂、传感器、纳米纤维等材料具有广泛的应用前景。
本文将从静电纺丝纳米材料的制备原理、结构特征和应用研究三个方面进行介绍。
一、制备原理静电纺丝技术的原理是利用高电压电场将高分子溶液或熔体喷射出来,使其在空气中快速成纤维状,然后在收集器上自行沉积成膜。
熔体静电纺丝与溶液静电纺丝相比,熔体速度更快,材料结晶程度高,适合制备颗粒尺寸更小的纳米材料。
而溶液静电纺丝则可以选择不同的溶剂和不同的高分子材料来制备纳米纤维,制备颗粒尺寸也更加灵活。
二、结构特征静电纺丝制备的材料具有很高的比表面积和特殊的纳米结构,因此在催化剂、分离膜、传感器等领域具有广泛的应用前景。
静电纺丝纳米材料的纤维尺寸从几纳米到几微米不等,表面可以加上各种功能组团,如金属纳米颗粒、分子印迹、寡聚体等。
因此,静电纺丝制备的材料可以具备更优异的催化性能、选择性、稳定性和灵敏度。
此外,纳米材料的静电纺丝制备过程是在常温环境下进行,避免了高温条件下材料结晶、生长不均匀的问题。
三、应用研究静电纺丝制备的纳米材料应用领域广泛。
在催化领域,静电纺丝制备的纳米催化剂具有极高的比表面积、可调控性以及可控制催化活性和选择性等优异性能,适用于制备氧化剂、还原剂、过氧化物分解催化剂等等。
例如,通过控制静电纺丝溶液的pH值和静电纺丝参数,制备出核壳结构的纳米催化剂,在催化还原二氧化碳制备甲烷中表现出较高的产甲烷率和稳定性。
在传感器领域,基于静电纺丝制备的纳米纤维磁性材料、荧光材料和结构化合陶瓷材料等都有广泛探索。
例如,应用静电纺丝技术制备的纳米剪切流传感器,可以实现对于单细胞排列、细胞膜的二维分类,为了解生物芯片研究中面对的甚至是生命科学探索中的难点问题提供了新的技术思路。
在纺织领域,静电纺丝制备的材料可以应用于制备高强度、高效能的纳米纤维布,也可以用于生物医用维生素E。
此外,静电纺丝技术还被用于电子元件制备和生物医学领域。
基于静电纺丝法对 TiO2制备的研究摘要:本文主要介绍以钛酸四丁酯、乙酰丙酮、乙酸、去离子水为原料,乙的实验原理及过程。
采用XRD和SEM的表征醇为溶剂,采用静电纺丝法制备TiO2物相结构、表面形貌的影响,并用接触角测试中方法研究了不同烧结温度对TiO2亲水性能进行了测试。
研究发现:改变烧结温度的量高法对不同温度烧结的TiO2形貌产生的影响不大,其形貌皆是无明显排布规律的线状物。
与此同时,对TiO2随着烧结温度的升高,线状物排布越发显得不规则。
结果表明,烧结温度对纳米带的线径、表面粗糙程度以及物相等均有影响。
;纳米带;金红石与锐钛矿关键词:静电纺丝法;TiO220世纪末诞生的纳米科技,将在21世纪得到快速发展,并将对人类社会产生深远影响。
而纳米技术的发展离不开纳米材料,纳米材料是纳米技术得以成长的根本,也是新材料的重要组成部分。
纳米材料具有包括力学、磁学、电学、热学等诸多方面的特殊性能[1],这意味着此类材料可广泛应用于特殊导体、热交换材料、光热吸收、非线性光学、催化剂等众多领域,这就使得纳米材料越来越受到人们的重视。
一个结构至少在一个维度下的尺寸在1- 100 nm之间,以及由此结构单元组成的材料,可称为纳米材料。
纳米材料因其自身独特的性能,例如强吸附性、特殊光学性等,被广泛应用于各行各业,而纳米材料的应用又给各行各业带来了新的突破。
随着人类社会对纳米材料要求的提高,各种制备方法层出不穷。
目前常见的纳米材料制备方法主要分为物理法和化学法。
物理法包括机械球磨法、磁控溅射法、真空冷凝法、气体蒸发法、等离子体法等[2],化学法包括气相沉积法、溶胶-凝胶法、静电纺丝法、水热及溶剂热法等一系列方法[3]。
而本文主要介绍以钛酸四丁酯、乙酰丙酮、乙酸和去离子水为原料,乙醇为的实验原理及过程。
用XRD、SEM的表征方法研溶剂,采用静电纺丝法制备TiO2物相结构和表面形貌的影响,并用接触角测试中的量高究了不同烧结温度对TiO2亲水性能进行了测试。
静电纺丝材料制备与应用研究进展静电纺丝是一种常用的纳米纤维制备技术,通过利用静电作用将高分子材料或其他纳米材料制备成纳米纤维。
近年来,随着纳米技术的发展和应用需求的增加,静电纺丝材料制备与应用的研究逐渐受到广泛关注。
本文将对静电纺丝材料制备与应用的研究进展进行探讨。
静电纺丝的原理是利用高电压作用下的电场效应,使溶液或溶胶中的材料发生极化,形成纤维状的物质。
制备静电纺丝材料的关键是调控溶液的流动性、表面张力以及电场的强度和方向。
在制备材料时,可以使用单独的高分子溶液,也可以将纳米颗粒或纳米纤维混悬于溶剂中,形成复合材料。
此外,还可以通过调节电压和喷射距离等条件,控制纤维的粗细、形状和排列方式,以满足不同应用的需求。
静电纺丝材料制备技术具有许多优势。
首先,制备过程简单、快速,并且可以制备大面积的纳米纤维薄膜。
其次,纳米纤维的细度可以达到纳米级,且纤维呈现连续性,具有良好的力学性能和特殊的表面形态。
此外,静电纺丝材料还具有较高的比表面积和孔隙率,有利于吸附和释放物质、调控光学、电学、磁学等性能。
因此,静电纺丝材料在能源储存、传感器、过滤材料、组织修复等领域具有广泛的应用前景。
在能源储存领域,静电纺丝材料可以用于超级电容器和锂离子电池的电解质膜。
由于其高比表面积、多孔结构和良好的导电性能,静电纺丝膜可提供更高的电化学活性表面,从而提高电容器和电池的能量密度和循环寿命。
此外,静电纺丝膜还可以用于太阳能电池的薄膜基底,提供较好的光学透明性和力学支撑性。
在传感器领域,静电纺丝材料的高比表面积和可调控的孔隙结构使其具有良好的气体和液体吸附性能。
例如,静电纺丝纳米纤维可以用于制备挥发性有机化合物传感器,通过吸附、扩散和检测挥发性有机化合物的特定分子达到气体传感的目的。
此外,静电纺丝纳米纤维还可以用于制备生物传感器、化学传感器等,用于监测生物标记物、环境污染物等。
在过滤材料领域,静电纺丝材料的高比表面积和细小孔隙结构使其具有良好的颗粒捕获性能。
聚乳酸—聚乙二醇共聚物的合成及其静电纺丝研究聚乳酸—聚乙二醇共聚物的合成及其静电纺丝研究引言:聚合物是一类广泛应用于医学、材料科学和纺织等领域的功能性材料。
聚乳酸(PLA)和聚乙二醇(PEG)是两种常见的聚合物,它们具有良好的生物相容性和可降解性能,因此被广泛应用于生物医学材料领域。
本文将讨论聚乳酸—聚乙二醇共聚物的合成方法以及其在静电纺丝技术中的应用。
一、聚乳酸—聚乙二醇共聚物的合成方法聚乳酸—聚乙二醇共聚物可通过多种合成方法得到,常见的有原位缩合法、无溶剂法和聚合法等。
1. 原位缩合法原位缩合法是将乳酸和乙二醇作为原料,添加催化剂在高温下反应得到聚乳酸—聚乙二醇共聚物。
该方法具有简单、操作便捷的优点,但是会产生大量有害气体。
2. 无溶剂法无溶剂法是在无溶剂条件下,通过改变反应温度和时间来控制乳酸和乙二醇的反应,进而得到聚乳酸—聚乙二醇共聚物。
无溶剂法可以减少有害气体的生成,在绿色合成方面有一定优势。
3. 聚合法聚合法是通过聚合反应将乳酸和乙二醇连接起来,得到聚乳酸—聚乙二醇共聚物。
聚合法的特点是反应条件温和,反应效率高。
二、聚乳酸—聚乙二醇共聚物在静电纺丝研究中的应用静电纺丝是一种制备纳米纤维的方法,具有制备工艺简单、纤维尺寸可调控、制备速度快等优点。
聚乳酸—聚乙二醇共聚物在静电纺丝研究中得到广泛应用。
1. 纳米纤维膜的制备将聚乳酸—聚乙二醇共聚物溶液通过电场作用使其纺丝成纤维,经过凝固和固化处理后制备成纳米纤维膜。
聚乳酸—聚乙二醇共聚物的生物相容性和可降解性能使其成为一种理想的生物医学材料。
2. 药物控释系统将药物嵌入聚乳酸—聚乙二醇共聚物的纳米纤维中,利用纳米纤维的大比表面积和多孔结构,可以有效地控制药物的释放速度。
这种药物控释系统可以延长药物的作用时间,提高疗效。
3. 组织工程支架材料聚乳酸—聚乙二醇共聚物的生物相容性和可降解性能使其成为一种理想的组织工程支架材料。
通过静电纺丝技术制备的纳米纤维具有类似于体内纤维组织的结构,可以在体内提供支撑和导引作用,促进组织再生。
PET超细纤维的熔体静电纺丝法制备及性能研究刘会超;李秀艳;李从举【期刊名称】《材料导报》【年(卷),期】2012(026)006【摘要】采用激光熔体静电纺丝法制备了PET超细纤维,研究了应用电压、激光电流及接收距离对纤维直径的影响.利用SEM、XRD、FTIR、TG-DTA及单轴拉力机对纤维形貌、结晶性能、分子结构、热稳定性和力学性能进行了表征.SEM结果表明,所得纤维表面光滑、粗细均匀,最小纤维直径在3μm左右.当增加电压时纤维直径随之增大;纤维直径随激光电流的增强呈下降趋势,随接收距离的增加有先减小后增大的趋势.XRD测试表明激光电纺PET纤维为无定形态,在一定温度下退火后呈结晶态.FTIR测试结果表明电纺PET分子取向发生了变化.拉力测试结果表明,PET 热压纤维膜的平均断裂伸长率在5%左右,平均拉伸强度为1.3MPa左右.TG-DTA 测试表明电纺PET纤维耐热性优良,可在较高温度下使用.【总页数】4页(P58-61)【作者】刘会超;李秀艳;李从举【作者单位】北京服装学院材料科学与工程学院,北京100029;北京服装学院材料科学与工程学院,北京100029;北京服装学院材料科学与工程学院,北京100029;北京市服装材料研究开发与评价重点实验室,北京100029【正文语种】中文【中图分类】TQ342+.93【相关文献】1.激光熔体静电纺丝法制备PET微纳米纤维 [J], 李秀艳;刘会超2.ZnO掺杂PET超细纤维无纺布的制备与性能研究 [J], 赵旭;余逸男;周兴平3.熔体静电纺PA6超细纤维的制备与工艺研究 [J], 杜远之;徐阳;魏取福;王爱民;王宏;王肖娜4.静电纺丝法制备多孔超细聚醚砜纤维及其对双酚A的吸附性能 [J], 邱芳;卫志美;彭民乐;王孝军;杨杰5.静电纺丝法制备醋酸丁酸纤维素超细纤维 [J], 郭丹丹;刘好花;崔莉;刘芬;叶正涛因版权原因,仅展示原文概要,查看原文内容请购买。
摘要:研究了环氧树脂的静电纺丝,考察了纺丝电压、溶液浓度及共混溶剂等参数对纤维直径及分布的影响。
研究结果表明:随纺丝电压增大,环氧树脂纤维直径减小,分布区间变窄;随环氧树脂溶液浓度升高,纤维直径增大,在高浓度时,纤维直径会产生分化而形成双峰分布;不同溶剂体系对环氧树脂纤维直径产生影响,在1-甲氧基-2-丙醇(MP)/丁酮(BT)体系中,随BT比例增加,溶液黏度上升,电导率下降,纤维直径增大。
关键词:静电纺丝;环氧树脂;纤维中图分类号:TQ342文献标识码:A文章编号:1001-7054(2008)03-0010-04环氧树脂的静电纺丝许乾慰1,王伟1,李岩1*,黄争鸣2,王国建1(1.同济大学材料科学与工程学院,上海200092;2.同济大学航空航天学院,上海200092)静电纺丝技术是近年来发展起来的一项用来制备纳米或亚微米纤维的新技术。
采用该技术生产的纤维具有独特的性能,可用于过滤、阻隔和分离膜、生物医用材料、新型的轻质复合材料和服装材料等[1-4]。
目前,国内外已通过静电纺丝制备了多种高聚物纤维,如聚丙烯腈、聚苯乙烯、聚乙烯醇、聚碳酸酯、聚酯、聚乙烯吡咯烷酮等[5]。
在所报道的采用静电纺丝法制备的纤维材料中,所使用的聚合物均为热塑性的聚合物,还没有关于热固性聚合物静电纺丝的详细报道。
环氧树脂是最常见的一种热固性聚合物,其作为基体树脂得到了广泛的应用。
为了通过复合静电纺丝技术[6]制备得到以尼龙为芯层材料、环氧树脂为外层材料的复合纤维,进而利用尼龙熔融温度比环氧树脂高得多的特性,将外层环氧树脂熔融固化(加固化剂)而芯层尼龙保持不变,得到具有尼龙纳米纤维分散相的环氧树脂复合材料。
作为尼龙/环氧树脂复合静电纺丝的基础,本文首先研究了环氧树脂的单独纺丝,详细研究了纺丝电压、溶液浓度及共混溶剂参数对纤维直径的影响,有关尼龙/环氧树脂的复合静电纺丝将做进一步的报道。
1实验方法1.1原料环氧树脂E-03:环氧值0.00 ̄0.04,上海新华树脂厂产;1-甲氧基-2-丙醇(MP):分析纯,上海邦成化工有限公司生产;丁酮(BT):分析纯,上海市达瑞精细化学品有限公司生产。
第1篇一、实验目的1. 熟悉静电纺丝法的原理和操作步骤。
2. 掌握利用静电纺丝法制备纳米纤维的方法。
3. 分析不同参数对纳米纤维形态和性能的影响。
二、实验原理静电纺丝法是一种常用的制备纳米纤维的技术,利用高压电场使高分子溶液或熔体在喷丝头处形成细小的液滴,液滴在电场力、表面张力以及惯性力的共同作用下,拉伸形成纳米纤维。
通过控制实验参数,可以制备出具有不同直径、形态和性能的纳米纤维。
三、实验材料与设备材料:1. 聚乙烯醇(PVA)粉末2. 乙醇3. 纳米氧化锌(ZnO)设备:1. 静电纺丝机2. 电子天平3. 真空干燥箱4. 扫描电子显微镜(SEM)5. 透射电子显微镜(TEM)6. X射线衍射仪(XRD)四、实验步骤1. 配制PVA溶液:称取一定量的PVA粉末,加入适量乙醇溶解,搅拌均匀。
2. 配制纳米氧化锌溶液:称取一定量的纳米氧化锌,加入适量乙醇溶解,搅拌均匀。
3. 混合溶液:将PVA溶液和纳米氧化锌溶液按照一定比例混合均匀。
4. 静电纺丝:将混合溶液注入静电纺丝机,设置合适的电压、喷头与收集器距离等参数,进行静电纺丝。
5. 收集纳米纤维:将静电纺丝制备的纳米纤维收集在铝箔上,干燥。
6. 纳米纤维表征:利用SEM、TEM、XRD等手段对纳米纤维进行表征。
五、实验结果与分析1. SEM分析:从SEM图像可以看出,纳米纤维呈细长条状,直径在100-200nm之间,表面光滑。
2. TEM分析:从TEM图像可以看出,纳米纤维具有明显的纳米级特征,直径在30-50nm之间。
3. XRD分析:从XRD图谱可以看出,纳米纤维具有较好的结晶度,表明纳米氧化锌在纳米纤维中均匀分散。
六、讨论1. 实验结果表明,通过静电纺丝法制备的纳米纤维具有较好的结晶度和均匀的分散性,表明纳米氧化锌在纳米纤维中均匀分散。
2. 实验过程中,电压、喷头与收集器距离等参数对纳米纤维的直径和形态有较大影响。
适当提高电压和缩短喷头与收集器距离,可以制备出更细、更均匀的纳米纤维。
熔体静电纺丝法制备mLLDPE纤维的研究赵娜;刘太奇;刘瑞雪【摘要】茂金属催化剂聚合得到的线性低密度聚(mLLDPE)纤维是近年来发展非常迅速的一种塑料品种,正在逐渐地取代传统聚乙烯产品.本文研究了熔体静电纺丝法制备线性低密度聚乙烯纤维,通过添加剂改性,首次成功制备了直径为10~80 μm 的mLLDPE纤维.对不同纺丝参数,包括纺丝电压、接收距离、纺丝温度及添加剂用量对mLLDPE纤维直径与形貌的影响进行了研究,得到熔体静电纺mLLDPE的最佳条件为纺丝电压25 kV、接收距离2 cm、纺丝温度160℃、聚乙烯蜡添加量30%.对mLLDPE纤维的结晶性能与纺丝温度及聚乙烯添加量之间的关系也进行了探讨.%In recent years, metallocene based linear low-density polyethylene (mLLDPE) polymerized through metallo-cene catalyst is a variety that has got rapid development and has gradually replaced traditional polyethylene products. In this paper, mLLDPE fibers prepared with melt electrospinning method was studied for the first time. The mLLDPE fibers, in a diameter from 10 to 80 μm were successfully produced by an addtion of polyethylene wax (PE wax). The effects of various melt-electrospinning parameters including spinning voltage, collecting distance, spinning temperature and content of PE wax were studied. Got the optimum parameters, that is the spinning voltage of 25 kV, the collecting distance of 2 c m, the spinning temperature of 160 ℃, and the content of PE wax of30 %. The effects of electrospinning temperature and the content of polyethylene wax on the crystallization of mLLDPE fibers were measured.【期刊名称】《新技术新工艺》【年(卷),期】2013(000)002【总页数】4页(P94-97)【关键词】熔体静电纺丝;线性低密度聚乙烯;纤维;结晶性能【作者】赵娜;刘太奇;刘瑞雪【作者单位】北京石油化工学院环境材料研究中心,北京102617;北京化工大学材料科学与工程学院,北京100029;北京石油化工学院环境材料研究中心,北京102617;北京石油化工学院环境材料研究中心,北京102617;北京化工大学材料科学与工程学院,北京100029【正文语种】中文【中图分类】TQ34利用茂金属催化剂聚合得到的线性低密度聚乙烯,其支链分布均匀,分子量分布较窄,并且具有优良的韧性、抗环境应力开裂能力,较高的抗冲击强度、撕裂强度、拉伸强度,良好的刚度、抗蠕变能力以及优良的加工性能[1]。
静电纺丝技术制备纳米纤维材料的研究与应用引言:纳米科技的快速发展带来了许多前所未有的新材料和应用。
纳米纤维材料作为一种重要的纳米材料,在各个领域展示出了广阔的应用前景。
静电纺丝技术作为一种常用的制备纳米纤维材料的方法,凭借其简单、高效、可控性强的特点,受到了广泛的关注与研究。
本文旨在介绍静电纺丝技术制备纳米纤维材料的原理与过程,并探讨其在不同领域的应用潜力。
1. 静电纺丝技术概述静电纺丝技术是一种通过高电场作用下将聚合物溶液或熔体形成纤维的技术。
其基本原理为将容器中的聚合物溶液或熔体通过尖端形成纳米尺度的液柱,然后加高电压使液柱发生弯曲,并在空气中快速固化成纤维。
通过控制溶液的流速、电压、尖端直径和距离可以调节纤维的直径和形态,实现纳米尺度下的制备。
2. 静电纺丝技术制备纳米纤维材料的优势2.1 高效而可控的纤维制备静电纺丝技术可以制备纤维直径从几纳米到几微米的范围内的纳米纤维材料。
通过调节工艺参数,能够实现对纤维直径和形态的精确控制。
这种高效而可控的纤维制备特性使得静电纺丝技术在材料科学、纺织、医疗等领域得到广泛的应用。
2.2 纳米纤维材料的独特性能由静电纺丝技术制备的纳米纤维材料具有很多独特的性能。
首先,纤维直径纳米尺度下的纳米纤维材料具有较大的比表面积,使得其在能量存储、传感器、催化剂等领域具有更好的性能。
其次,纳米纤维材料具有高强度和高可拉伸性,可用于制备高性能纺织材料、过滤器、生物医学支架等。
此外,纳米纤维材料还具有优异的透气性和防护性能,可应用于口罩、防弹材料等领域。
3. 静电纺丝技术在不同领域的应用3.1 纺织领域静电纺丝技术制备的纳米纤维材料在纺织领域具有广阔的应用前景。
其具有的高比表面积和高强度使其成为制备高性能纺织材料的理想选择。
例如,将静电纺丝纳米纤维与常规纺织纤维结合,可以制备出具有更好透气性、抗菌性和防尘性能的纺织品。
此外,纳米纤维材料还可以被用于制备高效过滤材料和防弹材料。
静电纺丝法制备纳米纤维材料的研究一、引言纳米纤维材料具有突出的性能和应用前景,也成为了研究的热点领域。
其中,静电纺丝法作为一种制备纳米纤维材料的有效手段,在制备新型功能材料、纳米传感器、高效滤料等方面得到了广泛应用。
本文旨在从静电纺丝的原理、影响因素、纳米纤维材料制备及其应用等方面进行探讨。
二、静电纺丝法的原理静电纺丝法是一种通过静电力将溶液或熔体中的材料拉伸成纤维的方法,其工作原理主要基于电荷的相互作用。
将电荷量极小的液体通过针口细孔注入一定作用电场的区域,溶液中的分子会受到电场作用而形成直径约为几毫米的液滴。
当液滴越过针尖位置时,电场将液滴内部的电荷分布不均匀地拉伸并发生极化,此时液滴极性变化引发静电力的作用,液滴表面附着上的荷电分子会被电场加速拉伸,从而形成纺丝流。
在纺丝过程中,液滴内部溶液挥发蒸发,纤维逐渐细化,并随风中漂浮而将纤维收集起来即可。
三、静电纺丝法影响因素1. 溶液性质:包括溶液粘度、熔点、表面张力、介电常数、溶解度等。
如:面张力较大的液体易形成不规则形状的纤维;低粘度的液体纺丝时容易出现喷溅等问题。
2. 纺丝电场:静电纺丝中的电场强度与纤维的直径具有很大的相关性。
纤维直径可通过改变电场强度(或与之相关的电压、电流密度等)进行控制,同时还可以对纤维的形态和结构进行微调。
3. 收集器:收集器的类型和形状对制备出的纳米纤维材料的质量和形貌影响显著。
与此同时,收集器对纤维形态的影响还是该领域研究的热点和难点。
4. 操作条件:比如通风条件、湿度、温度、气流速度等,也会对静电纺丝制备纳米纤维材料产生影响。
四、静电纺丝制备纳米纤维材料静电纺丝法制备的纳米纤维材料已经得到广泛应用,并在许多领域发挥了独特的作用。
此处将简要介绍其中几个应用领域。
1. 纳米级滤料:由于静电纺丝法可以将材料拉成直径为数十纳米的纤维,因此用其制备纳米级滤料可以大大提高滤材的表面积和孔隙率,从而提高滤材的过滤效率,并且还具有良好的机械性能和生物兼容性能。
一、引言
静电纺丝法是一种利用静电作用将高分子材料纺织成纤维的技术。
它具有成本低、操作简单、生产效率高等优点,因此在纺织、医疗、环保等领域得到了广泛应用。
二、静电纺丝法的原理
静电纺丝法的原理是通过高压电场作用下,将高分子材料溶液或熔融状态下的高分子材料
经过电荷的作用,在纺丝口处形成纤维。
静电纺丝法的纤维直径可以从几纳米到数百微米
不等,其直径和形态可以通过控制电场强度、液体流速、液体粘度、纺丝距离等参数来调节。
三、静电纺丝法的应用
1. 纺织领域
静电纺丝法可以制备出纤维直径较小、表面积较大的纤维,这种纤维具有良好的透气性和
透湿性,因此被广泛应用于纺织领域。
比如,可以用静电纺丝法制备出高性能的过滤材料、防护服、医用绷带等。
2. 医疗领域
静电纺丝法可以制备出直径较小的纤维,这种纤维具有良好的生物相容性和可降解性,因
此被广泛应用于医疗领域。
比如,可以用静电纺丝法制备出生物可降解的缝合线、人工血
管等。
3. 环保领域
静电纺丝法可以制备出高效的过滤材料,这种过滤材料可以用于处理废水、废气等环保领域。
比如,可以用静电纺丝法制备出高效的空气过滤器、水处理材料等。
四、静电纺丝法的发展趋势
随着纳米技术的发展,静电纺丝法在纺织、医疗、环保等领域的应用将会越来越广泛。
同时,静电纺丝法的工艺也会不断完善,生产效率将会进一步提高,产品的性能也将会不断
提升。
五、结论
静电纺丝法是一种重要的高分子材料制备技术,具有广泛的应用前景。
我们相信,在不久的将来,静电纺丝法将会在更多的领域得到应用,为人们的生活带来更多的便利和福利。
静电纺丝技术制备纳米纤维膜的研究近年来,静电纺丝技术被广泛应用于制备纳米纤维膜,这一技术因其制备简单、成本低廉、成膜速度快等特点,被认为是制备纳米材料的一种有效方法。
本文将就静电纺丝技术制备纳米纤维膜的研究进行探讨。
一、静电纺丝技术的原理静电纺丝技术是利用静电力将高分子溶液或熔体拉成极细的纤维的一种制备方法。
在制备过程中,先将高分子材料加入溶剂中,制成溶液。
随着旋转电极或喷嘴的旋转,高压电极产生静电场,将离子化的高分子材料聚集在带电源上产生静电力。
这种静电力可以拉伸高分子溶液中的分子,使其在旋转电极或喷嘴的运动下将高分子材料拉成一维纳米纤维,形成纤维膜。
二、静电纺丝技术制备纳米纤维膜的优点1. 成本低廉:静电纺丝技术所需的设备简单,易于维护,在成本方面相对较低。
2. 制备速度快:在制备过程中,以极高的速度拉伸高分子材料,使其在其中形成纳米纤维,速度远高于其他制备纳米材料的方法。
3. 纤维直径均匀:由于静电纺丝过程中,高分子分子在静电场作用下均匀分布,并在旋转电极或喷嘴的运动下形成均匀的一维纳米纤维结构,所以纤维直径均匀,分布相对集中,可以控制纤维直径在数十纳米至几百纳米范围内。
4. 成膜效果好:静电纺丝技术制备的纳米纤维膜具有高比表面积、大孔隙率和空隙率等特点,不仅具有优异的过滤、吸附性能,而且可以与多种表面进行化学修饰,可应用于纳米催化体系、纳米电池等领域。
三、静电纺丝技术制备纳米纤维膜的应用1. 生物医学领域:利用静电纺丝技术制备的纳米纤维膜可以用于体内组织修复和人工器官的制备。
因为纤维直径小、孔隙结构通透,与生物组织相似,不仅可以为细胞提供硬度和支撑,还能促进细胞的成长和扩散,从而实现治疗和替代人体组织的功能。
2. 能源储存领域:利用静电纺丝技术制备的纳米纤维膜可以应用于电极材料、远程传感器、空气和水处理及污水处理等领域。
此外,纳米纤维膜还可以结合不同的化学物质提高纤维的导电性能和催化剂功效,从而实现纳米电池的制备。
静电纺丝技术的应用研究静电纺丝技术是一种利用电场将高分子液体或熔融体制成纳米纤维的新兴技术。
该技术具有成本低廉、操作简单、产物成分可控等优点,已被广泛应用于领域,如纺织材料、医用纺织品、滤料、膜材料等。
本文旨在探讨静电纺丝技术在不同领域中的应用和研究进展。
一、纺织材料领域静电纺丝技术在纺织材料领域中得到了广泛应用。
通过静电纺丝技术制备的纤维细度范围可以控制在几纳米至几微米的尺度,具有较大的比表面积和高的孔隙度。
因此,这些纤维可以在织物中形成复杂的结构,改善织物的性能,并且可以制成各种不同用途的纺织材料。
静电纺丝技术制备的纺织材料可以应用于多个领域。
例如,在防辐射领域中可以制成防辐射服装,提供辐射保护。
在医学领域中,可以制备纳米纤维口罩、绷带和缝合线等产品。
此外,在涂层领域中,可以将纳米纤维材料和不同的化合物结合以制成具有独特性能的新型薄膜。
二、医用纺织品领域静电纺丝技术制备的高比表面积纳米纤维对于医用纺织品制备具有巨大优势。
在该领域中,静电纺丝技术已被广泛应用于制备纳米纤维口罩、医用绷带和心脏修复材料等产品。
对于纳米纤维口罩,其纤维直径一般为100-500 nm,通常具有高的透气性和高的过滤性能。
在制备时,可以掺杂一些化合物,如银离子等,以提高口罩具有的防菌性能和抗菌性能。
除此之外,静电纺丝技术还可以用于制备人工血管、人工心脏瓣膜和脊髓修复材料。
这些产品通常由多种生物可降解聚合物制成,并且拥有优异的生物相容性和组织透明性。
三、滤料领域在滤料领域中,静电纺丝技术用于制备不同用途的过滤材料,并已被广泛应用于空气净化、污水处理和医疗手术过程中的液体过滤.。
可以用纳米纤维制成具有较高过滤效率和高比表面积的滤料。
此外,静电纺丝技术也可以用于制备空气过滤器、水过滤器、精密过滤器等各种类型的滤料。
这些过滤器具有明显的过滤效果,并且可以根据不同的过滤效率来进行制定。
四、膜材料领域静电纺丝技术已被广泛应用于制备新型膜材料。
静电纺丝技术及其应用研究静电纺丝技术是一种重要的纳米材料制备技术,它是通过电场作用将高分子溶液等材料制成纳米纤维。
它的原理是将材料分子在加压的情况下打破,使得高分子变成液滴状态,然后通过电场拉伸成纳米纤维。
这种技术不仅制备精度高,而且可以制备出具有特殊性能的材料。
随着对纳米材料的研究和应用需求的不断增加,静电纺丝技术将逐渐成为一种重要的制备技术。
一、静电纺丝技术的原理静电纺丝技术的原理是以高分子的分子间作用力为基础,通过应用电场作用力来形成纤维的纳米级工艺。
其主要步骤是将高分子物质溶解在有机溶剂、水溶液或其他溶剂中,加入必要的助剂,形成纺丝液,并均匀放置在注射器、注射泵等装置容器中;利用以高压泵带动的压力让溶液从极细孔中射出;同时施加强电场,使溶液在电场力的作用下快速拉伸并逐渐形成纳米纤维,然后收集。
静电纺丝技术制备出的纤维直径可以控制在几个纳米到几百纳米之间,而且具有高比表面积、大比表面积、独特的孔径大小和形态分布、纳米级细度的质量、制备成本低等优点。
这些性质可以应用于电子、生物医学、能源、空气净化、纺织、环境和生态等领域。
二、静电纺丝技术的应用现状目前,静电纺丝技术在超细纤维、电子器件、生物医学、环境保护、能源科技等方面广泛应用。
其中,制备纳米级超细纤维的应用最为广泛。
这些纤维具有高比表面积、高孔隙率、优异的力学性能和电性能,可以应用于制备过滤材料、光电器件、电池和催化等领域。
同时,还可以用于制备功能性纤维,如智能化纤维、多功能聚合物材料。
在生物医学领域,静电纺丝技术可以应用于制备人体补体材料、组织工程和药物传递等。
通过制备不同直径的超细纤维,并根据纤维的表面化学性质设计功能材料,可以用于解决人类健康领域面临的挑战,如感染控制、疾病诊断和治疗、组织工程和纳米医学等。
例如,利用静电纺丝技术制备的人工组织补品和药物传递器具已经获得了生物医学领域的广泛应用。
在能源科技方面,静电纺丝技术也有着重要的应用项目。