变电站智能化设计与应用
- 格式:pdf
- 大小:249.45 KB
- 文档页数:2
10KV箱式变电站智能化设计及应用研究智能化设计是现代电力系统发展的重要方向之一。
10KV箱式变电站作为电力系统中的重要组成部分,其智能化设计和应用研究具有重要的意义。
本文将对10KV箱式变电站智能化设计及应用进行深入研究和分析。
首先,10KV箱式变电站智能化设计需要考虑的方面包括安全性、可靠性、效益性、可扩展性和可控性。
在安全性方面,可以利用智能化技术,通过传感器、控制器等设备对变电站进行实时监测和故障检测,提前发现变电站存在的安全隐患,并采取相应措施进行处理。
可靠性方面,可以通过自动化系统对变电站进行远程监控和管理,及时发现问题并进行修复,减少因人为原因引起的故障发生率。
在效益性方面,智能化设计可以提高变电站的运行效率,降低运维成本,并能够更好地适应不同场景的需求。
可扩展性方面,智能化设计需要考虑变电站的可扩展性,能够根据需求进行灵活的扩展和升级。
可控性方面,智能化设计需要提供良好的人机交互界面,在变电站的日常管理和运维过程中提供更加方便、高效的操作方式。
其次,10KV箱式变电站智能化应用的关键技术包括物联网、大数据、人工智能和云计算等。
物联网技术可以实现对变电站的设备、仪器等进行实时监测和数据采集,实现对变电站装置的远程监控和管理。
大数据技术可以对采集到的海量数据进行处理和分析,提取有用信息,为变电站的运维决策提供支持。
人工智能技术可以通过模型建立、数据分析等手段,实现对变电站的智能化管理和故障诊断。
云计算技术可以实现对数据的存储和共享,提供基于云的变电站管理平台,方便运维人员进行远程管理和控制。
此外,10KV箱式变电站智能化应用的具体场景包括智能巡检、智能故障处理、智能运维和智能能源管理等。
通过智能巡检技术,可以利用机器视觉和传感技术对变电站设备进行自动巡检和状态监测,实时获取设备的运行状态,及时发现隐患并进行预警。
智能故障处理技术可以利用大数据和人工智能技术对变电站的故障进行智能诊断和处理,提高故障处理的效率和质量。
智能变电站的设计与实施在当今科技飞速发展的时代,电力系统的智能化成为了重要的发展趋势。
智能变电站作为电力系统的关键组成部分,其设计与实施对于提高电力供应的可靠性、稳定性和效率具有至关重要的意义。
智能变电站是采用先进的传感器、智能控制技术和通信技术,实现对变电站设备的智能化监测、控制和保护的新型变电站。
与传统变电站相比,它具有更高的自动化水平、更强的故障诊断和处理能力,以及更好的兼容性和扩展性。
在设计智能变电站时,首先要考虑的是整体架构的规划。
这包括一次设备、二次设备以及通信网络的布局。
一次设备如变压器、断路器等需要具备智能化的监测和控制功能,能够实时反馈设备的运行状态和参数。
二次设备则包括继电保护装置、测控装置等,它们需要具备高度的集成化和智能化,能够快速准确地处理各种数据和信号。
通信网络是连接各个设备的“神经中枢”,需要具备高带宽、低延迟和高可靠性,以确保数据的实时传输和共享。
为了实现这些目标,先进的传感器技术被广泛应用于智能变电站。
例如,通过在变压器上安装油温、油位、绕组温度等传感器,可以实时监测变压器的运行状态,提前发现潜在的故障隐患。
在断路器上安装行程传感器、压力传感器等,可以准确掌握断路器的分合闸状态和操作性能。
智能控制技术也是智能变电站的核心之一。
通过智能控制算法,可以实现对变电站设备的自动控制和优化运行。
例如,根据负荷变化自动调整变压器的分接头,实现无功功率的自动补偿,提高电能质量和电网的运行效率。
在通信方面,IEC 61850 标准成为了智能变电站通信的重要规范。
它定义了统一的数据模型和通信协议,使得不同厂家的设备能够实现互联互通和互操作。
基于以太网的通信网络架构,为大量数据的高速传输提供了保障。
在实施智能变电站的过程中,工程施工的质量和进度控制至关重要。
施工前需要进行详细的现场勘查和设计方案优化,确保施工方案的可行性和合理性。
施工过程中要严格按照相关标准和规范进行操作,保证设备的安装质量和接线的准确性。
风电场箱式变电站智能化应用及除湿方案分析摘要:目前风电场单台风机升压设备大多采用油浸式箱式变电站,虽然箱式变电站应用广泛,且技术相对成熟,但在风电场恶劣的户外条件下运行,还是存在一些运行缺陷,同时根据不同厂家生产工艺及技术条件的差异,运行缺陷也不尽相同。
加之风电场风机分布较广,箱式变电站不具备远方监控功能,运行人员无法及时到达现场消除箱变缺陷,会导致箱变故障进一步扩大,从而影响风电场正常运行。
关键词:风电场箱式变电站;除湿;设计施工;探析1箱式变电站的构成与运行特点第一,变压器容量小,空载时间长。
国内陆上风电场单机多为1.5MW、2.0MW、2.5MW机型,容量均不大。
第二,低进高出的连接方式。
风电从箱变低压侧0.69kV进线,高压侧35kV出线,进出线均采用电缆连接方式。
目前多选用0.69kV/35kV的升压变压器升压,然后通过集电线路汇集至升压站35kV配电装置上。
第三,高压侧配置避雷器。
高压侧避雷器与风电机组内部的过电压保护装置组成过电压吸收回路,在高压侧的绝缘设计上应充分考虑避雷器残余电压对高压侧电气设备的影响。
第四,使用环境恶劣。
我国风力资源丰富的地区很多都是在极端温差大、风沙盛行、空气湿度大、盐雾聚集等环境恶劣的地区,箱变在设计生产中还应考虑防尘、防雨、防凝露、防动物进入以及通风散热的要求。
第五,过载时间少。
由于变压器容量一般都比风力发电机容量大,并且风机内部配置有微机自诊断功能,在风机过载时会自动采取限速措施或切机,箱变很少出现过载情况。
2箱式变电站的智能化分析2.1箱式变电站中检测维修的智能化如果箱式变电站的接地系统的线路的效果无效的话,箱式变电站的运行变量以及一些其他的参数信息能够对箱式变电站选线工作产生较大的影响,影响的程度则会由于运行变量和参数的不同而不同,而相关的检修工作人员在进行检修的过程中,可以利用消弧线圈作为一种接地系统进行解决,而FTU能够捕捉零序电压和电流的功能则可以在故障位置确定的方面上帮助到相关的检修人员,FTU在确定故障位置之后还能够将信息数据上传到通过信号的方式传输到系统中,这样就能够使维修工作人员准确的了解到故障的地点,并且能够及时的进行维修工作,确保系统故障不会扩大并保障电力系统的良好运行。
配电室(变电站)智能化改造方案配电室(变电站)智能化改造方案主要针对电气设备、环境情况、安全管理而进行改造,使用现代化的手段,对室内设备、环境进行自动的采集、判断,即时无人在现场值守,也能获得配电室、变电站的实时信息,解决设备排障难、应急效率慢这一类的难题。
一、配电室(变电站)智能化改造方案的特性1、开放性:能与的市面上不同厂家的传感器设备对接,比如:摄像头、水泵、精密空调等。
2、统一性:采用标准的MODBUS、rs485、rs232等通讯规约,自动完成数据通信传输,让不同类型的设备,实现完整的信息管理。
3、智能化:针对不同类型的设备监控不同的参量,针对不同的账户,配置对应的权限,满足功能、权限等需求。
4、易扩展:将来想增加新功能、新传感器,现场接线之后,在软件上进行简单配置就能实现。
5、易操作:中文的界面,理解容易、操作简单,不会使用的人员也能迅速上手,开展电力运维工作。
6、高可靠:所选用的产品、所设计的架构都十分可靠,支持双供电、独立组网,能确保系统常年稳定运转。
二、配电室智能化改造方案运用价值1、提高检修、巡查的工作效率,把薄弱的运维工作变成高质量。
2、配电室状态的深度分析,潜在故障、风险能在短时间被发现。
3、设备得到集中监管,环境得到实时管控,确保电力系统的工作质量。
4、多业务、功能融合,资源高度整合、利用。
5、减少交通、人力、物力等成本消耗,让电力部门运维开支降低。
6、多种报警通知的手段,改变以往单一、人工的告警应急通知方式。
配电室(变电站)智能化改造方案升级了原有的运维方式,将单一、传统的定期巡查、人工值守变成实时巡检、无人值班,解决因无法及时获知情况、发现电力故障等类型的问题,实现自动化、实时性的监控维护,给变电站、配电室带来高度的防护。
智能变电站典型设计方案一、智能变电站的架构智能变电站的架构通常分为三层:过程层、间隔层和站控层。
过程层主要由智能传感器、智能执行器等设备组成,负责实现电力一次设备的智能化监测和控制,如电流互感器、电压互感器、断路器等。
这些智能设备能够实时采集电气量和状态信息,并将其转化为数字信号,通过网络传输给间隔层和站控层。
间隔层包含继电保护装置、测控装置等二次设备,主要负责对本间隔内的一次设备进行保护、控制和监测。
间隔层设备接收来自过程层的信息,并根据预设的逻辑和算法进行处理,实现对一次设备的保护和控制功能。
站控层则包括监控主机、远动通信装置等,是变电站的控制中心,负责对整个变电站进行运行监视、操作控制和信息管理。
站控层通过通信网络与间隔层和过程层进行数据交互,实现对变电站的全面管理和控制。
二、设备选型1、智能变压器智能变压器是智能变电站的核心设备之一,它采用了先进的传感器技术和智能控制技术,能够实时监测变压器的油温、油位、绕组温度、铁芯接地电流等运行参数,并具备自动调压、冷却控制等功能。
此外,智能变压器还具备故障诊断和预测功能,能够提前发现潜在的故障隐患,提高变压器的运行可靠性。
2、智能断路器智能断路器采用了新型的操动机构和传感器技术,能够实现断路器的智能操作和状态监测。
它可以实时监测断路器的分合闸状态、行程、速度、操作次数等参数,并具备在线监测断路器的绝缘性能、机械性能等功能。
智能断路器还具备远程控制和智能保护功能,能够根据电网的运行状态快速准确地动作,保障电网的安全稳定运行。
3、智能开关柜智能开关柜集成了多种智能化功能,如开关柜状态监测、智能控制、故障诊断等。
它可以实时监测开关柜内的温度、湿度、电压、电流等参数,并对开关柜的操作进行智能控制和管理。
智能开关柜还具备故障预警和诊断功能,能够及时发现开关柜内的潜在故障,提高开关柜的运行可靠性。
三、通信系统智能变电站的通信系统是实现智能化功能的关键,它采用了基于以太网的通信技术,如 IEC 61850 标准。
智能变电站技术及应用课程设计
一、引言
随着电力系统的发展和智能化水平的提高,传统的变电站已无法满足需求。
智
能变电站技术因其高度自动化、可靠性强、监测能力强等优点,成为了变电站领域中的研究热点。
本文将介绍智能变电站的相关技术及应用,并针对该技术展开课程设计。
二、智能变电站技术概述
智能变电站技术是指基于现代信息技术,采用智能设备、传感器和通信技术对
变电站进行综合管理、自动化控制和保护的技术。
智能变电站技术的核心是基于大数据和人工智能技术的智能化管理系统。
下面介绍智能变电站技术的主要特点:
1.高度自动化
智能变电站采用自动化装置进行电力系统自动化控制和监测,可减少手工干预
和人为误操作。
2.可靠性强
智能变电站大大提升了电力系统的可靠性,可以实现设备运行状态监测和实时
故障诊断,进而实现快速恢复。
3.监测能力强
智能变电站采用高精度的传感器和监测设备,可以实现对电力系统电压、电流、负荷等参数的实时监测和智能管理。
1。
变电站智能化设计与应用
发表时间:2019-06-13T10:30:13.350Z 来源:《电力设备》2019年第2期作者:白杨[导读] 摘要:本文作者分析了国内外变电站的现状,介绍了变电站智能化改造设计的内容,供大家参考。
(国网内蒙古东部电力有限公司物资分公司内蒙古呼和浩特市 010000)摘要:本文作者分析了国内外变电站的现状,介绍了变电站智能化改造设计的内容,供大家参考。
关键词:变电站;智能化;设计;探讨智能变电站就是将信息技术、通信技术、计算机技术和原有的变电基础设施高度集成而形成的新型变电站,它具有提高能源效率、减少对环境的影响、提高供电的安全性和可靠性等多个优点。
智能主要体现在:1)可观测--量测、传感技术;2)可控制--对观测状态进行控制;3)嵌入式自主处理技术;4)实时分析--从数据到信息的提升;5)自适应;6)自愈。
本文在常规变电站智能化改造研究的基础上,实
现常规变电站的智能化改造的实际应用。
智能变电站以先进的信息化、自动化和分析技术为基础,灵活、高效、可靠地完成对输电网的测量、控制、调节、保护、安稳等功能,实现提高电网安全性、可靠性、灵活性的资源优化配置水平的目标。
一、国内外变电站的现状
国内变电站自动化技术经过数十年的发展,整体水平已经达到国际领先。
新建变电站,无论电压等级高低,大多采用变电站自动化系统,许多老变电站也经过改造实现自动化。
当前的数字化变电站从技术上来说,其突出成就是实现了变电站信息的数字采集和网络化信息交互,但是这对于智能电网的需求来说,还是远远不够的,一种新型的变电站—智能变电站应运而生。
智能变电站是采用先进、可靠、集成、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,同时具备支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。
在智能电网技术的推动下,智能变电站将成为变电站建设的主流模式。
二、智能变电站技术的突出应用
1.一次变电设备的智能化
高压配电设备的智能化是变电站智能变电技术的一个重大创新,其帮助实现了在一定的范围内建立了智能电网。
实时监控电力运行情况,电能传感器实现自动化处理故障和全面控制电力设备。
智能变电技术将电能传感器和高压设备连接起来,兼顾控制和检测两个方面。
对设备进行一体化设计帮助实现了分层控制设备的管理。
2.高级变电功能的实现
智能变电站能够帮助实现变电设备整体检测、智能报警和智能信息分析、线路综合故障控制等高级变电功能。
以下分别具体阐述分析。
(1)变电设备整体监测计算机终端的使用再加上站控系统帮助实现设备监测功能,与此同时,还可以无间歇得获得多种智能变电装置的运行信号和电力设备运行数据,降低无效数据收集率,以此提高了监控效率。
鉴于技术水平的阻碍,对于实现部分智能变电站的整体检测还存在着一些难点,因此,各个变电站可以以现实为依据对核心设备进行监测,便于有效检测高负荷设备。
(2)线路综合故障控制智能变电站的信息处理能了和故障排查能力在于数据采集的情况。
而智能变电站参考在线信息处理技术和数据库模型技术,采用先进的数据采集技术,开发了状态监测和诊断系统。
在这种技术条件下,技术人员需将电力设备运行时的相关参数和特征输入诊断系统和数据库,等到系统运行之后,分析一定时间内变电系统的工作状态,之后对设备进行深入的、具体的评价。
智能变电站还可以智能防误,其和传统变电站中的封闭功能有所区别,增加了多层自动封闭系统,增设了站控端的自动封闭功能。
其使用避免发生连环事故的可能性,使得变电站故障变得可控制。
三、变电站智能化的基本结构及特点
1.集中式系统结构
集中式一般采用功能较强的计算机并扩展其I/O接口,集中采集变电站的模拟量和数量等信息,集中进行计算和处理,分别完成微机监控、微机保护和自动控制等功能。
由前置机完成数据输入输出、保护、控制及监测等功能,后台机完成数据处理、显示、打印及远方通讯等功能。
此类结构对监控主机的性能要求较高,且系统处理能力有限,开发手段少,系统在开放性、扩展性和可维护性等方面较差,抗干扰能力不强。
2.分布式系统结构
按变电站被监控对象或系统功能分布的多台计算机单功能设备,将它们连接到能共享资源的网络上实现分布式处理。
其结构的最大特点是采用主、从CPU协同工作方式,各功能模块如智能电子设备(IntelligentElectronicDevice,IED)之间采用网络技术或串行方式实现数据通信,将变电站自动化系统的功能分散给多台计算机来完成。
各功能模块(通常是多个CPU)之间采用网络技术或串行方式实现数据通信,选用具有优先级的网络系统较好地解决了数据传输的瓶颈问题,提高了系统的实时性。
其方便系统扩展和维护,局部故障不影响其他模块正常运行。
该模式在安装上可以形成集中组屏或分层组屏两种系统组态结构,较多地使用于中、低压变电站。
但目前,还存在在抗电磁干扰、信息传输途径及可靠性保证上的问题等。
3.分散(层)分布式结构
分散(层)分布式结构采用“面向对象”设计。
所谓面向对象,就是面向电气一次回路设备或电气间隔设备,间隔层中数据、采集、控制单元(I/O单元)和保护单元就地分散安装在开关柜上或其他一次设备附近,相互间通过通信网络相连,与监控主机通信。
四、自动化技术在变电运行管理中的完善
1.加强技术的研究
首先,完善自动化通信技术,这是其他自动化技术完成的基础。
在保障变电站供电系统的同时加强通信通道建设,保障远程的数据采集与传输,并且保障自动化设备遥控的顺利进行。
其次,提升数据的采集与传输技术。
自动化设备需要在数据的分析结果上完成指令的发出。
只有正确采集以及传输数据,自动化技术才可以得到进一步的利用。
最后,还要加强自动报警装置的建设。
自动化系统虽然避免了人为的一些事故,但不代表自动化技术不存在任何问题,变电站要设立自动报警装置,加强设备的监督与维护。
2.培养高素质的专业队伍
变电站的自动化设备虽然减少了工作人员的任务与压力,但自动化技术设备还是需要一些专门的技术人员来维护。
这就要求供电公司成立一支专业化的队伍,加强专业技术培训,增强他们的专业技能,确保他们能有效运行自动化的变电设备。
其次,变电站还要明确岗位职责,对专业人士进行职责上的划分,提高管理效率。
五、预期成果和可能的创新点
计划对需智能化改造的常规站设备、运行情况进行深入的调研,对国内的智能化变电站设备流厂家及智能化变电站相关运行维护单位进行广泛调研,深入分析电网公司对变电站智能化需求,研究智能化变电站的表达模式,并在此基础上建立一种智能化变电站系统架构。
智能变电能够完成比常规变电站范围更宽、层次更深、结构更复杂的信息采集和信息处理,变电站内、站与调度、站与站之间、站与大用户和分布式能源的互动能力更强,信息的交换和融合更方便快捷,控制手段更灵活可靠。
与常规变电站相比,智能变电站设备具有信息数字化、功能集成化、结构紧凑化、状态可视化等主要技术特征,符合易扩展、易升级、易改造、易维护的工业化应用要求。
六、结束语
变电站是电力系统中不可缺少的重要环节,它担负着电能转换和电能重新分配的繁重任务,对电网的安全和经济运行起着举足轻重的作用。
尤其是现在大容量发电机组的不断投运和超高压远距离输电和大电网的出现,使电力系统的安全控制更加复杂,如果仍依靠原来的人工抄表、记录、人工操作为主,依靠原来变电站的旧设备,而不进行技术改造的话,必然没法满足安全、稳定运行的需要,更谈不上适应现代电力系统管理模式的需求。
参考文献:
[1]康凯.农村电网智能化建设的思考[J].中小企业管理与科技(中旬刊),2015,02:277-278.
[2]梁业青.智能变电站一次设备智能化的探讨和展望[J].科技广场,2016,02:79-83.
[3]田鹏.变电站智能化技术的综合运用[J].科技视界,2016,03:260.。