统计学课后习题第六章 贾俊平等
- 格式:docx
- 大小:82.40 KB
- 文档页数:2
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss-ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。
(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。
为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。
(3)统计量是样本的一个函数。
由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。
2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。
3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。
4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。
统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。
5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
解释分类数据,顺序数据和数值型数据答案同举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数?答:(1)设12n X X X ,,…,是从总体X 中抽取的容量为n 的一个样本,如果由此样本构造一个函数12()n T X X X ,,…,,不依赖于任何未知参数,则称函数12()n T X X X ,,…,是一个统计量。
(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。
为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。
(3)统计量是样本的一个函数。
由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。
2.判断下列样本函数哪些是统计量?哪些不是统计量?1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故1T 、2T 是统计量,3T 、4T 不是统计量。
3.什么是次序统计量?答:设12n X X X ,,…,是从总体X 中抽取的一个样本,()i X 称为第i 个次序统计量,它是样本12()n X X X ,,…,满足如下条件的函数:每当样本得到一组观测值12X X ,,…,n X 时,其由小到大的排序(1)(2)()()i n X X X X ≤≤≤≤≤……中,第i 个值()i X 就作为次序统计量()i X 的观测值,而(1)(2)()n X X X ,,…,称为次序统计量,其中(1)X 和()n X 分别为最小和最大次序统计量。
4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。
统计学(第五版)贾俊平课后思虑题和练习题答案(最后完好版)第一部分思虑题第一章思虑题什么是统计学统计学是对于数据的一门学科,它采集,办理,剖析,解说来自各个领域的数据并从中得出结论。
解说描绘统计和推测统计描绘统计;它研究的是数据采集,办理,汇总,图表描绘,归纳与剖析等统计方法。
推测统计;它是研究如何利用样本数据来推测整体特色的统计方法。
统计学的种类和不一样种类的特色统计数据;按所采纳的计量尺度不一样分;(定性数据)分类数据:只好归于某一类其余非数字型数据,它是对事物进行分类的结果,数据表现为类型,用文字来表述;(定性数据)次序数据:只好归于某一有序类其余非数字型数据。
它也是有类其余,但这些类型是有序的。
(定量数据)数值型数据:按数字尺度丈量的察看值,其结果表现为详细的数值。
统计数据;按统计数据都采集方法分;观察数据:是经过检查或观察而采集到的数据,这种数据是在没有对事物人为控制的条件下获取的。
实验数据:在实验中控制实验对象而采集到的数据。
统计数据;按被描绘的现象与实践的关系分;截面数据:在相同或相像的时间点采集到的数据,也叫静态数据。
时间序列数据:准时间次序采集到的,用于描绘现象随时间变化的状况,也叫动向数据。
解说分类数据,次序数据和数值型数据答案同举例说明整体,样本,参数,统计量,变量这几个看法对一千灯泡进行寿命测试,那么这千个灯泡就是整体,从中抽取一百个进行检测,这一百个灯泡的会合就是样本,这一千个灯泡的寿命的均匀值和标准差还有合格率等描绘特色的数值就是参数,这一百个灯泡的寿命的均匀值和标准差还有合格率等描绘特色的数值就是统计量,变量就是说明现象某种特色的看法,比方说灯泡的寿命。
变量的分类变量能够分为分类变量,次序变量,数值型变量。
变量也能够分为随机变量和非随机变量。
经验变量和理论变量。
举例说明失散型变量和连续性变量失散型变量,只好取有限个值,取值以整数位断开,比方“公司数”连续型变量,取之连续不停,不可以一一列举,比方“温度”。
《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析第6章方差分析6.1 0215.86574.401.0=<=F F (或01.00409.0=>=-αvalue P ),不能拒绝原假设。
6.2 579.48234.1501.0=>=F F (或01.000001.0=<=-αvalue P ),拒绝原假设。
6.3 4170.50984.1001.0=>=F F (或01.0000685.0=<=-αvalue P ),拒绝原假设。
6.4 6823.37557.1105.0=>=F F (或05.0000849.0=<=-αvalue P ),拒绝原假设。
6.5 8853.30684.1705.0=>=F F (或05.00003.0=<=-αvalue P ),拒绝原假设。
85.54.14304.44=>=-=-LSD x x B A ,拒绝原假设;85.58.16.424.44=<=-=-LSD x x C A ,不能拒绝原假设;85.56.126.4230=>=-=-LSD x x C B ,拒绝原假设。
6.6554131.3478.105.0=<=F F (或05.0245946.0=>=-αvalue P ),不能拒绝原假设。
第7章相关与回归分析7.1 (1)散点图(略),产量与生产费用之间正的线性相关关系。
(2)920232.0=r 。
(3)检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。
7.2 (1)散点图(略)。
(2)8621.0=r 。
7.3 (1)0?β表示当0=x 时y 的期望值。
(2)1?β表示x 每变动一个单位y 平均下降0.5个单位。
(3)7)(=y E 。
7.4 (1)%902=R 。
(2)1=e s 。
7.5 (1)散点图(略)。
第六章统计量及其抽样分布练习题一.选择题1.抽样分布是指()A.一个样本各观测值的分布B. 总体中各观测值的分布C.样本统计量的分布 D.样本数量的分布2.根据中心极限定理可知,当样本量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为()σ D. 2σ/nA.μB. XC. 23. 根据中心极限定理可知,当样本量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为()σ D. 2σ/nA.μB. XC. 24.从均值为μ,标准差为σ(有限)的任意一个总体中抽取大小为n的样本,则()A.当n充分大时,样本均值X的分布近似遵从正态分布B.只有当n<30时,样本均值X的分布近似遵从正态分布C.样本均值X的分布与n无关D.无论n多大,样本均值X的分布都为非正态分布5.假定总体服从均匀分布,从总体中抽取容量为36的样本,则样本均值的抽样分布()A.服从均匀分布B.服从T分布C.服从非正态分布D.近似服从正态分布6.从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差()A.保持不变B.增加C.减小D.无法确定7.某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标准差为400元。
由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是()A.正态分布,均值为250元,标准差为40元B.正态分布,均值为2500元,标准差为40元C.右偏,均值为2500元,标准差为40元D.正态分布,均值为2500元,标准差为400元8.在一个饭店门口等待出租车的时间是左偏的,均值为12分钟,标准差为3分钟。
如果从饭店门口随机抽取100名顾客并记录他们等待出租车的时间,则该样本容量下的平均等待出租车的时间的分布服从()A.正态分布,均值为12分钟,标准差为0.3分钟B.正态分布,均值为12分钟,标准差为3分钟C.左偏分布,均值为12分钟,标准差为3分钟D. 左偏分布,均值为12分钟,标准差为0.3分钟9.某厂家生产地灯泡寿命的均值为60小时,标准差为4小时。
第1章绪论5.简要说明抽样误差和非抽样误差。
答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。
抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。
b5E2RGbCAP6.一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。
因此,他们开始检查供货商的集装箱,有问题的将其退回。
最近的一个集装箱装的是2 440加仑的油漆罐。
这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。
装满的油漆罐应为 4.536 kg。
要求:p1EanqFDPw(1>描述总体;(2>描述研究变量;(3>描述样本;(4>描述推断。
答:(1>总体:最近的一个集装箱内的全部油漆;(2>研究变量:装满的油漆罐的质量;(3>样本:最近的一个集装箱内的50罐油漆;(4>推断:50罐油漆的质量应为4.536×50=226.8kg。
7.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。
这场战役因影视明星、运动员的参与以及消费者对品尝实验优先权的抱怨而颇具特色。
假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝实验(即在品尝实验中,两个品牌不做外观标记>,请每一名被测试者说出A品牌或B品牌中哪个口味更好。
要求:DXDiTa9E3d(1>描述总体;(2>描述研究变量;(3>描述样本;(4>描述推断。
答:(1>总体:市场上的“可口可乐”与“百事可乐”(2>研究变量:更好口味的品牌名称;(3>样本:1000名消费者品尝的两个品牌(4>推断:两个品牌中哪个口味更好。
第2章统计数据的描述思考题4. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。
第六章 统计量及其抽样分布
6.1 调节一个装瓶机使其对每个瓶子的灌装量均值为μ盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差 1.0σ=盎司的正态分布。
随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。
试确定样本均值偏离总体均值不超过0.3盎司的概率。
解:总体方差知道的情况下,均值的抽样分布服从()2,N
n σμ的正态分布,由正态分布,标准化得到标准正态分布:
x ()0,1N ,因此,样本均值不超过总体均值的概率P 为: ()0.3P x μ-≤
=P ⎫≤
=x P ⎛⎫≤≤ =()0.90.9P z -≤≤=2()0.9φ-1,查标准正态分布表得()0.9φ=0.8159 因此,()
0.3P x μ-≤=0.6318 6.2 ()
0.3P Y μ-≤
=P ⎫≤
=x P ⎛⎫≤≤
=(||P z ≤
=(21φ-=0.95
查表得: 1.96= 因此n=43
6.3 1Z ,2Z ,……,6Z 表示从标准正态总体中随机抽取的容量,n=6的一个样本,试确定常数b ,使得6210.95i i P Z b =⎛⎫≤= ⎪⎝⎭
∑ 解:由于卡方分布是由标准正态分布的平方和构成的:
设Z 1,Z 2,……,Z n 是来自总体N (0,1)的样本,则统计量
222212χ=+++n Z Z Z
服从自由度为n 的χ2分布,记为χ2~ χ2(n )
因此,令622
1i i Z χ==∑,则()62
22
16i i Z χχ==∑,那么由概率6210.95i i P Z b =⎛⎫≤= ⎪⎝⎭∑,可知: b=()210.956χ-,查概率表得:b=12.59
6.4 在习题6.1中,假定装瓶机对瓶子的灌装量服从方差21σ=的标准正态分布。
假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差2221
1(())1n i i S S Y Y n ==--∑,确定一个合适的范围使得有较大的概率保证S 2落入其中是有用的,试求b 1,b 2,使得
212()0.90p b S b ≤≤=
解:更加样本方差的抽样分布知识可知,样本统计量:
2
22(1)~(1)n s n χσ--
此处,n=10,21σ=,所以统计量
2
2222(1)(101)9~(1)1
n s s s n χσ--==- 根据卡方分布的可知:
()()2212129990.90P b S b P b S b ≤≤=≤≤= 又因为:
()()()2221221911P n S n ααχχα--≤≤-=-
因此:
()()()()22221212299919110.90P b S b P n S n ααχχα-≤≤=-≤≤-=-=
()()()()22221212999191P b S b P n S n ααχχ-⇒≤≤=-≤≤-
()()()2220.950.059990.90P S χχ=≤≤= 则:
()()2210.9520.0599,99b b χχ⇒==()()220.950.051299,9
9b b χχ⇒== 查概率表:()20.959χ=3.325,()20.059χ=19.919,则
()20.95199b χ==0.369,()20.05299b χ==1.88。