气温的时空变化规律
- 格式:doc
- 大小:46.50 KB
- 文档页数:6
大连地区气温和降水时空变化特征大连地区是我国东北地区的一个港口城市,地处渤海湾南岸,属于山东半岛经济区和辽东半岛发达城市群。
该地区整体气候属于温带季风气候,但由于地形地貌的影响,其气候也呈现出一定的多样性。
本文旨在研究大连地区的气温和降水时空变化特征。
一、气温变化特征:在大连地区,温度主要受北极冷空气和太平洋暖空气的影响,季节性的变化非常明显。
如图1所示,大连地区的年平均气温为10℃左右,相对较低。
春季气温逐渐回升,夏季气温最高达28-30℃,秋季气温逐渐降低,冬季则由于受到冷空气的影响,气温较低,甚至会出现零下10℃以上的极端天气。
图1:大连地区气温年变化曲线此外,大连地区的气温还表现出以下几个特点:1. 显著的暖化趋势:自20世纪70年代开始,大连地区的气温呈现明显的升高趋势,其中夏季气温变化最为显著,每十年增加0.32℃左右,说明大连地区正在经历全球气候变暖的影响。
2. 冷空气影响较大:虽然大连地区属于季风气候,但由于地处东北地区,受到冷空气的影响较大。
在冬季,冷空气南下,大连地区气温骤降,极端低温天气更是有可能发生,对当地人民的生产和生活造成一定的影响。
3. 城市热岛效应:大连是一个大城市,人口密集区域会形成城市热岛,即城市内部气温高于城市周边区域。
在夏季,城市热岛效应会导致大连市区气温比周边地区高出1-2℃。
大连地区的降水主要集中在夏季,1至5月为旱季,6至9月为雨季。
如图2所示,大连地区的降水量年变化呈现波动上升的趋势。
降水在时间和空间上存在着一定的变化特征:1. 明显的季节性变化:大连地区的降水季节性十分明显,夏季降水量较多,占全年降水量的60%以上,春秋季次之,冬季降水量较少。
2. 区域性差异:由于地貌等因素的影响,大连地区降水在空间上存在一定的差异。
在高海拔山区,降水量相对较大,而在低平地区则相对较少。
3. 不规则的年际变化:大连地区的降水量在年际变化上存在不规则性,有些年份的降水量会明显偏多或偏少,如2003年和2013年的夏季降水量分别达到历史同期的1.5倍和2倍以上,而1997年和2001年的夏季降水量则较少,只有正常值的3成左右。
气温分布及成因方法平台1.思维步骤:理解大气热状况—归纳影响气温的因素—解释气温时空分布特点。
2.运用关键:高中理论要与初中世界、中国区域的气温分布特点(等温线区域图)紧密结合。
必懂原理一.影响气温高低的因素太阳辐射是根本原因(纬度、正午太阳高度、白昼长短)—太阳辐射是能量源泉;大气自身条件(天气、大气透明度、大气密度)—与大气对太阳辐射削弱有关;地面状况{海陆分布、洋流、地形)—地面是近地面大气主要的直接热源;人类活动—森林、水库、城市等影响大气和下垫面。
二.气温的空间分布和时间变化规律1、图表分析气温的垂直分布规律及原因2、气温水平空间分布规律及成因①世界气温水平分布特点从世界7月和1且等温线分布图上,可以清楚地看到地球上气温分布的一般规律。
(一)在南北半球上,无论7月或1月,气温都是从低纬向两极递减。
这是因为低纬度地区,获得太阳辐射能量多,气温就高;高纬度地区,获得太阳辐射能量少汽温就低。
从图上可以看出,等温线并不完全与纬线平行,这说明气温的分布,除主要受太阳辐射影响外,还与大气运动、地面状况等因素密切相关。
(二)南半球的等温线比北半球平直,这是因为表面物理性质比较均一的海洋,在南半球要比北半球广阔得多。
(三)北半球,1月份大陆上的等温线向南(低纬)凸出,海洋上则向北(高纬)凸出;7月份正好相反。
这表明在同一纬度上,冬季大陆比海洋冷,夏季大陆比海洋热。
(四)7月份,世界上最热的地方是北纬200一300大陆上的沙漠地区。
这是因为:7月份太阳直射北纬200附近;沙漠地区少云雨,太阳辐射强度大;沙漠对太阳辐射吸收强,增温快。
撒哈拉沙漠是全球的炎热中心。
1月份,西伯利亚形成北半球的寒冷中心。
世界极端最低气温出现在冰雪覆盖的南极洲大陆上。
等温线的弯曲判读1、判断南北半球因为太阳辐射是地球表面热量的主要来源,所以无论冬夏季节还是南北半球,气温都是由低纬向高纬递减。
需要特别注意的是:北半球的低纬在南方,高纬在北方;南半球则相反。
中国气温变化的时空特征分析近几十年来,全球气温变化成为了一个备受关注的话题。
作为世界上人口最多的国家之一,中国也不可避免地受到了气候变化的影响。
本文将从时空特征的角度对中国气温变化进行分析,旨在探讨气候变化对中国的影响以及可能带来的挑战和机遇。
时空特征是研究气象要素变化的重要方法之一。
首先,我们来看气温变化的时间特征。
根据气象数据的分析,中国的气温在过去几十年中普遍呈现上升趋势。
特别是近几十年来,气温的升高速度更为迅猛。
不同地区对气温变化的感知可能有所不同,但总的来说,中国的气温升高是不可忽视的现象。
这一变化对中国的农业、能源消耗以及生态环境都带来了很大的挑战。
其次,我们来看气温变化的空间特征。
中国地域辽阔,自然环境多样,因此气温变化的空间特征也呈现出很大的差异。
以北方地区为例,由于地势高原性,气温变化较为明显,尤其是冬季气温的下降更为显著。
而南方地区则受到季风气候的影响,气温变化较为温和,夏季的升温相对较为明显。
此外,中国东部沿海地区的气温变化相对平缓,受到海洋调节的影响较大。
相比之下,西部内陆地区则更容易受到气温变化的冲击。
气温变化的时空特征不仅仅是一个科学问题,它还涉及到人类社会的诸多方面。
首先,气温变化对农业产生了巨大影响。
农作物生长周期和收获时间都与气温密切相关。
气温升高会导致春季来临的时间提前,从而影响农作物的种植和生长情况。
同时,气候变暖还会引发更多的天气灾害,如干旱、洪涝等,对农业生产造成破坏。
这对中国这样一个农业大国来说,是一个巨大的挑战。
其次,气温变化对能源消耗也产生了影响。
随着气温的上升,人们对空调、冷藏等用电设备的需求也随之增加,从而使得电力消耗急剧上升。
这对中国政府在能源供应和环保方面都带来了很大的压力,需要采取相应的措施来保障能源稳定供应,同时减少二氧化碳的排放。
最后,气温变化对生态环境的影响也不可忽视。
中国是世界上生物多样性最丰富的国家之一,气温变化可能导致生物种群数量、分布范围等方面的变化,对生态系统产生深远影响。
2012年高三地理二轮复习专题五:大气的热运动和大气运动专题构建知识体系,高屋建瓴整体把握 一、气温的时空变化规律1.气温的时间变化(1)气温的日变化:一般,日气温最高出现在 时,日最低气温出现在 。
一般,低纬度地区气温日较差 高纬度地区,陆地日较差 海洋。
(2)气温年变化:一年之中,就北半球而言,太阳辐射最强在 日,最热月在 月; 一般气温年较差高纬度 低纬度,陆地 海洋。
2.气温空间分布(1)全球范围内,无论在7月或1月,气温都是从低纬度向高纬度 。
(2)南半球等温线比北半球 (平直、弯曲)。
(3)7月份大陆等温线向 凸出,1月份海洋等温线向 凸出。
例1 自某城市市中心向南、向北分别设若干站点,监测城市气温的时空分布。
监测时间为8日(多云)9时到9日(晴)18时。
监测结果如图2所示。
据此完成1~3题。
1.图示的最大温差可能是 A .4℃ B.12℃ C.16℃ D.18℃2.监测时段被监测区域气温A .最高值多云天高于晴天B.白天变化晴天比多云天强烈 C .从正午到午夜逐渐降低D.白天变化比夜间变化平缓3.下列时间中热岛效应最强的是 A.8日15时左右B.8日22时左右C.9日15时左右D.9日18时左右二、天气图的判读例2中国2010年上海世界博览会于5月1日正式开园,会期l84天。
图7为我国东部地区一般年份夏季风进退及锋面位置示意图。
回答4题。
4.据图7,下列关于世博会期间影响上海的天气系统及上海的天气特点的叙述,正确的是A.5月和7月主要受冷锋影响,狂风暴雨B.6月和l0月主要受暖锋影响,阴雨连绵C.7月和8月主要受副高控制,高温少雨D.9月和10月主要受反气旋控制,寒冷干燥三、热力环流及其实践意义例3 下图(a)示意某沿海地区海陆风形成的热力环流剖面图,图(b)表示该地区0~600米的垂直气压差分布状况。
读图回答(1)~(3)(1)有关该地区气压分布状况的叙述,正确的是( )A.①地区气压高于②地 C.近地面同一等压面分布高度①地比②地低B.③地气压低于④地 D.高空同一等压面的分布高度④地比③地更高(2)下列说法正确的是( )A.a地的风向为东南风 B.b为下沉气流C.c地的风向为西南风 D.d为下沉气流(3)若该图表示白天,下列叙述正确的是( )A.甲是陆地,乙是海洋 B.甲是陆地,乙是陆地C.甲是海洋,乙是陆地 D.甲是海洋,乙是海洋四、锋面气旋与天气例4 读某地锋线(虚线)附近气压及风向(箭头)状况示意图,完成(1)~(2)题。
气温变化与垂直分异规律
气温变化与垂直分异规律如下:
气温从地面向高空递减,纬度越高,年平均气温垂直递减的度数越多。
地表上从赤道向两极,气温由高到低;山上山下,迎风坡和背风坡,
均存在小气候差异。
地表温度因纬度、季节、天气的不同而有所变化,但总体随高度的增加而递减。
海洋和陆地表面温度的日变化规律一般是:陆地>海洋,且海洋早晚温差小于白天。
而根据地理学的研究,山地垂直自然带结构与当地纬度、经度和山地
所在地的海拔高度有关。
纬度、经度和海拔高度是影响山地垂直自然
带分布的重要因素。
此外,风化、侵蚀、搬运和沉积作用也影响山地
垂直自然带的分布。
因此,气温变化与垂直分异规律是地理学中的重要规律,对理解地理
环境具有重要意义。
同时,也需要注意地区间的差异性和风化、侵蚀、搬运和沉积作用等对垂直分异的影响。
气温一、气温气温:指空气的温度,常用摄氏度(℃))表示。
二、气温的时空变化1、气温的时间变化(1)日变化①最高:地方时14时左右。
(因为太阳辐射把热量给地面,地面辐射把热量给大气需要一个过程。
)最低:日出前后。
②日均温:把一天中8时、14时、20时、2时测得的气温相加再除以4。
③气温日较差及其影响因素气温日较差:一天中最高气温与最低气温的差。
影响因素:1)天气(晴天气温日较差>阴天气温日较差)。
2)地形(凹地气温日较差>凸地气温日较差),如山谷气温日较差高于山顶气温日较差。
原因:低凹地形,通风不良,夜间常为冷空气下沉汇合处,且受地面影响较大。
凸地因风速较大,且与四周大气接触广,受地面影响小,温差小。
特殊:大尺度高原山地,海拔越高,日较差越大。
海拔高,空气密度小,对太阳辐射削弱作用降低,晚上保温作用弱。
3)海陆即下垫面比热容(陆地气温日较差>海洋气温日较差)。
4)纬度(低纬度地区气温日较差>高纬度地区气温日较差)。
原因:纬度越高,太阳高度角日变化越小,日较差越小。
5)季节(中纬地区:夏季气温日较差>冬季气温日较差)。
原因:太阳辐射日变化夏季比冬季大得多。
低纬地区太阳辐射日变化随季节变化很小,极地地区冬有极夜、夏有极昼,两地太阳辐射日变化随季节影响变化不大,日较差不大。
6)植被(裸地气温日较差>绿地气温日较差;沙土日较差>粘土日较差;深色土日较差>浅色土日较差)。
(2)年变化①气温最高与最低月份温馨提示1)地面储热,因此年内气温最高和最低值落后太阳辐射最强和最弱的月份1~2个月。
2)南半球相反。
3)海洋延后一个月。
(海洋热容量大,增温降温慢)②气温年较差:一年中月均温最高值与月均温最低值之差。
1)随纬度升高年较差变大,因为太阳辐射年变化随纬度增大而增大。
赤道附近,昼夜几乎相等,最冷月和最热月热量收支相差不大,年较差很小。
极地地区,昼夜长短变化大,冬寒夏凉,年较差大。
大连地区气温和降水时空变化特征1. 引言1.1 背景介绍大连地区位于中国辽宁省南部,是一座拥有悠久历史文化和风景秀丽的滨海城市。
这里四季分明,气候温和,是一个宜居的城市。
近年来随着全球气候变暖的趋势日益显著,大连地区的气温和降水情况也发生了一系列的变化。
气温变化是气候变化的重要指标之一,通过对大连地区的气温数据进行分析可以发现,近年来,大连地区的气温整体呈现出逐渐升高的趋势。
特别是在夏季,气温的升高更为明显,给人们的生活和生产带来了一定的困扰。
与气温变化相伴随的是降水变化。
近年来,大连地区的降水量也呈现出不规则变化的趋势。
有时候出现连续阴雨天,有时候则是长时间的干旱。
这种降水变化不仅对农业生产有影响,同时也会给城市的排水系统带来一定的挑战。
了解大连地区气温和降水的时空变化规律对于科学合理地利用气候资源、调整产业结构、防范自然灾害具有重要意义。
本文将对大连地区气温和降水的时空变化特征进行深入分析,探讨其影响因素和未来趋势展望,旨在为科学合理地应对气候变化提供参考依据。
2. 正文2.1 气温变化特征气温是大连地区气候的重要指标之一,其变化特征直接影响着当地的生态环境和农业生产。
近年来,大连地区的气温呈现出明显的变化特征,主要表现在以下几个方面:1.气温整体呈现上升趋势。
数据显示,近几十年来,大连地区的气温逐渐上升,特别是在夏季和冬季,气温的升高更加显著。
这种气温上升趋势导致了夏季气温偏高,冬季气温偏暖的现象。
2.气温日较差增大。
随着气温的升高,大连地区的气温日较差逐渐增大,即白天和夜晚气温的差异变大。
这种气温日较差增大不仅会影响人们的日常生活,还会对植物生长和农作物产量产生影响。
3.极端气温事件频繁。
近年来,大连地区频繁出现极端气温事件,如持续高温、持续低温等。
这些极端气温事件给当地居民的生产生活带来一定的影响,也对农业生产和生态环境造成一定的损害。
大连地区气温变化特征主要表现为整体上升趋势、气温日较差增大和极端气温事件频繁等方面。
温度的时空变化趋势模型
温度的时空变化趋势模型是指通过对历史气象数据和当前气象状况的分析,建立起一个能够描述温度变化规律的数学模型。
其中,时空变化趋势是指气温在时间和空间上的变化规律。
气温随着时间的变化呈现出一定的周期性和趋势性,而不同地区的气温变化也具有不同的规律。
因此,建立时空变化趋势模型,可以更加准确地预测未来的气温变化趋势,为农业、工业等各个领域提供重要参考。
针对不同的气象数据类型和研究目的,常用的时空变化趋势模型包括分析法、回归分析法、小波分析法、人工神经网络法等。
这些模型不仅可以对气象数据进行拟合和预测,还可以提取数据的特征和规律,为气象预报和研究提供有力的支持。
气温的时空变化规律1.气温的日变化规律一天中气温变化规律,主要由大气得到热量(地面辐射)和失去热量(大气辐射) 的差值决定。
地面的热量主要来自太阳辐射;大气(对流层)的热量直接来着地面。
(1)太阳辐射:最强时为当地地方时12时。
(2)地面辐射:当地地方时为12点时,地面获得的太阳辐射热量大于地面损失的辐射热量,地面热量盈余,地面温度仍在升高。
当地地方时大约午后1点左右,地面热量由盈余转为亏损,地面温度为一天中最高值。
(3)大气温度:当地地方时大约午后2点左右,地面已经通过辐射、对流、湍流等方式把热量传给大气,此时气温达到最高值。
随后,太阳辐射继续减弱,地面热量持续亏损,地面温度不断降低,气温随之也不断下降。
至日出后,地面热量山亏损转为盈余的时刻,地面温度达到最低值,气温也随后达到最低值。
因此气温最低值总是出现在日出前后。
2.气温的年变化规律由于地面吸收、储存、传递热量的原因,气温在一年中的最高、最低值,也并不出现在辐射最强、最弱的月份,而是有所滞后。
3.全球气温水平分布规律(1)气温从低纬向各纬递减。
太阳辐射是地面热量的根本来源,并山低纬向高纬递减。
受太阳辐射、大气运动、地面状况等因素影响,等温线并不完全与纬线平行。
(2)南半球的等温线比北半球平直。
南半球物理性质比较均一的海洋比北半球广阔,气温变化和缓。
(3)北半球1月份大陆等温线向南(低纬)凸出,海洋上则向(高纬)凸出;7月份正好相反。
在同一纬度上,冬季大陆比海洋冷,夏季大陆比海洋热。
同一纬度的陆地与海洋,热的地方等温线向高纬凸出,冷的地方等温线向低纬凸出,即"热高冷低”。
(4)7月份,世界值热的地方是北纬20-30大陆上的沙漠地区,撒哈拉沙漠是全球炎热中心,1月份,西伯利亚是全球的寒冷中心,世界极端最低气温出现在南极洲大陆上。
二、等温差线1、气温的日变化(1)气温的日变化一天中气温随时间的连续变化,称气温的日变化。
在一天中空气温度有一个最高值和一个最低值,两者之差为气温日较差。
高三地理主干知识复习资料《气候》一、气温的时空变化规律1.气温的时间变化规律(1)气温的日变化和年变化规律最高气温最低气温日变化约14时日出前后年变化北半球陆地7月,海洋8月北半球陆地1月,海洋2月南半球陆地1月,海洋2月南半球陆地7月,海洋8月(2)影响气温日较差的主要因素:①纬度:低纬大于高纬②地形:高原大于平原凸地小于凹地③天气状况:晴天大于阴天④海陆因素:内陆大于沿海⑤植被:沙地大于林草地(3)影响气温年较差的主要因素:全年高温终年寒冷气温的总体特征终年温和冬冷夏热气温年较差(日较差)大小年平均气温的高低;最高(最低)气温出现月份(4)气温特点的描述方法2.气温的水平分布规律——等温线图等温线示意图气温水平分布规律、因素及等温线特征受纬度(太阳辐射)因素影响,气温大致从低纬度向两极递减。
等温线大致与纬线平行,呈东西走向。
受海陆热力差异影响,同一纬度,夏季大陆比海洋热,等温线向高纬凸出。
冬季大陆比海洋冷,等温线向低纬凸出。
“一陆南,七陆北”受地形影响,等温线出现弯曲或局部闭合。
等温线穿过山脉时,向低纬方向凸出;等温线走向与山脉或等高线平行。
同一纬度,暖流沿岸气温较高,寒流沿岸偏低暖流:等温线向高纬方向凸出寒流:等温线向低纬方向凸出;“洋流向凸”气温分布特点描述方法气温空间变化趋势温差大小(等温线越密,单温距离的温差越大)高温中心(低温中心)分布港口 a b cd 80°W50°N110°W 太 平洋 大西洋二、降水分析1.降水的形成的条件:充足的水汽;气流上升运动(冷却凝结);凝结核较多;2.降水的类型 类型 成因 降水特点 典型分布地区 对流雨 空气强烈受热上升水汽冷却凝结。
强度大、历时短、范围小,常伴有暴风、雷电。
赤道地区我国夏季午后地形雨 暖湿空气遇到地形阻挡,沿迎风坡爬升,水汽冷却凝结。
迎风坡多,背风坡少 暖湿气流的迎风坡锋面雨 冷暖气流相遇,暖湿空气在抬升过程中,水汽冷却凝结。
气温得时空变化规律1、气温得日变化规律一天中气温变化规律,主要由大气得到热量(地面辐射)与失去热量(大气辐射)得差值决定。
地面得热量主要来自太阳辐射;大气(对流层)得热量直接来着地面。
(1)太阳辐射:最强时为当地地方时12时。
(2)地面辐射:当地地方时为12点时,地面获得得太阳辐射热量大于地面损失得辐射热量,地面热量盈余,地面温度仍在升高。
当地地方时大约午后1点左右,地面热量由盈余转为亏损,地面温度为一天中最高值。
(3)大气温度:当地地方时大约午后2点左右,地面已经通过辐射、对流、湍流等方式把热量传给大气,此时气温达到最高值。
随后,太阳辐射继续减弱,地面热量持续亏损,地面温度不断降低,气温随之也不断下降.至日出后,地面热量由亏损转为盈余得时刻,地面温度达到最低值,气温也随后达到最低值。
因此气温最低值总就是出现在日出前后。
2、气温得年变化规律由于地面吸收、储存、传递热量得原因,气温在一年中得最高、最低值,也并不出现在辐射最强、最弱得月份,而就是有所滞后。
3、全球气温水平分布规律(1)气温从低纬向各纬递减。
太阳辐射就是地面热量得根本来源,并由低纬向高纬递减.受太阳辐射、大气运动、地面状况等因素影响,等温线并不完全与纬线平行。
(2)南半球得等温线比北半球平直。
南半球物理性质比较均一得海洋比北半球广阔,气温变化与缓。
(3)北半球1月份大陆等温线向南(低纬)凸出,海洋上则向(高纬)凸出;7月份正好相反.在同一纬度上,冬季大陆比海洋冷,夏季大陆比海洋热。
同一纬度得陆地与海洋,热得地方等温线向高纬凸出,冷得地方等温线向低纬凸出,即“热高冷低”。
(4)7月份,世界值热得地方就是北纬20-30大陆上得沙漠地区,撒哈拉沙漠就是全球炎热中心,1月份,西伯利亚就是全球得寒冷中心,世界极端最低气温出现在南极洲大陆上。
二、等温差线1、气温得日变化(1)气温得日变化一天中气温随时间得连续变化,称气温得日变化。
在一天中空气温度有一个最高值与一个最低值,两者之差为气温日较差。
气温的时空变化规律1.气温的日变化规律一天中气温变化规律,主要由大气得到热量(地面辐射)和失去热量(大气辐射)的差值决定。
地面的热量主要来自太阳辐射;大气(对流层)的热量直接来着地面。
(1)太阳辐射:最强时为当地地方时12时。
精品文档,你值得期待(2)地面辐射:当地地方时为12点时,地面获得的太阳辐射热量大于地面损失的辐射热量,地面热量盈余,地面温度仍在升高。
当地地方时大约午后1点左右,地面热量由盈余转为亏损,地面温度为一天中最高值。
(3)大气温度:当地地方时大约午后2点左右,地面已经通过辐射、对流、湍流等方式把热量传给大气,此时气温达到最高值。
随后,太阳辐射继续减弱,地面热量持续亏损,地面温度不断降低,气温随之也不断下降。
至日出后,地面热量由亏损转为盈余的时刻,地面温度达到最低值,气温也随后达到最低值。
因此气温最低值总是出现在日出前后。
2.气温的年变化规律由于地面吸收、储存、传递热量的原因,气温在一年中的最高、最低值,也并不出现在辐射最强、最弱的月份,而是有所滞后。
3.全球气温水平分布规律(1)气温从低纬向各纬递减。
太阳辐射是地面热量的根本来源,并由低纬向高纬递减。
受太阳辐射、大气运动、地面状况等因素影响,等温线并不完全与纬线平行。
(2)南半球的等温线比北半球平直。
南半球物理性质比较均一的海洋比北半球广阔,气温变化和缓。
(3)北半球1月份大陆等温线向南(低纬)凸出,海洋上则向(高纬)凸出;7月份正好相反。
在同一纬度上,冬季大陆比海洋冷,夏季大陆比海洋热。
同一纬度的陆地与海洋,热的地方等温线向高纬凸出,冷的地方等温线向低纬凸出,即“热高冷低”。
(4)7月份,世界值热的地方是北纬20-30大陆上的沙漠地区,撒哈拉沙漠是全球炎热中心,1月份,西伯利亚是全球的寒冷中心,世界极端最低气温出现在南极洲大陆上。
二、等温差线1、气温的日变化(1)气温的日变化一天中气温随时间的连续变化,称气温的日变化。
在一天中空气温度有一个最高值和一个最低值,两者之差为气温日较差。
通常最高温度出现在14~15时,最低温度出现在日出前后。
由于季节和天气的影响,出现时间可能提前也可能落后。
比如,夏季最高温度大多出现在14~15时;冬季则在13~14时。
由于纬度不同日出时间也不同,最低温度出现时间随纬度的不同也会产生差异。
气温日较差小于地表面土温日较差,并且气温日较差离地面越远则越小,最高、最低气温出现时间也越滞后。
(2) 气温的日变化与农业生产在农业生产上有时需要较大的气温日较差,这样有利于作物获得高产。
因为,日较差大就意味着,白天温度较高,而夜间温度较低,这样白天叶片光合作用强,制造碳水化合物较多,而夜间呼吸消耗少,积累较多,作物产量高,品质好。
(3)影响气温日较差的因素有:气温的日变化规律,主要是由太阳辐射在地表面上有规律的日变化引起的,同时也受纬度、季节、地形、下垫面性质、天气状况和海拔高度等因素的影响。
所以,气温的日较差是低纬地区大于高纬地区;夏季大于冬季;凹地(如盆地、山谷)大于凸地(如小丘、山顶);陆地大于海洋;晴天大于阴天;高原大于海拔低的平原。
(a)纬度:纬度越高,日较差越小。
原因:纬度越高,太阳高度的日变化越小。
[无论冬夏昼夜长度之差也是低纬大于高纬]。
一般热带地区气温日较差为12℃左右;温带地区气温日较差为8.0~9.0℃;极圈内气温日较差为3.0~4.0℃。
(b)季节:一般夏季气温日较差大于冬季,但在中高纬度地区,一年中气温日较差最大值却出现在春季。
因为虽然夏季太阳高度角大,日照时间长,白天温度高,但由于中高纬度地区昼长夜短,冷却时间不长,使夜间温度也较高,所以夏季气温日较差不如春季大。
(c)地形:地形凹凸和形态的不同,对气温也有明显的影响。
低凹地(如盆地、谷地)的气温日较差大于平地,平地大于凸地(如小山丘)的气温日较差。
原因:低凹地形,空气与地面接触面积大,通风不良,并且在夜间常为冷空气下沉汇合之处,加上辐射冷却,故气温日较差大。
在凸起地形如山顶,凸出地形上部由于海拔高和方圆面积小(与陆面接触面积小)的关系,气温受地表影响小(受到地面日间增热、夜间冷却的影响较小),而主要受周围空气的调节,白天不易升高,夜晚也不容易降低。
[编者:山顶由于与地面接触面积小,不易与地面形成频繁的热交换;空气流动性强等原因而日较差较小] 。
又因(凸出地形)风速较大,湍流作用较强,再加上夜间地面附近的冷空气可以沿坡下沉,而交换来自由大气中较暖的空气(热量交换迅速),因此气温日较差、年较差皆较小;凹陷地形则相反,气流不通畅,湍流交换弱,又处于周围山坡的围绕之中,白天在强烈阳光下,地温急剧增高,影响下层气温,夜间地面散热快,又因冷气流的下沉,谷底和盆地底部特别寒冷,因此气温日较差很大。
且山顶>陡崖>谷地。
气温年较差也有类似现象。
在低纬度高原,气温日变化虽较大,但年变化却较小。
气温日较差与海拔的关系:山顶的气温日较差比山下平原小;大尺度的高原山地地区,则海拔越高,日较差越大。
在大尺度地形区,气温的日较差与高度成正比,海拔越高,日较差越大(如青藏高原,海拔高,日较差大);在中小尺度地形区,海拔越高,日较差越小(如泰山日较差一年四季总是低于附近平原上的济南)。
为什么山地比附近平原气温日较差小呢?主要原因有以下三个方面:第一,受对流层大气的热量来源影响。
对流层大气的主要热源直接来自下垫面,所以气温随下垫面温度的变化而变化。
受下垫面温度变化的影响,对流层大气越靠近下垫面,平均气温越高,气温的日变化幅度越大;离下垫面越远,平均气温越低,气温的日变化幅度越小。
第二,受山地云雾热力状况作用的影响。
泰山海拔高,气温低,大气中云雾多,白天对太阳辐射的反射率大。
第三,山地气温受周围“自由大气”的调节作用的影响。
山地海拔高,空气流动性好,利于与周围“自由大气”进行交换。
白天山地气温升高时,由于气温低、日较差小,同一高度的“自由大气”对其起到一定的降温作用。
夜晚,由于山地上空大气稀薄,保温作用弱,气温下降快,同一高度的“自由大气”减小了山地气温的下降幅度,所以山地气温日较差就小于附近平原气温日较差。
大尺度地形区为什么又会“温度的日较差与高度成正比,海拔越高,日较差越大”呢?青藏高原由于海拔高,空气密度小,受大气热力状况的影响,白天大气对太阳辐射的削弱作用低,晚上大气对地面辐射的保温作用差,因此白天升温快,夜晚降温快。
所以气温的日较差就大。
高原大于平原:如青藏高原,海拔高,空气稀薄,大气质量、水汽、杂质相对较少。
白天,大气对太阳辐射的削弱作用弱,到达地面的太阳辐射量大,晚上大气逆辐射弱,所以气温日较差较大;长江中下游平原,地势低平,水域面积大,大气质量、水汽、杂质集中在对流层底部。
白天,大气对太阳辐射的削弱作用强,晚上大气逆辐射强,所以气温日较差较小。
山地气温的日较差比附近的平原小,而年较差也小。
原因:地形对气温日变化和年变化的影响①凸出地形,如山顶,空气与地面空气接触面积小,地气之间热量交换减少,受到地面日间增温、夜间冷却的影响较小。
另,山顶风速大,空气湍流交换较强,因此气温日较差、较小。
②平原,受地面日间增温、夜间冷却的影响大。
温差较附近的山地大。
③谷地则是因气流不畅通,气温受自由大气影响小,白天因受热急剧增温,夜间因四周山坡散热快,冷空气下沉盘踞谷地,气温明显下降。
因此,谷地气温日较差和年较差大于四周高地。
(d)下垫面性质:由于下垫面的比热特性和对太阳辐射吸收能力的不同,气温日较差也不同。
气温日较差与海陆的关系:沿海比内陆日较差小。
陆地上气温日较差大于海洋,且距海越远,日较差越大。
沙土、深色土、干松土壤上的气温日较差分别比粘土、浅色土和潮湿紧密土壤大,旱地比水田大。
(e)天气:晴天气温日较差大于阴(雨)天的气温日较差,因为晴天时,白天太阳辐射强烈,地面增温强烈,夜晚地面有效辐射强降温强烈。
大风天的气温日较差较小。
气温日较差与天气的关系:阴天比晴天日较差小。
2、气温的年变化气温的年变化和日变化一样,在一年中月平均气温有一个最高值和一个最低值。
气温年较差:一年中月平均气温的最高值和最低值之差,称为气温年较差,或称气温年振幅。
气温年较差的大小因纬度、海陆分布、地形等而异。
(1)影响气温年较差的因素有:(a)纬度气温年较差一般随纬度的升高而增大;纬度越高,年较差越大。
原因:纬度越高,正午太阳高度的年变化越大,太阳辐射能的年变化也增大;昼夜长短的年变化也越大,因而气温的年较差越大;低纬相反。
低纬度地区气温年较差很小,仅1~2℃;中纬度地区气温年较差增大,一般可达10~20℃;高纬度地区可达30℃以上。
低纬度地区,一年中昼夜长短几乎相等,正午太阳高度角的变化也很小,各月热量的收支相差不大,故气温年较差很小。
中高纬度,夏季正午太阳高度角大,白昼时间长;冬季则相反。
因此,冬夏获得的热量其差别很大,故气温年较差则大。
纬度变化:由低纬度向中、高纬度递增。
原因:是低纬度太阳辐射季节变化小,中纬度变化大;低纬度昼夜长短季节变化小;中、高纬度昼夜长短季节变化大。
(b)海陆由于海陆热特性不同,对于同一纬度的海陆相比,大陆地区冬夏两季热量收入的差值比海洋大,所以大陆上气温年较差比海洋大得多,一般情况下,温带海洋上年较差为11℃,大陆上年较差可达20~60℃。
中纬度的内陆,气温年较差可达30~40℃,海洋上仅10~15℃。
为海陆物理性质不同,致使海洋增温和冷却缓慢的缘故。
气温年较差与海陆的关系:离海越远,年较差越大。
原因:陆地比海洋的热容量小,夏季升温快,温度比海洋高;冬季降温快,温度比海洋低,因而气温年较差比海洋大。
沿海受海洋的影响较大,比内陆年较差小。
(c)距海远近由于水的热特性,使海洋升温和降温都比较缓和,距海洋越近,受海洋的影响越大,气温年较差越小,越远离海洋,受海洋的影响越小,气温年较差越大。
经度变化:由沿海向内陆递增。
原因是海陆热力性质的差异。
(我国是由南向北递增;由东向西递增)(d)地势因陆地上气温年较差又随地形和地面状况而不同。
一般来说,气温年较差凸形地小于凹形地;植被覆盖地区小于裸地。
青藏高原气温年较差与我国同纬度平原、盆地比较,气温年较差小。
这是因为:青藏高原属于中低纬的大高原,夏季因其海拔高,气温不太高;冬季因纬度低,且受高大地形的影响,南下的寒冷气流影响不到,气温不太低。
此外,地形及天气等对气温年较差的影响与对气温日较差的影响相同。
3、中国的日较差与年较差情况气温分布的一般规律:受纬度影响等温线与纬线大致平行,从低纬向高纬递减;受季节影响,夏季陆地气温高,等温线向高纬凸出,海洋气温低,等温线向低纬凸出,冬季相反;受地形地势影响,等温线与等高线平行或与山脉走向一致,地势越高气温越低,等温线弯曲或出现闭合,向低温弯曲为山谷,向高温弯曲为山脊,闭合中心气温值低为洼地或盆地,中心气温值高为山地;受洋流影响,沿岸地区等温线向洋流流向处弯曲,大洋中洋流流向与等温线凸出方向一致;受海陆分布影响,等温线与海岸线平行①我国冬季比同纬度其它地区温度低的原因是:受强大的蒙古—西伯利亚冷高压影响(或受冬季风的影响) 。