钛合金切削性能的研究与应用
- 格式:pdf
- 大小:154.57 KB
- 文档页数:4
钛合金的研究应用现状及其发展方向钛合金是以金属钛为基,加入适量的其他元素组成钛合金,其在300-600度时的比强度优于钢和铝合金。
钛的工业化生产是1948年开始的,为航空工业发展的需要,使钛工业以平均每年约8%的增长速度发展。
目前世界钛合金加工材年产量已达4万余吨,钛合金牌号近30种。
使用最广泛的钛合金是Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7)和工业纯钛(TA1、TA2和TA3)。
钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。
钛及其合金不仅大量应用在航空、航天工业,而且在化工、石油、冶金、造纸、纺织,机械仪器、能源;医疗卫生等工业中也有着十分重要的应用;在民用工业中的应用也日渐增多。
1、发展历史钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。
第一个实用的钛合金是1954年美国研制成功的Ti-6Al-4V合金,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,而成为钛合金工业中的王牌合金,该合金使用量已占全部钛合金的75%~85%。
其他许多钛合金都可以看作是Ti-6Al-4V合金的改型。
20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金,70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。
耐热钛合金的使用温度已从50年代的400℃提高到90年代的600~650℃。
A2(Ti3Al)和r(TiAl)基合金的出现,使钛在发动机的使用部位正由发动机的冷端(风扇和压气机)向发动机的热端(涡轮)方向推进。
结构钛合金向高强、高塑、高强高韧、高模量和高损伤容限方向发展。
另外,20世纪70年代以来,还出现了Ti-Ni、Ti-Ni-Fe、Ti-Ni-Nb等形状记忆合金,并在工程上获得日益广泛的应用。
2、原理钛合金是以钛为基础加入其他元素组成的合金。
钛合金应用研究论文摘要:综述了钛合金材料的应用及研究现状,着重介绍了钛及钛合金的主要特性,加工性能及其在航空航天、军事工业和汽车制造方面的应用,并在此基础上展望了钛合金的发展方向。
关键词:钛合金特性加工性能应用领域Ti在地壳中的丰度为0.56%(质量分数,下同),在所有按元素中居第9位,而在可作为结构材料的金属中居第4位,仅次于Al、Fe、Mg,其储量比常见金属Cu,Pb,Zn储量的总和还多。
我国钛资源丰富,储量为世界第一。
钛合金的密度小,比强度、比刚度高,抗腐蚀性能、高温力学性能、抗疲劳和蠕变性能都很好,具有优良的综合性能,是一种新型的、很有发展潜力和应用前景的结构材料。
近年来,世界钛工业和钛材加工技术得到了飞速发展,海绵钛、变形钛合金和钛合金加工材的生产和消费都达到了很高的水平,在航空航天领域、舰艇及兵器等军品制造中的应用日益广泛,在汽车、化学和能源等行业也有着巨大的应用潜力。
一、钛及钛合金的特性钛及钛合金具有许多优良特性,主要体现在如下几个方面:1.强度高。
钛合金具有很高的强度,其抗拉强度为686—1176MPa,而密度仅为钢的60%左右,所以比强度很高。
2.硬度较高。
钛合金(退火态)的硬度HRC为32—38。
3.弹性模量低。
钛合金(退火态)的弹性模量为1.078×10-1.176×10MPa,约为钢和不锈钢的一半。
4.高温和低温性能优良。
在高温下,钛合金仍能保持良好的机械性能,其耐热性远高于铝合金,且工作温度范围较宽,目前新型耐热钛合金的工作温度可达550—600℃;在低温下,钛合金的强度反而比在常温时增加,且具有良好的韧性,低温钛合金在-253℃时还能保持良好的韧性。
5.钛的抗腐蚀性强。
钛在550℃以下的空气中,表面会迅速形成薄而致密的氧化钛膜,故在大气、海水、硝酸和硫酸等氧化性介质及强碱中,其耐蚀性优于大多数不锈钢。
二、钛及钛合金的加工性能1.切削加工性能钛合金强度高、硬度大,所以要求加工设备功率大,模具、刀具应有较高的强度和硬度。
钛合金加工工艺
钛合金是一种具有优异机械性能和抗腐蚀性能的新型材料,成为了航空、航天、船舶、生物医学等领域中非常重要的结构材料。
本文将介绍钛合金的加工工艺。
一、钛合金的切削加工
钛合金的切削加工是目前钛合金加工中最为常见的一种方法。
钛合金的加工难度主要在于它的高强度和难加工性。
钛合金在切削过程中,容易附着在刀具上,形成大量热量,导致刀具磨损严重。
因此,钛合金的切削必须选用硬质合金刀具,并注意掌握合理的加工速度和切削深度等参数。
二、钛合金的冲压加工
钛合金的冲压加工主要包括剪切、弯曲和深冲。
在冲压加工中,钛合金材料具有优异的塑性,因此冲压加工可以做出各种形状的钛合金部件。
在冲压钛合金时,要注意铣削过程中的火花可能引起钛合金粉尘爆炸的危险,因此需要在加工场地设置防爆设备。
三、钛合金的拉伸加工
钛合金的拉伸加工是指利用钛合金材料的塑性形变,来使得钛合金材料变为带有特定形状的工件。
拉伸加工时,必须选择适宜的冷加工方法,如冷挤压、镦锻、卷曲等。
此外,拉伸加工还需要配合热处理,以保证钛合金的性能优良。
四、钛合金的焊接加工
钛合金的焊接加工是比较困难的工艺。
常用的钛合金焊接方法包括手工气焊、手工电弧焊、氩弧焊、电子束焊、激光焊等。
应用不同的焊接方法可以获得不同的焊接质量。
在焊接加工过程中,应注意预加热以及所有焊接接头的准备和清洁。
综上所述,钛合金的加工工艺是比较复杂的。
在加工过程中需要注意掌握加工参数以及选择适合的加工工具。
同时,还需要设置防爆设备以及进行预加热和热处理等措施,以保证钛合金材料的加工质量和性能。
TC4-DT钛合金切削加工参数研究
殷志碗;郝宇;陈伟伦;王东伟;苏楠
【期刊名称】《江苏建筑职业技术学院学报》
【年(卷),期】2024(24)1
【摘要】针对YG8和TiAlN涂层硬质合金两种刀具,通过单因素车削、低速铣削及正交高速铣削加工试验,探究刀具切削工艺参数对TC4-DT钛合金加工件表面粗糙度、表层硬度的影响规律。
实验结果表明:钛合金的表面粗糙度随着切削三要素发生变化,切削速度越高,粗糙度越低;进给量越大,粗糙度越大;但随切削深度波动变化。
使用TiAlN涂层硬质合金立铣刀进行加工得到的平均表面粗糙度小于YG8硬质合金立铣刀,且加工表面硬度变化更小,更适合用于TC4-DT的铣削加工。
【总页数】6页(P59-63)
【作者】殷志碗;郝宇;陈伟伦;王东伟;苏楠
【作者单位】扬州工业职业技术学院智能制造学院
【正文语种】中文
【中图分类】TG50
【相关文献】
1.粗加工切削参数对钛合金多工步加工过程的影响
2.基于钻削性能试验的3D打印钛合金加工切削参数研究
3.钛合金切削加工参数优化数学模型及工艺参数分析研究
4.切削加工钛合金的切削参数优化研究
5.钛合金材料切削加工参数优化和实验研究
因版权原因,仅展示原文概要,查看原文内容请购买。
I ndustry development行业发展钛合金切削加工研究现状及发展趋势杨 涛摘要:钛合金广泛应用于各个领域,提高其切削性能和降低加工成本,开发出性能更好的新型钛合金是目前钛合金加工的主要研究方向。
钛合金的三种基体组织分别为α合金、(α+β)合金和β合金,我国分别以TA、TC和TB表示,其中TC4钛合金最受青睐。
国内外学者对钛合金进行了大量研究工作,特别是对TC4钛合金进行了深入研究。
关键词:钛合金;切削加工;现状;发展趋势钛合金具有低密度、高韧性和强抗腐蚀性等优点,常被用于制造航空发动机关键零部件,如叶轮和叶片。
优异的物理特性提升了钛合金的服役性能,但同时也增加了加工难度,如刀具寿命短、加工表面质量不可控等问题,使得钛合金成为典型的难加工材料。
钛合金切削过程中产生锯齿形切屑,不仅导致切削力的周期性波动,而且影响加工零件的表面质量。
此外,由热塑性变形引起的表面残余应力对零件的疲劳寿命和服役性能也有显著影响。
因此,准确预测切屑形态和表面残余应力对刀具设计和工艺优化具有重要指导意义。
1 钛合金切削仿真技术研究现状通过建立高速切削三维有限元模型,对切屑的形成过程进行了仿真研究。
研究发现最大应力值出现在第Ⅰ变形区,最大切削温度出现在第Ⅱ变形区。
模型只考虑了模型底部的完全约束,并未考虑夹紧和夹具的定位对加工变形的影响。
另外,建立了变刚度三维仿真模型和热力耦合三维动态铣削模型,误差控制在0.0681mm和0.0255mm内,但为了减小计算量,两种模型均为简化模型。
还建立了高速铣削TC4钛合金的三维全热—力耦合有限元模型,对铣削温度进行了模拟分析结果表明,铣削热只影响被加工表面层的温度,刀具温度随铣削速度和径向切削深度的增加而升高且影响小于切削速度。
在基于TC4钛合金三维铣削有限元仿真模型的基础上,研究发现,切削参数对铣削力的影响程度为轴向切削深度>刀具速度>进给速度。
另外,通过建立斜切模型,对最小切削厚度进行了仿真计算,降低了由于切削厚度设置误差导致的最终仿真误差。
doi: 10.12052/gdutxb.200110AlCrSiN涂层刀具干车削Ti-6Al-4V钛合金的切削性能研究刘杰1,2,朱水生1,肖晓兰1,邓欣1(1. 广东工业大学 机电工程学院,广东 广州 510006;2. 广州番禺职业技术学院 智能制造学院,广东 广州 511483)摘要: 使用未涂层的和AlCrSiN涂层的硬质合金车刀片以3种切削速度干式车削Ti-6Al-4V钛合金。
研究发现AlCrSiN涂层刀片的切削寿命在各切削速度下都超过无涂层刀片, 而切削力、切削温度和工件表面粗糙度3项指标均低于无涂层刀具, 说明AlCrSiN涂层能够有效地保护基体从而维持刀具的锋利度。
2种刀具在切削过程中均出现切削力先上升后下降的现象, 这与二者高温下产生的润滑氧化物有关。
切削温度和工件粗糙度都与后刀面磨损量有正相关关系, 即随着后刀面磨损量的增加, 温度和粗糙度都随之增加, 但温度的增加还与前刀面第一变形区塑性变形增大, 热量增加有关。
另外, 2种刀具产生的切屑尺寸、颜色、锯齿频率也证明了AlCrSiN涂层刀具磨损较慢,切削温度较低。
关键词: AlCrSiN涂层;Ti-6Al-4V;切削力;切削温度;粗糙度;刀具磨损中图分类号: TG712 文献标志码: A 文章编号: 1007–7162(2021)02–0099–08Cutting Performance of AlCrSiN Coated Tool in DryTurning Ti-6Al-4V Titanium AlloyLiu Jie1,2, Zhu Shui-sheng1, Xiao Xiao-lan1, Deng Xin1(1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; 2. School ofIntelligent Manufacturing, Guangzhou Panyu Polytechnic, Guangzhou 511483, China) Abstract: Ti-6Al-4V titanium alloy was dry turned by uncoated and AlCrSiN coated carbide inserts at three cutting speeds. It was found that the cutting life of AlCrSiN coated inserts exceeds uncoated inserts at all three cutting speeds and meanwhile the three values of cutting force, cutting temperature and workpiece surface roughness are lower than that of uncoated tools, which shows that AlCrSiN coating can effectively protect the substrate and maintain the sharpness of the tool. During the cutting process, the cutting force of both tools increased first and then decreased, which is related to the lubricating oxides produced by the two tools at high temperatures. Both cutting temperature and workpiece roughness have a positive correlation with the wear of the flank, that is, as the wear of the flank increases, the temperature and roughness increase accordingly, and incidentally, the increase in temperature is also related to the increase in plastic deformation and heat in the first deformation zone of the rake face. In addition, the chip size, color, and sawtooth frequency produced by the two tools also prove that the AlCrSiN coated tool has lower wear rate and cutting temperature than the uncoated tool.Key words: AlCrSiN coating; Ti-6Al-4V; cutting force; cutting temperature; roughness; tool wear钛合金是公认的难加工材料,由于其低热导率、低弹性模量以及高强度、高化学活性使得刀具经受高温氧化、扩散、粘结、高回弹等一系列的考验,带来刀具寿命短、加工效率低以及工件的表面质量差等一系列问题[1]。
钛合金加工切削参数表摘要:一、钛合金加工概述二、钛合金加工切削参数表的内容三、钛合金加工切削参数表的应用四、钛合金加工切削参数表的注意事项正文:一、钛合金加工概述钛合金是一种高强度、轻质的金属材料,由于其优异的力学性能和良好的抗腐蚀性,被广泛应用于航空航天、化工、医疗等领域。
然而,钛合金的加工难度较大,对加工工艺和切削参数的选择有较高要求。
为了保证钛合金产品的加工质量和效率,制定合适的切削参数表至关重要。
二、钛合金加工切削参数表的内容钛合金加工切削参数表主要包括以下内容:1.刀具材料:针对钛合金的特性,选择合适的刀具材料,如高速钢、硬质合金、陶瓷刀具等。
2.刀具形状和大小:根据加工零件的形状和尺寸,选择合适的刀具形状和大小,以保证切削效果和刀具寿命。
3.切削速度:切削速度是切削参数表中最重要的一项,过快或过慢的切削速度都会影响加工效果。
一般来说,切削速度应根据刀具材料、刀具形状和大小以及钛合金的硬度来选择。
4.进给速度:进给速度的选择应根据加工零件的尺寸和形状、刀具材料和大小以及切削速度来综合考虑。
5.刀具的摆动角和轴向力:刀具的摆动角和轴向力会影响切削过程中的切削力和刀具的磨损,应根据实际情况进行选择。
6.冷却液:钛合金加工过程中,选择合适的冷却液可以降低切削温度,减少刀具磨损,提高加工质量。
三、钛合金加工切削参数表的应用在钛合金加工过程中,操作者可以根据切削参数表选择合适的切削参数,以达到最佳的切削效果和刀具寿命。
同时,切削参数表也可以为生产管理人员提供参考,以优化生产过程和提高生产效率。
四、钛合金加工切削参数表的注意事项在使用钛合金加工切削参数表时,应注意以下几点:1.切削参数表并非一成不变,应根据实际情况进行调整。
2.在选择切削参数时,应综合考虑刀具材料、大小、形状、切削速度、进给速度等因素,以保证最佳的切削效果。
3.在加工过程中,要注意观察刀具的磨损情况,适时更换刀具,以保证加工质量。
浅谈钛合金切削加工技术摘要:钛合金是上世纪中旬发展起来的一种重要的结构金属材料,该材料是一种性能优良的金属材料,如具有质量轻、比强度高、耐腐蚀性能好、无磁性,高、低温力学性能好,抗蠕变性好等优点。
目前,钛合金已广泛应用于航空、航天、核能、舰船、兵器等军事领域及生物医药等民用领域中[。
钛合金的使用可有效提高航空航天器等设备耐蚀性及耐高温能,同时可有效延长寿命。
关键词:钛合金;刀具;工艺引言钛合金材料因比强度高、密度低、耐腐蚀和耐高温等优良性能而被广泛应用在航空航天领域中。
但由于钛合金导热系数小、弹性模量低和化学活性大等特性,使得钛合金材料在加工时切削温度高,刀具磨损严重等,影响了钛合金的加工效率,因此如何提高钛合金的切削效率一直是航空航天行业迫切需要解决的难题。
1钛合金材料的基本性能相比其他合金,钛合金具有高比强度、耐腐蚀、轻质、耐热性和耐低温性等特性,并且具有超导、贮氢和形状记忆的特殊属性。
根据钛合金的相对含量可以把钛合金分为α型、β型和α+β型,其相应的国内牌号为TA,TB和TC。
α相钛合金属于密排六方结构,具有较高的强度、韧性和可焊性,并且在高温环境下对氧污染具有明显的抵抗性、耐磨性高于纯钛、具有较好的切削加工性,但成型能力较差,典型合金有TA7。
β相钛合金属于体心立方结构,在室温下具有较高的强度、较好的冷成型性,但其热稳定性较差、在成型过程中易受污染而损坏、切削加工性相对较差,使用较少,典型合金有TB1和TB2。
α+β相钛合金具有良好的室温强度和成型性能,材料组织稳定,切削加工性能介于α型和β型钛合金之间,适用范围广用量较大,典型合金有TC4。
钛合金根据应用领域的不同,其研究的侧重点也会有所差异。
在航天航空领域中多以材料的比强度、耐热性、疲劳寿命和韧性等作为研究重点,以发展综合力学性能优异的钛合金材料为目的;在非航空领域中多以材料的可加工性、耐腐蚀性等性能作为研究重点,以发展成分简单或低合金化的合金材料为目的。
《钛合金切削性能的实验研究与分析》一、引言随着现代工业技术的快速发展,钛合金因其优良的机械性能和耐腐蚀性,在航空、航天、医疗及汽车制造等领域得到了广泛应用。
然而,钛合金的切削加工性能却较为复杂,其加工难度较大,对刀具和工艺的要求较高。
因此,对钛合金切削性能的实验研究与分析显得尤为重要。
本文旨在通过实验研究钛合金的切削性能,并对其进行分析与讨论。
二、实验材料与方法1. 实验材料本实验选用的钛合金为TC4,其化学成分包括Ti、Al、V等元素。
同时,选取了几种常见的刀具材料,如硬质合金、陶瓷及涂层刀具等作为实验对象。
2. 实验方法(1)切削实验:在数控铣床上进行切削实验,控制切削速度、进给量及切削深度等参数。
(2)刀具磨损检测:采用显微镜观察刀具的磨损情况,并记录磨损数据。
(3)切削力测量:采用测力仪测量切削过程中的切削力。
(4)表面质量检测:对加工后的工件表面进行粗糙度测量及微观形貌观察。
三、实验结果与分析1. 钛合金的切削性能在切削过程中,钛合金具有较高的抗剪强度和韧性,因此对刀具的磨损较大。
在较高的切削速度下,钛合金的切削性能表现较好,但在较低的切削速度下则易出现粘刀现象。
此外,钛合金的导热性较差,易导致切削区域温度过高,进一步加剧刀具的磨损。
2. 不同刀具材料的切削性能比较(1)硬质合金刀具:硬质合金刀具在切削钛合金时具有较好的耐磨性和抗冲击性,但易出现积屑现象。
(2)陶瓷刀具:陶瓷刀具具有较高的硬度和耐磨性,但在切削钛合金时易出现崩刃现象。
(3)涂层刀具:涂层刀具具有较好的抗粘结和抗磨损性能,能够有效地降低切削力和加工温度,提高加工效率。
3. 切削参数对切削性能的影响(1)切削速度:随着切削速度的提高,钛合金的切削性能得到改善,但过高的切削速度可能导致刀具破损。
(2)进给量:适中的进给量能够提高加工效率,但过大的进给量易导致工件表面质量下降和刀具磨损加剧。
(3)切削深度:较大的切削深度能够提高生产效率,但也会增加切削力和工件变形程度。