成人高考高等数学试题及答案#(精选.)
- 格式:doc
- 大小:155.50 KB
- 文档页数:7
2025年成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列关于定积分的性质,说法正确的是:A. 定积分是函数在某个区间上的面积B. 定积分的值与被积函数的图形有关C. 如果函数f(x)在区间[a, b]上连续,则定积分∫[a,b]f(x)dx存在D. 定积分的值一定是非负的2.已知函数f(x)在区间[a, b]上连续,且f(a) = f(b),则下列哪个命题是正确的?A. 函数f(x)在区间(a, b)内至少有一个零点B. 函数f(x)在区间(a, b)内至多有一个零点C. 函数f(x)在区间(a, b)内一定有零点D. 函数f(x)在区间(a, b)内不一定有零点3、若函数f(x)满足f’(x)=2x,且f(0)=1,则()A. f(x)=x^2+1B. f(x)=x^2+2x+1C. f(x)=x^2+1/2D. f(x)=x^24.已知函数f(x)=x3−3x2+2x,则f′(x)=A.3x2−6x+2B.3x2−6xC.3x2−6x−2D.3x2−6x+15.设函数f(x) 在闭区间[a,b] 上连续,且f’(x) 存在。
若对于任意两个不同的点x₁ 和x₂ 在该区间内,都有f’(x₁) ≤ f’(x₂),则下列说法正确的是:A. 函数f(x) 在区间[a,b] 上是单调递增的。
B. 函数 f(x) 在区间 [a,b] 上是单调递减的。
C. 函数 f(x) 在区间 [a,b] 上的增减性无法确定。
D. 上述三种情况都有可能。
6、已知二次函数f(x) = ax² + bx + c 经过点 (k, 0),下列哪个选项能正确表示该函数在点 k 的取值情况?()选项:A. f(k) = 0 B. f(k) > 0 C. f(k) < 0 D. 不能确定7、下列关于函数极限的叙述中,正确的是()A. 函数在某点的极限一定等于该点的函数值。
2023年成人高等学校招生全国统一考试专升本高等数学(一)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间150分钟.第I卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.当x→0时,5x-si n5x是x的【】A.高阶无穷小量B.等价无穷小量C.同阶无穷小量,但不是等价无穷小量D.低阶无穷小量2.设y=√2x+1,则y'=【】A.B.C.D.3.设y=e*,则d y=】【A.er d x B.-e^d x C.e'd x D.一e'd x~4.设函数在x =0处连续,则b=【】A.2C.0B.1D.—15.【】A.s i nx+CB.—s i n x+CC.c o s x+CD.—c o s x+C6.【】A.2B.1C.D.0【】7.设,则D.A.C.8.幂级数【】的收敛域是D.[-1,1]B.(-1,1)C.(-1,1)A.(-1,1)【】在平面3x-2y+z-7=0上,则k=9.已知直线A.0B.1C.2D.3【】10.微分方程y"+y=e²r的一个特解是A.B.C.D.第Ⅱ卷(非选择题,共110分)(t为参数),二、填空题(11~20小题,每小题4分,共40分)贝12.设13.设y=x+e²,则y”=14.设y=x+s i n x,则y'=15.16.17.设z=e²,则d z=18.过点(0,1,1)且与直线垂直的平面方程为19.设区域D=((x,y)|O≤x≤2,-l≤y≤1},则20.微分方程xy'+y=0满足初始条件y(1)=1的解为y=三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分)计算22.(本题满分8分)计23.(本题满分8分)求微分方程的通解.25.(本题满分8分)求函数f(x)=x²e*的单调区间和极值.26.(本题满分10分)设D是由曲线y=1-x²(x≥0),x=0,y=0所围成的平面图形.(1)求D的面积S;(2)求D绕x轴旋转一周所得旋转体的体积V.,其中D是由曲线y=√1-x²,y=x,y=-x所围成的闭区域.计28.(本题满分10分)已知函数f(x)连续,且满参考答案及解析一、选择题1.【答案】A【考情点拨】本题考查了高阶无穷小量的知识点.【应试指导】,故5x-sin5x是x的高阶无穷小量.2.【答案】D【考情点拨】本题考查了复合函数求导的知识点.【应试指导】3.【答案】B【考情点拨】本题考查了微分的知识点.【应试指导】dy=(e*)'dx=-e*dx,4.【答案】B【考情点拨】本题考查了分段函数连续性的知识点.【应试指导】因f(x)在x=0处连续,则有b=1.5.【答案】D【考情点拨】本题考查了不定积分的知识点.【应试指导】6.【答案】C【考情点拨】本题考查了洛必达法则的知识点.【应试指导】7.【答案】B【考情点拨】本题考查了偏导数的知识点.【应试指导】8.【答案】D【考情点拨】本题考查了幂级数收敛域的知识点.【应试指导】收敛半径,所以幂级数的收敛区间为(-1,1).当x=-1时,级数为收敛的p级数.故该级数的收敛为收敛的交错级数;当x=1时,级数域为[-1,1].9.【答案】C【考情点拨】本题考查了直线与平面的位置关系的知识点.【应试指导】由题可知直线的方向向量s=(k,1,-4),平面的法向量n=(3,-2,1).由于s上n,因此有3k-2-4=0,故k=2.10.【答案】A【考情点拨】本题考查了二阶常系数线性非齐次微分方程特解的知识点.【应试指导】可验证,四个选项中只有A项满足微分方程,故其特解为.二、填空题11.【答案】e²【考情点拨】本题考查了两个重要极限的知识点.【应试指导】12.【答案】3【考情点拨】本题考查了参数方程求导的知识点.【应试指导】13.【答案】e'【考情点拨】本题考查了高阶导数的知识点.【应试指导】y'=1+e²,故y”=e².14.【答案】1+c o s x【考情点拨】本题考查了导数的运算的知识点.【应试指导】y'=(x+sinx)'=1+cosx.15.【答案】【考情点拨】本题考查了不定积分的计算的知识点.【应试指导】16.【答案】【考情点拨】本题考查了反常积分的计算的知识点.【应试指导】17.【答案】e²>(y d x+x d y)【考情点拨】本题考查了全微分的知识点.【应试指导】dz= de^>=e²d(x y)=e*(y dx+xdy).18.【答案】x+2y+z-3=0【考情点拨】本题考查了平面点法式方程的知识点.【应试指导】由题意,平面法向量为n=(1,2,1),又过点(0,1,1),故方程为x+2(y-1)+(z-1)=0,即x+2y+z-3=0.19.【答案】4【考情点拨】本题考查了二重积分的知识点.【应试指导】20.【答案】【考情点拨】本题考查了一阶线性齐次微分方程的知识点.【应试指导】由xy+y=0得,通解为,将y(1)=1代入通解,得C=1,故所求的解为三、解答题21.=1.22.23.由题可知24.25.f(x)的定义域为(-α,+o),f'(x)=2xe+-x2e+=e*(-x2+2x),令f'(x)=0,得xj=0,x2=2.列表如下:20(0,2)(2,+o)x(-α,0)y0+0极小值极大值y由表可知,函数的单调增区间为(0,2);单调减区间为(一~,0),(2,+o).极大值为f(2)=4e2,极小值为f(0)= 0.;27.积分区域用极坐标可表示为28.由两边同时求导得(1+x2)f(x)= sinx+xcosx,所以。
成考数学试题及答案一、选择题(每题5分,共40分)1. 下列哪个选项是偶数?A. 3B. 5C. 8D. 7答案:C2. 圆的面积公式是?A. πr²B. 2πrC. πrD. 4πr²答案:A3. 函数y=2x+3的斜率是多少?A. 2B. 3C. -2D. -3答案:A4. 一个数的平方根是4,那么这个数是?A. 16B. 8C. -4D. -16答案:A5. 等差数列的首项是2,公差是3,第5项是多少?A. 17B. 14C. 10D. 7答案:A6. 一个三角形的内角和是多少度?A. 90°B. 180°C. 360°D. 270°答案:B7. 以下哪个选项是无理数?A. 2B. 3.14C. πD. 4答案:C8. 一个数的立方是64,那么这个数是?A. 2B. 4C. 8D. 16答案:B二、填空题(每题5分,共30分)9. 一个数的相反数是-5,这个数是______。
答案:510. 一个数的绝对值是8,这个数可以是______。
答案:±811. 一个等腰三角形的底角是45°,顶角是______。
答案:90°12. 一个数除以它的倒数等于______。
答案:113. 一个数的立方根是2,这个数是______。
答案:814. 一个数的平方是9,这个数可以是______。
答案:±3三、解答题(每题10分,共30分)15. 解方程:2x - 5 = 9答案:将方程2x - 5 = 9两边同时加5,得到2x = 14,然后两边同时除以2,得到x = 7。
16. 计算:(3x² - 2x + 1) - (2x² + 3x - 5)答案:首先去括号,得到3x² - 2x + 1 - 2x² - 3x + 5,然后合并同类项,得到x² - 5x + 6。
成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。
则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。
12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。
成考高考数学试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2-4x+3的零点个数为:A. 0个B. 1个C. 2个D. 3个答案:C2. 已知向量a=(3,-2),向量b=(1,2),则向量a与向量b的数量积为:A. -7B. -4C. 4D. 7答案:B3. 若直线l的方程为x+y-1=0,则直线l的斜率为:A. 1B. -1C. 0D. 未定义答案:B4. 函数y=cos(2x)的周期为:A. πB. 2πC. π/2D. π/4答案:A5. 已知数列{an}满足a1=1,an+1=an+2n,求a3的值为:A. 5B. 7C. 9D. 11答案:A6. 已知抛物线y=x^2+2x-3与x轴的交点个数为:A. 0个B. 1个C. 2个D. 3个答案:C7. 若复数z满足|z|=2,且z的实部为1,则z的虚部为:A. √3B. -√3C. √3iD. -√3i答案:A8. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,且c^2=a^2+b^2=5,则b的值为:A. √5B. √3C. 2D. 1答案:B9. 函数y=ln(x+√(x^2+1))的导数为:A. 1/(x+√(x^2+1))B. 1/(x-√(x^2+1))C. 1/(x+√(x^2+1))^2D. 1/(x-√(x^2+1))^2答案:A10. 已知等差数列{an}的前三项和为6,且a1+a3=4,则a2的值为:A. 2B. 3C. 4D. 5答案:A二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项为2,公比为3,求b5的值为______。
答案:48612. 函数f(x)=x^3-3x^2+2的极值点为______。
答案:x=1或x=213. 已知直线l的倾斜角为45°,则直线l的斜率为______。
答案:114. 已知圆C的方程为(x-1)^2+(y+2)^2=9,圆心C到直线x+y-1=0的距离为______。
2024年成人高考成考数学(理科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、()下列哪个数是有理数?A. √2B. πC. -3/4D. e2、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 41D. 533、若二次函数 f(x) = ax^2 + bx + c 在点 (x, f(x)) 和点 (-x, f(-x)) 处的斜率之积等于一个定值 k,则以下结论正确的是:A. a = kB. b = kC. c = kD. a 与 k 的关系不确定4、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 415、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 416、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 417、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 418、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 419、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 4110、函数 y = sin x 与函数y = √x 在第一象限的图象的交点个数为()A. 0个B. 1个C. 无数个D. 不能确定具体数量但一定有交点11、若直线 y = ax 与曲线y = √(x) 在它们的交点处相切,则实数 a 的值为多少?A. 1/2B. 1C. 2D. 无法确定12、函数 f(x) = cos^2 x + sin x 在区间[π/4, π/2] 上的最大值是()A. 根号下(二分之五)B. 二分之根号二C. 二分之一D. 一加根号二二、填空题(本大题有3小题,每小题7分,共21分)1、(10分) 已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是 ______ ,最小值是 ______ 。
成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。
2024年成人高考成考数学(理科)(高起专)自测试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1.在数学中,以下哪个数是最小的正整数?A. 1B. 2C. 3D. 42.下列不等式恒成立的是()A. 对任意实数a,都有a^3 > a^2 - 1 成立B. 存在实数 x 满足√x < logx(假设 logx 表示以 10 为底的对数)C. 对任意实数 x,都有sinx ≤ x 成立D. 对任意实数 x,都有sinx ≥ x 成立(答案中含 x=π)时错误3.已知函数f(x) = 2x^3 - 3x^2 + 4x - 5,求其在区间[0, 2]上的最大值和最小值。
A. 最大值:f(2) = 1,最小值:f(0) = -5B. 最大值:f(2) = 1,最小值:f(0) = -5C. 最大值:f(0) = -5,最小值:f(2) = 1D. 最大值:f(0) = -5,最小值:f(2) = 14.在下列数字中,哪个是最小的?A. 150B. 200C. 300D. 4005.已知函数f(x) = x^3 + ax^2 + bx 在x = 0 处取得极值,则函数f(x) 的单调递增区间为()A. (-∞, 0) ∪ (√(-a/3), +∞)B. (-√(-a/3), √(-a/3))C. (-∞, √(-a/3))D. (√(-a/3), +∞)6.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 417、函数 f(x) = x^3 + ax^2 在区间 (1, 2) 内有零点,则实数 a 的取值范围是_______ 。
A. (-∞, 1)B. (-∞, 3)C. (-∞, 5)D. (3, +∞)8.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 41D. 539、下列关于数字的表述,错误的是()。
成人高考成考数学(文科)(高起本)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1.下列哪个数是有理数?A. √2B. πC. -3/4D. e2.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 413、如果一个数的小数点向左移动2位,则这个数缩小了原来的()倍。
A、100B、10C、1/100D、1/104、若函数f(x)满足f(1) = 4, f’(1) = 2, x > 0。
若存在一个常数c,使得对于任意x > 0,都有f(x) ≥ cx^2,则c的最大值是(A、0B、1C、2D、45、一元二次方程的判别式为零时,该方程的实数根的情况是()A. 方程有两个相等的实数根B. 方程没有实数根C. 方程有两个非相等的实数根D. 以上都不正确6.等差数列2, 5, 8, 11, … 的第 20 项是多少?A. 59B. 61C. 65D. 677、直线l过点(1, 3)且与双曲线x 22−y21=1一条渐近线平行,则()。
A. 直线l无斜率B. 直线l的斜率为±√2C. 直线l的斜率为-1或-√2D. 直线l的斜率为±1解析:双曲线x 22−y21=1的渐近线方程为y=±√22x,又直线l过点(1, 3),故当直线l 与渐近线y=√22x 平行时,直线l 的斜率为√22(舍去);当直线l 与渐近线y=-√22x 平行时,直线l 的斜率为-√22;当直线l 与渐近线垂直时,直线l 的斜率不存在。
综上可知:直线l 的斜率为-1或-√2。
选C 。
8、在多项式x 2+2x +1中,x 2+2x 的系数是( )。
A. -1B. 1C. -2D. 29、一个多项式函数的最小项是关于x 的3次幂,则该多项式函数的次数至少是( )次。
A 、4B 、3C 、2D 、110、已知函数 f(x) = ax^3 + bx^2 + cx 在 x=x ₀ 处取得极值,且 f’(x ₀) = 0,则关于函数 f(x) 的极值说法正确的是:A. f(x) 在 x=x ₀ 处一定有极大值或极小值B. 若 f’(x ₀) 是正的或负的,则 f(x) 在 x=x ₀ 处有极大值或极小值C. f(x) 在 x=x ₀ 处没有极值,导数等于零不一定有极值点出现D. 函数是否存在极值与变量 x ₀ 有关,所以需要通过实际代入求解来确定极值的存在性。
成人高数考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2-4x+3的零点个数是()。
A. 0个B. 1个C. 2个D. 3个答案:C2. 曲线y=x^3-3x^2+2x在点(1,0)处的切线斜率是()。
A. 0B. 1C. -1D. 2答案:B3. 定积分∫(0到1) x^2 dx的值是()。
A. 1/3B. 1/2C. 1D. 2答案:A4. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. π/2D. ∞5. 函数y=e^x的导数是()。
A. e^xB. -e^xC. e^(-x)D. 0答案:A6. 函数y=ln(x)的二阶导数是()。
A. 1/x^2B. 1/xC. -1/x^2D. -1/x答案:A7. 级数∑(1/n^2)从1到∞的和是()。
A. π^2/6B. 1C. ln(2)D. e答案:A8. 函数y=x^3+3x^2+3x+1的极小值点是()。
A. x=-1B. x=-2C. x=-3D. x=0答案:A9. 函数y=x^4-4x^2+4的局部最大值点是()。
B. x=±1C. x=±2D. x=±√2答案:D10. 函数y=x^3-3x的拐点是()。
A. x=0B. x=±1C. x=±√3D. x=±2答案:B二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x的单调递增区间是()。
答案:(-∞,-1)和(1,+∞)2. 函数f(x)=x^2-4x+3的极小值是()。
答案:-13. 函数f(x)=e^x的不定积分是()。
答案:e^x+C4. 函数f(x)=ln(x)的不定积分是()。
答案:x*ln(x)-x+C5. 函数f(x)=x^2-4x+3的零点是()。
答案:1和3三、解答题(每题25分,共50分)1. 求函数f(x)=x^3-3x^2+2x在区间[0,2]上的最大值和最小值。