氨氮测量原理
- 格式:doc
- 大小:18.50 KB
- 文档页数:1
测氨氮的方法氨氮作为水体中的一种重要指标,常常用来评价水体的污染程度。
测量氨氮含量非常重要,因此了解测氨氮的方法也是非常必要的。
一、测氨氮的原理氨氮是水中一种重要的无机氮化合物,其含量的大小反映了水体中氮化物的转化和去除能力。
氨氮的测量原理主要是通过尿素和蛋白质分解产生的氨和水中氨盐的氨离子向酸性介质中释放出氨气来进行测定。
氨气的浓度可通过滴定的方法来测定。
1. Nessler法Nessler法是测量氨氮含量的一种常用方法,其原理是将氨氮与Nessler反应液中的汞盐生成的黄色沉淀进行比色分析。
该方法操作简便、灵敏度高、且对有机物影响小,但也存在着不同程度的误差和污染问题。
实验步骤:(2)取样:以1毫升的水样和等体积的蒸馏水混合,放到干燥清洁的试管中。
(3)加试剂:向试管中加入1-2毫升Nessler试剂,摇晃均匀使试剂充分混合。
(4)比色:将试管对着白色底板,由深至浅对试剂溶液进行比色,当颜色与标准色卡相可记录比色板上的数值。
(5)结果计算:按照比色板上的数值进行计算,使用数值和标准曲线绘制的相关系数确定氨氮含量。
2. 气相色谱法气相色谱法是一种比较常用于测量氨氮含量的方法,该方法主要是利用气相色谱仪测定检测样品中氨气的浓度,其优点在于分析速度快且结果准确。
(1)取25毫升水样,加入5毫升氢氧化钠液(1mol/L)并快速搅拌均匀。
(2)再加入1-2毫升碘化钾溶液之后,继续搅拌至样品颜色转明。
(3)通入氮气进入样品中,滤出生成的沉淀,并将滤液放入注射器中进行气相色谱分析。
(4)用标准氨气浓度曲线对分析结果进行计算,得出氨氮含量。
3. pH滴定法pH滴定法是利用氨在比色溶液中的酸碱性质进行测量的方法,此法较为直接和简单,但存在着测量误差较大的问题。
(1)将10毫升的水样放入烧杯中。
(2)加入5毫升甲醛(40%)、0.4克氢氧化钠和3毫升甲酸,热至沸腾,使样品中的氨以盐酸盐的形式逸出水样。
(3)向烧杯中加入50毫升蒸馏水,并用酚酞作为pH指示剂。
氨氮检测仪工作原理
氨氮检测仪主要基于凯特尔定氮反应原理进行测定。
其工作原理如下:
1. 样品准备:将待测样品按照要求进行处理,去除可能干扰测定的物质。
2. 催化剂反应:将样品中的氨经过催化剂(通常是硼酸和钼酸盐的混合物)的作用,催化剂能够将氨氮转化为亚硝酸盐和氮气。
3. 硫酸还原:在反应中加入硫酸,并用热水浴进行加热,使亚硝酸盐进一步还原为氮气。
4. pH调节:加入碱液,将反应混合液的pH值调至酸性。
5. 乙酸乙酯提取:将反应混合液中的氮气与乙酸乙酯相接触,氮气会从水相中迁移到有机相中。
6. 电导测定:将有机相中的氮气通过电导细胞进行测定,氮气浓度与电导率呈正比关系。
7. 结果输出:经过计算处理,最终输出样品中的氨氮浓度。
综上所述,氨氮检测仪通过催化剂反应将氨转化为亚硝酸盐和氮气,再经过硫酸还原和乙酸乙酯提取的处理,最终通过电导测定来测定样品中的氨氮浓度。
简述氨氮测定的方法原理氨氮是水中无机氮的一种形态,通常用来表示水体中的有机氮和无机氮的总量。
氨氮污染是由于一些工业废水、农业废水和家庭废水中氨态氮的排放所致。
正确测定和监测水中的氨氮含量对于环境保护和水质管理至关重要。
氨氮测定的方法原理主要有两种:直接测定法和间接测定法。
一、直接测定法:1. Nessler法:Nessler法是最常用的直接测定氨氮的方法之一。
该方法是基于氨氮与Nessler试剂反应生成红褐色络合物的原理。
首先,水样中的氨氮与氨醇发生反应生成氨醇铜络合物,然后再用NaOH溶液进行稀释,并加入Nessler 试剂,形成红褐色络合物。
根据红褐色络合物的深浅程度,可以通过光度计或比色皿比色法来定量测定。
2. 恶性亚硫酸盐法:恶性亚硫酸盐法是通过直接测定氨氮的方法之一。
该方法是利用恶性亚硫酸盐与氨氮发生化学反应,生成不溶于水的颜色是红褐色的类胆棕素(indophenol)复合物的原理。
首先,水样中的氨氮与恶性亚硫酸盐反应生成红褐色的类胆棕素复合物,然后通过滤纸过滤,根据复合物的深浅程度来定量测定。
二、间接测定法:1. Kjeldahl法:Kjeldahl法是一种常用的间接测定氨氮的方法。
该方法是将水样中的有机氮转化为无机氮,然后利用直接测定方法或其他方法来测定无机氮的含量。
首先,将水样与硫酸一起蒸发,使有机氮转化为无机氮。
然后,将蒸发后的样品与氢氧化钠一起蒸发,并加入稀硫酸和碱式碳酸铜等试剂,使无机氮形成亚硫酸盐。
最后,将亚硫酸盐与恶性亚硫酸钠反应生成复合物,并通过滤纸过滤。
根据复合物的深浅程度来定量测定。
2. 氨解法:氨解法是一种间接测定氨氮的方法。
首先,将水样与氢氧化钠和硫酸加热,使有机氮转化为氨氮。
然后,将样品与硫酸和酚酞溶液一起加热反应,形成红色复合物。
根据红色复合物的深浅程度来定量测定。
以上是氨氮测定的两种主要方法及其原理。
根据不同的需求和实际情况,可以选择直接测定法或间接测定法来测定水中的氨氮含量。
氨氮国标法测定与步骤一、引言氨氮是指水中溶解的氨与氨离子的总和,它是评价水体污染程度和水质的重要指标之一。
氨氮国标法是一种常用的测定方法,本文将介绍氨氮国标法的测定原理和步骤。
二、测定原理氨氮国标法基于氨与含氯离子的缓冲溶液中氯离子与苯酚类试剂发生反应生成带色化合物的原理。
该反应在碱性条件下进行,生成的带色化合物在特定波长下具有一定的吸光度,通过测量吸光度的变化来确定水样中的氨氮含量。
三、仪器和试剂1. 仪器:分光光度计、比色皿、移液器等。
2. 试剂:氨氮标准溶液、缓冲溶液、苯酚试剂、含氯离子试剂等。
四、测定步骤1. 样品处理:将待测水样进行预处理,如过滤、去除悬浮物等。
2. 标准曲线的制备:取一系列不同浓度的氨氮标准溶液,分别加入缓冲溶液、苯酚试剂和含氯离子试剂,混匀后放置一段时间,然后使用分光光度计分别测量各标准溶液的吸光度。
3. 测定样品:将处理后的水样加入缓冲溶液、苯酚试剂和含氯离子试剂,混匀后放置一段时间,然后使用分光光度计测量样品的吸光度。
4. 计算结果:根据标准曲线上各标准溶液的吸光度和浓度的线性关系,计算出样品中的氨氮含量。
五、操作注意事项1. 仪器和试剂应严格按照操作要求使用,避免因操作不当导致结果误差。
2. 样品处理过程中应注意防止污染和挥发,以免影响测定结果。
3. 测定过程中应控制反应时间和温度,保证反应的充分进行。
4. 保持实验环境的清洁和安静,避免外界干扰对测定结果产生影响。
六、结果分析与讨论根据测定结果,可以评价水样中的氨氮含量是否符合国家标准要求。
若超过国家标准要求,则说明水体受到了氨氮的污染,需要采取相应的措施进行处理和改善水质。
七、结论氨氮国标法是一种常用的测定方法,通过测量水样中带色化合物的吸光度来确定氨氮含量。
该方法操作简便,结果准确可靠,适用于水质监测和环境保护等领域。
八、参考文献1. 国家环境保护标准,水和废水监测分析方法,第四部分:氨氮的测定,GB/T 7474-2009。
氨氮测定的原理和方法
氨氮测定是测定水体中氨基态氮的一种方法。
氨基态氮结构简单,是水
体中的重要有毒污染物,氨氮的持久性高,能够很好的反映水质的质量和状况,因此,氨氮测定在监测水质中具有重要意义。
氨氮测定原理主要是根据氨溶解度和酸碱平衡关系,通过Wikoff氏定定理,利用氨氮占据水中离子空间,催化关联反应,而产生一定量的氯化物络
合物,把氯化物络合物加入到某种能够使这种氯化络合物发生光谱反应的适
当溶液中,根据光谱反应得到被测物质的含量。
氨氮测定常见的分析方法有铜蓝试纸法、溴甲烷法和高效液相色谱法等。
其中,铜蓝试纸法是一种快速简便的分析方法,它采用试纸将氨基态氮与铜
蓝反应,在试纸形成的棕黄色色调的浓度与氨氮的浓度呈正比。
溴甲烷法以
溴甲烷为辅助试剂,通过脱氨反应生成溴,溴的浓度反映了氨氮浓度。
高效
液相色谱法主要采用检测相擅镁离子和硝酸根离子,实现色谱分离和检测目的。
综上所述,氨氮测定是测定水体中氨基态氮的一种方法,根据Wikoff氏的定定理,利用氨氮占据水中离子空间,催化关联反应而产生一定量的氯化
物络合物,通过光谱反应得到被测物质的含量,常见的分析方法有铜蓝试纸法、溴甲烷法和高效液相色谱法。
氨氮(NH3—N)的测定氨氮以游离氨(NH3)或铵盐(NH4+)的形式存在于水中,两者的构成比取决于水的pH值。
pH值偏高时,游离氨比例较高,反之,铵盐比例较高。
在无氧条件下,亚硝酸盐受微生物作用还原为氨;在有氧条件下水中的氨亦可变化为亚硝酸盐,连续变化为硝酸盐.测定氨氮的方法重要为纳氏比色法和蒸馏—酸滴定法。
水样应保存在聚乙烯瓶或玻璃瓶中,尽快分析。
水样带色或浑浊时要进行水样的预处理,对污染严重的要进行蒸馏。
一、预处理1、絮凝沉淀法加适量硫酸锌于水样中,并加氢氧化钠使成碱性,生成氢氧化锌沉淀,经过滤除去颜色和浑浊。
仪器:100ml容量瓶试剂:(1)10%(m/v)硫酸锌溶液:称取10g硫酸锌溶于水,稀至100ml。
(2)25%氢氧化钠溶液:25g氢氧化钠溶于水,稀至100ml,贮于聚乙烯瓶中。
(3)浓硫酸步骤:取100ml水样于容量瓶中,加入1ml10%硫酸锌和0.1—0.2ml25%氢氧化钠,混匀,放置使沉淀,用中速滤纸过滤,弃去20ml初滤液。
2、蒸馏预处理调整水样pH在6.0—7.4的范围,加入适量氧化镁使呈微碱性,蒸馏释出氨,汲取于硼酸溶液,采纳纳氏试剂或酸滴定法测定。
仪器:带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管、橡胶导管(6*9)、锥形瓶、电炉试剂:(1)1mol/L盐酸溶液:吸取83ml浓盐酸加入200ml水中,稀至1000ml。
(2) 1mol/L氢氧化钠:称取40g氢氧化钠溶于水,稀至1000ml(3)轻质氧化镁(MgO):氧化镁于500℃在马弗炉中加热0.5h。
(4)0.05%溴百里酚蓝指示液(PH6.0—7.6):将0.05g溴百里酚蓝溶于100ml水中。
(5)硼酸汲取液:称取20g硼酸溶于水,稀至1L。
步骤:(1)装置预处理:加入250ml水于凯氏烧瓶中,加约0.25g氧化镁和数粒玻璃珠,加热蒸馏出约200ml,弃去瓶内残液。
(2)水样的蒸馏:①取250ml水样移入凯氏烧瓶中,加数滴溴百里酚蓝;②用氢氧化钠或盐酸调整至pH在7左右;③加入0.25g氧化镁和3~5粒玻璃珠;④立刻连接氮球和冷凝管,导管下端插入50ml硼酸汲取液面下;⑤加热蒸馏,至馏出液达200ml时,停止蒸馏,定容至250ml。
氨氮测定仪原理及用途氨氮测定仪,这玩意儿听起来就很专业,它在环境监测等领域可是个厉害角色。
氨氮测定仪的原理啊,就像是一场奇妙的化学反应魔术。
它主要是利用化学反应来检测氨氮的含量。
其中一种常见的原理就像是一场精准的“约会游戏”。
特定的试剂就像热情的“追求者”,它们与水中的氨氮分子“相遇”后,会发生一系列的反应,产生颜色变化或者其他可测量的信号。
比如说,有些试剂和氨氮结合后,溶液会像变色龙一样变色,从清澈透明逐渐变成淡淡的蓝色或者黄色,这颜色的深浅就像是氨氮含量的“晴雨表”。
难道这不是很神奇吗?就好像我们能通过观察花朵的颜色变化来知晓季节的更替一样,通过观察溶液的颜色变化就能知道水里氨氮有多少。
还有一种原理类似一场“电量的较量”。
氨氮在特定的环境下会参与到电化学反应中,产生电流或者电位的变化。
这就像两个运动员在赛场上比拼力量,氨氮的含量不同,产生的“力量”大小就不一样,也就是电流或者电位的数值不同。
这是不是有点像拔河比赛呢?两边的力量对比决定了绳子的移动方向,而氨氮含量决定了电信号的强弱。
那氨氮测定仪有啥用途呢?它可是环境保护的“小卫士”。
在检测水体质量的时候,它就像一个敏锐的侦探,能快速准确地找出水中氨氮的“踪迹”。
如果水体中氨氮含量超标,那可不得了,就像身体里进了病菌一样。
氨氮过多可能会导致水体富营养化,藻类就像得到了“助长剂”,疯狂生长,把整个水面都盖得严严实实,其他水生生物就像被关在黑暗的小屋里,没有了阳光和氧气,它们怎么生存呢?所以氨氮测定仪能及时发现问题,让我们采取措施来治理污染,保护水生生物的“家园”。
在工业生产中,氨氮测定仪也起着关键作用。
比如在污水处理厂,它就像一个严格的质检员,时刻盯着处理后的水是否达标。
如果氨氮含量不达标就排放出去,这就像把没洗干净的脏衣服穿出去,会影响整个环境的“形象”。
有了氨氮测定仪,就能确保处理后的水像清澈的泉水一样干净,不会对周围环境造成危害。
在农业领域,氨氮测定仪也有用武之地。
氨氮的测量方法—水杨酸光度法氨氮是指水中的氨气及其离子态的氨的总含量,是水体中常见的一种污染指标。
常用的氨氮测量方法有多种,其中水杨酸光度法是一种简单、快速、准确的测定氨氮的方法。
下面将详细介绍水杨酸光度法的原理、操作步骤和注意事项。
1.原理:氨氮测量的基本原理是氨与水杨酸在碱性环境下反应生成呋喃类化合物。
此呋喃类化合物在紫外光下具有特征性的吸收峰,可通过光度法测量吸收值来确定氨氮的浓度。
2.操作步骤:(1)样品处理:将待测水样取适量,如含氯或浊度较高,可用氢氧化钠溶液进行调节,使其达到中性或弱碱性。
(2)试剂配置:将水杨酸溶于水中,加入适量的氢氧化钠溶液调节pH为10-11,配制水杨酸试剂。
(3)标准曲线的绘制:取一定量的标准氨氮溶液,分别加入配制好的水杨酸试剂,调整pH,光度计测定吸光度,得到标准曲线。
(4)测定样品:将待测样品加入配制好的水杨酸试剂中,调整pH,光度计测定吸光度,根据标准曲线确定氨氮的浓度。
3.注意事项:(1)样品采集:样品应在合适的容器中采集,避免污染和挥发。
(2)试剂配制:水杨酸试剂应在实验室条件下新鲜配制,尽量避免氧气和光线的暴露。
(3)pH调节:调节pH时,使用足量的氢氧化钠溶液,避免pH过高或过低对测量结果的影响。
(4)光度测量:使用合适的光度计进行测量,设置合适的波长(通常为紫外光波长)。
在读取吸光度值时,应避免氨氮含量过高,导致转移率偏低。
(5)标准曲线的设置:为了准确测定氨氮的浓度,应设置一条线性良好的标准曲线,包括不同浓度的氨氮标准液,并在一定范围内进行校准检验。
水杨酸光度法是一种常用的测定氨氮的方法,广泛应用于环境监测、水质评价和水处理等领域。
通过严格的操作规范和标准曲线的建立,可以得到准确可靠的氨氮浓度数据,为水体污染的评估和治理提供依据。
氨氮测定原理氨氮是水体中的一种重要指标,它是指水体中游离态氨和铵离子的总和。
氨氮的浓度是衡量水体富营养化程度的重要指标之一,也是评价水质的重要参数。
因此,准确测定水体中的氨氮浓度对于环境保护和水质监测具有重要意义。
本文将介绍氨氮测定的原理及相关方法。
氨氮的测定原理主要包括两种方法,一种是氨氮的直接测定法,另一种是氨氮的间接测定法。
直接测定法是指直接测定水样中游离态氨和铵离子的浓度。
常用的方法包括纳氏试剂法、蒸馏滴定法、分光光度法等。
其中,纳氏试剂法是最常用的方法之一。
其原理是将水样中的氨氮与纳氏试剂在碱性条件下生成蓝色络合物,然后用分光光度计在特定波长下测定其吸光度,从而计算出氨氮的浓度。
蒸馏滴定法则是通过将水样中的氨氮蒸馏出来,然后用酸溶液滴定的方法测定氨氮的浓度。
分光光度法则是利用特定波长下氨氮与试剂生成的化合物的吸光度来测定氨氮的浓度。
间接测定法是指先将水样中的氨氮转化为其他物质,再测定这些物质的浓度来间接计算氨氮的浓度。
常用的方法包括氨氮的硝化还原法、氨氮的气相色谱法等。
其中,氨氮的硝化还原法是将水样中的氨氮转化为硝酸盐,然后用硝酸盐的测定方法来测定氨氮的浓度。
氨氮的气相色谱法则是将水样中的氨氮转化为氨气,然后用气相色谱仪来测定氨气的浓度。
在实际的氨氮测定中,需要根据水样的特点和浓度范围选择合适的测定方法。
同时,还需要注意样品的保存和处理,以保证测定结果的准确性和可靠性。
总的来说,氨氮的测定原理涉及到多种方法,每种方法都有其特点和适用范围。
正确选择和掌握合适的测定方法,对于准确测定水体中的氨氮浓度具有重要意义。
希望本文介绍的内容能够对相关领域的研究和实践有所帮助。
氨氮检测仪工作原理
氨氮检测仪的工作原理通常有两种方法:腐解-发色法和电化学法。
腐解-发色法:
1. 样品腐解:将待测样品中的氨氮通过蒸馏或者碱性氧化剂进行腐解,将氨氮转化为氨气。
2. 氨气吸收:将腐解产生的氨气通过一定的吸收装置,使其与一种含有酚或者酚类物质的吸收液发生化学反应,产生发色反应。
反应的产物的颜色与氨气的含量成正比。
3. 光度测定:将发生发色反应后的液体样品置于光度计中,通过光吸收法测定样品溶液的吸光度,根据标准曲线或者已知浓度的标准溶液,可以计算出样品中的氨氮浓度。
电化学法:
1. 氨离子的转化:将待测样品中的氨氮在电解液中发生氧化还原反应,转化为氨离子。
2. 电流测定:将产生的氨离子通过电极进行电流测定,电流的大小与氨离子的浓度成正比,从而可以计算出样品中的氨氮浓度。
总之,氨氮检测仪通过将氨气或氨离子与特定的试剂发生化学反应或者电化学反应,最终通过光度或电流的测定,来确定样品中的氨氮浓度。
二、原理
仪器的测试原理完全基于GB7478规定的分析方法,样品在综合试剂存在的条件 下,经加热蒸馏、释放出的氨冷却被吸收于硼酸溶液中,再用盐酸标准溶液滴定,当电极电位滴定至终点时停止滴定。
反应方程式为:
O H NH OH NH 234+↑→++
324333BO H NH BO H NH ⋅→+
334324BO H CL NH BO H NH +→⋅
根据盐酸所消耗体积,计算出水中氨氮的含量,仪器显示并存储、打印出结果。
计算公式:
氨氮(N ,mg/l )=100001.140
21⨯⨯⨯-C V V V 式中:V 1一滴定水样时消耗盐酸标准滴定液的体积(m1):
V 2一空白实验时消耗盐酸标准滴定液的体积(m1);
V 0一取水样(试份)的体积(m1);
C 一滴定用的盐酸精确浓度(mol /1);
14.0l 一氨的原子量(g /mo1)。