19高考数学一轮复习课时规范练34数学归纳法理新人教B版
- 格式:doc
- 大小:278.04 KB
- 文档页数:6
2019高考数学一轮复习课时规范练30等比数列及其前n项和理新人教B版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习课时规范练30 等比数列及其前n项和理新人教B版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习课时规范练30等比数列及其前n项和理新人教B版的全部内容。
课时规范练30 等比数列及其前n项和基础巩固组1.已知等比数列{an}满足a1=,a3a5=4(a4-1),则a2=ﻩ()A.2B.1ﻩC.D.2。
在正项等比数列{a n}中,a2,a48是方程2x2-7x+6=0的两个根,则a1·a2·a25·a48·a49的值为()A。
B.9C.±9D。
353.(2017安徽黄山二模,理3)已知数列{a n}的前n项和为Sn,且a1=2,a n+1=S n+1(n∈N+),则S5=()A.31 B。
42ﻩC。
37ﻩD.474.设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A。
Sn=2an—1ﻩB。
Sn=3an—2C。
S n=4—3anﻩD.Sn=3—2a n5.(2017全国Ⅲ,理9)等差数列{a n}的首项为1,公差不为0。
若a2,a3,a6成等比数列,则{a n}前6项的和为()A.-24ﻩ B.—3ﻩC.3D。
86.(2017辽宁鞍山一模,理4)已知数列{a n}满足=an—1·an+1(n≥2),若a2=3,a2+a4+a6=21,则a4+a6+a8=()A。
84ﻩB。
63ﻩC。
42ﻩD。
21ﻩ〚导学号21500732〛7。
课时规范练(A)课时规范练1集合的概念与运算课时规范练3命题及其关系、充要条件课时规范练5函数及其表示课时规范练7函数的奇偶性与周期性课时规范练9指数与指数函数课时规范练11函数的图象课时规范练13函数模型及其应用课时规范练15利用导数研究函数的单调性课时规范练17定积分与微积分基本定理课时规范练19同角三角函数基本关系式及诱导公式课时规范练21简单的三角恒等变换课时规范练23函数y=A sin(ωx+φ)的图象及三角函数的应用课时规范练25平面向量的概念及线性运算课时规范练27平面向量的数量积及其应用课时规范练29数列的概念课时规范练31等比数列课时规范练33二元一次不等式(组)与简单的线性规划问题课时规范练35合情推理与演绎推理课时规范练37数学归纳法课时规范练39空间几何体的表面积与体积课时规范练41空间直线、平面的平行关系课时规范练43空间向量及其运算课时规范练45直线的倾斜角、斜率与直线的方程课时规范练47圆的方程课时规范练49椭圆课时规范练51抛物线课时规范练53算法初步课时规范练55用样本估计总体课时规范练57分类加法计数原理与分步乘法计数原理课时规范练59二项式定理课时规范练61古典概型与几何概型课时规范练63二项分布与正态分布课时规范练65极坐标方程与参数方程课时规范练67绝对值不等式课时规范练(B)课时规范练2简单不等式的解法课时规范练4简单的逻辑联结词、全称量词与存在量词课时规范练6函数的单调性与最大(小)值课时规范练8幂函数与二次函数课时规范练10对数与对数函数课时规范练12函数与方程课时规范练14导数的概念及运算课时规范练16利用导数研究函数的极值、最大(小)值课时规范练18任意角、弧度制及任意角的三角函数课时规范练20两角和与差的正弦、余弦与正切公式及二倍角公式课时规范练22三角函数的图象与性质课时规范练24余弦定理、正弦定理及应用举例课时规范练26平面向量基本定理及向量坐标运算课时规范练28复数课时规范练30等差数列课时规范练32数列求和课时规范练34基本不等式及其应用课时规范练36直接证明与间接证明课时规范练38空间几何体的结构及其三视图、直观图课时规范练40空间点、直线、平面之间的位置关系课时规范练42空间直线、平面的垂直关系课时规范练44空间几何中的向量方法课时规范练46点与直线、两条直线的位置关系课时规范练48直线与圆、圆与圆的位置关系课时规范练50双曲线课时规范练52直线与圆锥曲线的位置关系课时规范练54随机抽样课时规范练56变量间的相关关系、统计案例课时规范练58排列与组合课时规范练60随机事件的概率课时规范练62离散型随机变量及其分布列课时规范练64离散型随机变量的均值与方差课时规范练66极坐标方程与参数方程的应用课时规范练68不等式的证明解答题专项解答题专项一函数与导数的综合问题第1课时利用导数证明不等式第2课时利用导数研究不等式恒(能)成立问题第3课时利用导数研究函数的零点解答题专项二三角函数与解三角形解答题专项三数列解答题专项四立体几何中的综合问题解答题专项五直线与圆锥曲线第1课时圆锥曲线中的最值(或范围)问题第2课时圆锥曲线中的定点(或定值)问题第3课时圆锥曲线中的存在性(或证明)问题解答题专项六概率与统计单元质检卷单元质检卷一集合与常用逻辑用语单元质检卷二函数单元质检卷三导数及其应用单元质检卷四三角函数、解三角形单元质检卷五平面向量、数系的扩充与复数的引入单元质检卷六数列单元质检卷七不等式、推理与证明单元质检卷八立体几何单元质检卷九解析几何单元质检卷十算法初步、统计与统计案例单元质检卷十一计数原理单元质检卷十二概率。
课时规范练53 用样本估计总体基础巩固组1.一组数据分别为12,16,20,23,20,15,28,23,则这组数据的中位数是()A.19B.20C.21.5D.232.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:平均环数从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是()A.甲B.乙C.丙D.丁3.(2017广西南宁一模,理3)某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在()A.第3组B.第4组C.第5组D.第6组4.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为()A.2B.3C.4D.5 〚导学号21500581〛5.在某次测量中得到的甲样本数据如下:42,43,46,52,42,50,若乙样本数据恰好是甲样本每个数据都减5后所得数据,则甲、乙两个样本的下列数字特征对应相同的是()A.平均数B.标准差C.众数D.中位数6.若数据x1,x2,…,x n的平均数为,方差为s2,则2x1+3,2x2+3,…,2x n+3的平均数和方差分别为()A.和s2B.2+3和4s2C.2+3和s2D.2+3和4s2+12s+97.(2017辽宁大连一模)某班级有50名同学,一次数学测试平均成绩是92,如果学号为1号到30号的同学平均成绩为90,那么学号为31号到50号同学的平均成绩为.8.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩在[16,18]的学生人数是.9.某市运动会期间30名志愿者年龄数据如下表:(1)求这30名志愿者年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这30名志愿者年龄的茎叶图;(3)求这30名志愿者年龄的方差.〚导学号21500582〛综合提升组10.若一组数据2,4,6,8的中位数、方差分别为m,n,且ma+nb=1(a>0,b>0),则的最小值为()A.6+2B.4+3C.9+4D.2011.已知样本(x1,x2,…,x n)的平均数为,样本(y1,y2,…,y m)的平均数为),若样本(x1,x2,…,x n,y1,y2,…,y m)的平均数=α+(1-α),其中0<α<,则n,m的大小关系为()A.n<mB.n>mC.n=mD.不能确定12.(2017山西晋中一模,理13)设样本数据x1,x2,…,x2 017的方差是4,若y i=2x i-1(i=1,2,…,2 017),则y1,y2,…,y2 017的方差为.13.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.〚导学号21500583〛创新应用组14.某学校随机抽取20个班,调查各班有网上购物经历的人数,所得数据的茎叶图如图所示,以5为组距将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()15.(2017河北邯郸一模)某校为指导学生合理选择文理科的学习,根据数理综合测评成绩,按6分为满分进行折算后,若学生成绩小于m分建议选择文科,不低于m分则建议选择理科(这部分学生称为候选理科生).现从该校高一随机抽取500名学生的数理综合成绩作为样本,整理得到分数的频率分布直方图(如图所示).(1)求直方图中t的值;(2)根据此次测评,为使80%以上的学生选择理科,整数m至多定为多少?(3)若m=4,试估计该校高一学生中候选理科学生的平均成绩.(精确到0.01)〚导学号21500584〛参考答案课时规范练53用样本估计总体1.B把该组数据按从小到大的顺序排列如下:12,15,16,20,20,23,23,28,排在中间的两个数是20,20,故这组数据的中位数为=20.故选B.2.C由题目表格中数据可知,丙的平均环数最高,且方差最小,说明丙的技术稳定,且成绩好,故选C.3.B由题图可得,前第四组的频率为(0.037 5+0.062 5+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,即中位数落在第4组,故选B.4.B依题意可得10×(0.005+0.01+0.02+a+0.035)=1,则a=0.03.所以身高在[120,130),[130,140),[140,150]三组内的学生人数比例为3∶2∶1.所以从身高在[140,150]内的学生中选取的人数应为×18=3.5.B设样本甲中的数据为x i(i=1,2,…,6),则样本乙中的数据为y i=x i-5(i=1,2,…,6),则样本乙中的众数、平均数和中位数与甲中的众数、平均数和中位数都相差5,只有标准差没有发生变化,故选B.6.B原数据乘2加上3得到一组新数据,则由平均数、方差的性质可知得到的新数据的平均数、方差分别是2+3和4s2.7.95设学号为31号到50号同学的平均成绩为x,则92×50=90×30+20x,解得x=95,故答案为95.8.54成绩在[16,18]的学生人数所占比例为,所以成绩在[16,18]的学生人数为120×=54.9.解 (1)众数为19,极差为21.(2)茎叶图如图.(3)年龄的平均数为=29,故这30名志愿者年龄的方差为[(19-29)2×7+2×(21-29)2+3×(28-29)2+4×(30-29)2+(31-29)2×5+(32-29)2×3+(40-29)2×6]=.10.D∵数据2,4,6,8的中位数是5,方差是(9+1+1+9)=5,∴m=5,n=5.∴ma+nb=5a+5b=1(a>0,b>0).∴(5a+5b)=5≥20(当且仅当a=b时等号成立),故选D.11.A由题意知样本(x1,…,x n,y1,…,y m)的平均数为.又=α+(1-α),即α=,1-α=.因为0<α<,所以0<,即2n<m+n,所以n<m,故选A.12.16根据题意,设样本数据x1,x2,…,x2 017的平均数为,又由其方差为4,则[(x1-)2+(x2-)2+(x3-)2+…+(x2 017-)2]=4.对于数据y i=2x i-1(i=1,2,…,2 017),其平均数(y1+y2+…+y2 017)=[(2x1-1)+(2x2-1)+…+(2x2 017-1)]=2-1, 其方差[(y1-)2+(y2-)2+(y3-)2+…+(y2 017-)2]=[(x1-)2+(x2-)2+(x3-)2+…+(x2 017-)2]=16,故答案为16.13.解 (1)依题意,得10(2a+0.02+0.03+0.04)=1,解得a=0.005.(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分).(3)数学成绩在[50,60)的人数为:100×0.05=5,数学成绩在[60,70)的人数为:100×0.4×=20,数学成绩在[70,80)的人数为:100×0.3×=40,数学成绩在[80,90)的人数为:100×0.2×=25,所以数学成绩在[50,90)之外的人数为:100-5-20-40-25=10.14.A由组距可知选项C,D不对;由茎叶图可知[0,5)有1人,[5,10)有1人,故第一、二小组频率相同,频率分布直方图中矩形的高应相等,可排除B.故选A.15.解 (1)根据频率分布直方图,得0.15×1+t×1+0.30×1+t×1+0.15×1=1,解得t=0.2.(2)为使80%以上的学生选择理科,则0.15+0.2+0.3<0.8<0.15+0.2+0.3+0.2,故满足条件的m值为2.(3)当m=4时,≈4.93,估计该校高一学生中候选理科学生的平均成绩为4.93分.。
课时规范练34 归纳与类比基础巩固组1.(2018河北衡水枣强中学期中,7)下列三句话按“三段论”模式排列顺序正确的是()①y=cos x(x∈R)是三角函数;②三角函数是周期函数;③y=cos x(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①2.(2018安徽合肥一中冲刺,7)观察下图:123 43456745678910……则第()行的各数之和等于2 0172.A.2 010B.2 018C.1 005D.1 0093.(2018河北辛集中学月考,10)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,由以上规律,则这些三角形数从小到大形成一个数列{a n},那么a10的值为()A.45B.554.(2018吉林梅河口五中期中,9)在一次体育兴趣小组的聚会中,要安排6人的座位,使他们在如图所示的6个椅子中就座,且相邻座位(如1与2,2与3)上的人要有共同的体育兴趣爱好,现已知这6人的体育兴趣爱好如下表所示,且小林坐在1号位置上,则4号位置上坐的是()小林小方小马体育兴趣爱好篮球,网球,羽毛球足球,排球,跆拳道篮球,棒球,乒乓球小张小李小周体育兴趣爱好击剑,网球,足球棒球,排球,羽毛球跆拳道,击剑,自行车5.(2018黑龙江哈尔滨二模,9)对大于或等于2的自然数的正整数幂运算有如下分解方式: 22=1+3,32=1+3+5,42=1+3+5+7,23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若m2=1+3+5+…+11,n3的分解中最小的正整数是21,则m+n=()A.10B.116.(2018河南信阳一中模拟,9)若“*”表示一种运算,满足如下关系:(1)1*1=1;(2)(n+1)*1=3(n*1)(n∈N+),则n*1=()n-n+1 nn-17.(2018河北衡水中学五模,8)下面推理过程中使用了类比推理方法,其中推理正确的个数是()①“数轴上两点间距离公式为|AB|=,平面上两点间距离公式为|AB|=”,类比推出“空间内两点间的距离公式为|AB|=”;②“代数运算中的完全平方公式(a+b)2=a2+2a·b+b2”类比推出“向量中的运算(a+b)2=a2+2a·b+b2仍成立”;③“平面内两条不重合的直线不平行就相交”类比到空间“空间内两条不重合的直线不平行就相交”也成立;④“圆x2+y2=1上点P(x0,y0)处的切线方程为x0x+y0y=1”,类比推出“椭圆=1(a>b>0)上点P(x0,y0)处的切线方程为=1”.A.1B.28.(2018福建三明一中期末,11)观察图形:…则第30个图形比第27个图形中的“☆”多()9.(2018河北衡水一模,14)已知自主招生考试中,甲、乙、丙三人都恰好报考了清华大学、北京大学中的某一所大学,三人分别给出了以下说法:甲说:“我报考了清华大学,乙也报考了清华大学,丙报考了北京大学.”乙说:“我报考了清华大学,甲说得不完全对.”丙说:“我报考了北京大学,乙说得对.”已知甲、乙、丙三人中恰好有1人说得不对,则报考了北京大学的是.10.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知,四面体ABCD的四个面的面积分别为S1,S2,S3,S4,四面体ABCD的体积为V,内切球半径为R,则R=.11.(2018中山模拟,14)在△ABC中,不等式成立;在凸四边形ABCD中,不等式成立;在凸五边形ABCDE中,不等式成立…依此类推,在凸n 边形A1A2…A n中,不等式+…+≥成立.12.(2018河北保定模拟,17)数列{a n}的前n项和记为S n,已知a1=1,a n+1=S n(n∈N+).证明:(1)数列是等比数列;(2)S n+1=4a n.综合提升组13.(2018河南中原名校五联,10)老师在四个不同的盒子里面放了4张不同的扑克牌,分别是红桃A,梅花A,方片A以及黑桃A,让小明、小红、小张、小李四个人进行猜测:小明说:第1个盒子里面放的是梅花A,第3个盒子里面放的是方片A;小红说:第2个盒子里面放的是梅花A,第3个盒子里放的是黑桃A;小张说:第4个盒子里面放的是黑桃A,第2个盒子里面放的是方片A;小李说:第4个盒子里面放的是红桃A,第3个盒子里面放的是方片A;老师说:“小明、小红、小张、小李,你们都只说对了一半.”则可以推测,第4个盒子里装的是()A或黑桃AA或梅花AA或方片AA或梅花A14.(2018湖南岳阳一模,9)将棱长相等的正方体按下图所示的形状摆放,从上往下依次为第1层,第2层,第3层,…,则第2 018层正方体的个数共有()A.2 018B.4 028C.2 037 171D.2 009 01015.如图,我们知道,圆环也可以看作线段AB绕圆心O旋转一周所形成的平面图形,又圆环的面积S=π(R2-r2)=(R-r)×2π×.所以,圆环的面积等于以线段AB=R-r为宽,以AB中点绕圆心O旋转一周所形成的圆的周长2π×为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)绕y轴旋转一周,则所形成的旋转体的体积是.创新应用组16.(2018河北衡水模拟,14)将给定的一个数列{a n}:a1,a2,a3,…按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列.如在上述数列中,我们将a1作为第一组,将a2,a3作为第二组,将a4,a5,a6作为第三组,…,依次类推,第n组有n个元素(n∈N+),即可得到以组为单位的序列:(a1),(a2,a3),(a4,a5,a6),…,我们通常称此数列为分群数列.其中第1个括号称为第1群,第2个括号称为第2群,第3个数列称为第3群,…,第n个括号称为第n群,从而数列{a n}称为这个分群数列的原数列.如果某一个元素在分群数列的第m个群中,且从第m个括号的左端起是第k个,则称这个元素为第m群中的第k个元素.已知数列1,1,3,1,3,9,1,3,9,27,…,将数列分群,其中,第1群为(1),第2群为(1,3),第3群为(1,3,32),…,以此类推.设该数列前n项和N=a1+a2+…+a n,若使得N>14 900成立的最小a n位于第m群,则m=()A.11B.1017. (2018黑龙江仿真模拟四,14)已知命题:在平面直角坐标系xOy中,椭圆=1(a>b>0),△ABC的顶点B在椭圆上,顶点A,C分别为椭圆的左、右焦点,椭圆的离心率为e,则,现将该命题类比到双曲线中,△ABC的顶点B在双曲线上,顶点A、C分别为双曲线的左、右焦点,设双曲线的方程为=1(a>0,b>0),双曲线的离心率为e,则有.参考答案课时规范练34 归纳与类比1.B根据“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cos x(x∈R)是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cos x(x∈R)是周期函数是“结论”.故“三段论”模式排列顺序为②①③.故选B.2.D由图形知,第一行各数和为1;第二行各数和为9=32;第三行各数和为25=52;第四行各数和为49=72,…,∴第n行个数之和为(2n-1)2,令(2n-1)2=2 0172⇒2n-1=2 017,解得n=1 009,故选D.3.B a1=1,a2=1+2,a3=1+2+3,a4=1+2+3+4,故a10=1+2+3+4+…+10=55,故选B.4.A依据题意可得从1~6号依次为小林、小马、小李、小方、小周、小张,则4号位置上坐的是小方,故选A.5.B∵m2=1+3+5+…+11=×6=36,∴m=6,∵23=3+5,33=7+9+11,43=13+15+17+19,∴53=21+23+25+27+29,∵n3的分解中最小的数是21,∴n3=53,n=5.∴m+n=6+5=11,故选B.6.D由题设:①1*1=1,②(n+1)*1=3(n*1),则n*1=3((n-1)*1)=3×3((n-2)*1)=…=3n-1(1*1)=3n-1.故选D.7.C对于①,根据空间内两点间距离公式可知,类比正确;对于②,(a+b)2=(a+b)·(a+b)=a2+a·b+b·a+b2=a2+2a·b+b2,类比正确;对于③,在空间内不平行的两条直线,有相交和异面两种情况,类比错误;对于④,椭圆+=1(a>b>0)上点P(x0,y0)处的切线方程为+=1,为真命题,综合上述,可知正确个数为3个,故选C.8.C设第n个图形“☆”的个数为a n,则a1=1,a2=1+2=3,a3=1+2+3=6,a n=1+2+…+n=,∴第30个图形比第27个图形中的“☆”多的个数为:-=87.故选C.9.甲、丙若甲说得不对,则乙、丙说得对,即乙一定报考了清华大学,丙一定报考了北京大学,甲只可能报考了北京大学.若乙、丙说得不对,则得出与“甲、乙、丙三人中恰好有1人说得不对”矛盾,所以报考了北京大学的是甲、丙.所以填甲、丙.10.三角形的面积类比四面体的体积,三角形的边长类比四面体四个面的面积,内切圆半径类比内切球的半径,二维图形中的“2”类比三维图形中的“3”,得R=.11.(n∈N+,n≥3)∵++≥=,+++≥=,++++≥=,…,∴++…+≥(n∈N+,n≥3).12.证明 (1)∵a n+1=S n+1-S n,a n+1=S n,∴(n+2)S n=n(S n+1-S n),即nS n+1=2(n+1)S n.∴=2·,又=1≠0,(小前提)故是以1为首项,2为公比的等比数列.(结论)(2)由(1)可知=4·(n≥2),∴S n+1=4(n+1)·=4··S n-1=4a n(n≥2),(小前提)又a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)∴对于任意正整数n,都有S n+1=4a n.(结论)13.A因为四个人都只猜对了一半,故有以下两种可能:(1)当小明猜对第1个盒子里面放的是梅花A时,第3个盒子里面放的不是方片A,则小李猜对第4个盒子里面放的是红桃A,小张猜对第2个盒子里面放的是方片A,小红猜对第3个盒子里面放的是黑桃A;(2)若小明猜对的是第3个盒子里面放的是方片A,则第1个盒子里面放的不是梅花A,小红猜对第2个盒子里面放的是梅花A,小张猜对第4个盒子里面放的是黑桃A,小李猜对第3个盒子里面放的是方片A,则第1个盒子只能是红桃A,故选A.14.C设第n层正方体的个数为a n,则a1=1,a n-a n-1=n,所以a n-a1=2+3+…+n,即a n=1+2+3+…+n=,n≥2,故a2 018=1 009×2 019=2 037 171,故选C.15.2π2r2d 平面区域M的面积为πr2,由类比知识可知:平面区域M绕y轴旋转一周得到的旋转体为实心的车轮内胎,旋转体的体积等于以圆(面积为πr2)为底,以O为圆心、d为半径、圆的周长2πd为高的圆柱的体积,所以旋转体的体积V=πr2×2πd=2π2r2d.16.B由题意得到该数列的前r组共有1+2+3+4…+r=个元素,其和为S=1+(1+3)+(1+3+32)+…+(1+3+32+…+3r-1)=,则r=9时,S(45)==14 757,r=10,S(55)=44 281>14 900,故使得N>14 900成立的最小值a位于第10群.故答案为B.点睛这个题目考查的是新定义题型,属于数列中的归纳推理求和问题;对于这类题目,可以先找一些特殊情况,总结一下规律,再进行推广,得到递推关系,或者直接从变量较小的情况开始归纳得到递推关系.17.= 将该命题类比到双曲线中,因为△ABC的顶点B在双曲线-=1(a>0,b>0)上,顶点A、C分别是双曲线的左、右焦点,所以有|BA|-|BC|=2a,所以==,由正弦定理可得==,所以=,故答案为=.。
【2019最新】精选高考数学一轮复习课时规范练34数学归纳法理新人教B版基础巩固组1.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出n边形的内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误3.(2017北京丰台一模,理8)在一次猜奖游戏中,1,2,3,4四扇门里摆放了a,b,c,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b,3号门里是c;乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c.如果他们每人都猜对了一半,那么4号门里是( )A.aB.bC.cD.d〚导学号21500738〛4.①已知a是三角形一边的长,h是该边上的高,则三角形的面积是ah,如果把扇形的弧长l,半径r分别看成三角形的底边长和高,可得到扇形的面积为lr;②由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n-1=n2,则①②两个推理过程分别属于( )A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理5.(2017河北石家庄质检)某市为了缓解交通压力实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A,B,C,D,E五辆车,保证每天至少有四辆车可以上路行驶.已知E车周四限行,B车昨天限行,从今天算起,A,C两车连续四天都能上路行驶,E车明天可以上路,由此可知下列推测一定正确的是( )A.今天是周六B.今天是周四C.A车周三限行D.C车周五限行6.从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )A.2 011B.2 012C.2 013D.2 0147.下列推理是归纳推理的是( )A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=a,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇8.已知数列{an},{bn}满足a1=,an+bn=1,bn+1=,n∈N*,则b2018= .9.有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.10.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n个图形中小正方形的个数是.11.(2017四川成都高三一诊,理15)我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,图①是一个形状不规则的封闭图形,图②是一个上底为1的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图①和图②所截得的两线段长始终相等,则图①的面积为.〚导学号21500739〛12.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得100的所有正约数之和为.综合提升组13.(2017河北衡水中学三调,理9)来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起,他们除懂本国语言外,每人还会说其他三国语言中的一种,有一种语言是三人都会说的,但没有一种语言人人都懂,现知道:①甲是日本人,丁不会说日语,但他俩都能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③甲、乙、丙、丁交谈时,找不到共同语言沟通;④乙不会说英语,当甲与丙交谈时,他都能做翻译.针对他们懂的语言,正确的推理是( )A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英14.(2017北京海淀期末,理8)已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为x1,x2,x3,x4,大圆盘上所写的实数分别记为y1,y2,y3,y4,如图所示.将小圆盘逆时针旋转i(i=1,2,3,4)次,每次转动90° ,记Ti(i=1,2,3,4)为转动i次后各区域内两数乘积之和,例如T1=x1y2+x2y3+x3y4+x4y1.若x1+x2+x3+x4<0,y1+y2+y3+y4<0,则以下结论正确的是( )A.T1,T2,T3,T4中至少有一个为正数B.T1,T2,T3,T4中至少有一个为负数C.T1,T2,T3,T4中至多有一个为正数D.T1,T2,T3,T4中至多有一个为负数15.类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正确的运算公式是( )①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).A.①②B.③④C.①④D.②③16.如图所示,将正整数从小到大沿三角形的边成螺旋状排列起来,2在第一个拐弯处,4在第二个拐弯处,7在第三个拐弯处,……,则在第二十个拐弯处的正整数是.〚导学号21500740〛创新应用组17.(2017山东临沂一模,理12)对于大于1的自然数m的三次方幂可用奇数进行以下方式的“分裂”:23=3+5,33=7+9+11,43=13+15+17+19,……,仿此,若m3的“分裂数”中有一个是31,则m的值为.18.(2017河北邯郸一模)已知三个命题p,q,m中只有一个是真命题,课堂上老师给出了三个判断:A:p是真命题;B:p∨q是假命题;C:m是真命题.老师告诉学生三个判断中只有一个是错误的,则三个命题p,q,m中的真命题是.参考答案课时规范练34 合情推理与演绎推理1.C ①是类比推理,②④是归纳推理,③是非合情推理.2.C 因为大前提的形式:“有些有理数是无限循环小数”,不是全称命题,所以不符合三段论的推理方式,所以推理形式错误,故选C.3.A 根据题意,若甲同学猜对了1-b,则乙同学猜对了3-d,丙同学猜对了2-c,丁同学猜对了4-a;若甲同学猜对了3-c,则乙同学猜对了2-b,丙同学猜对了4-b,这与2-b相矛盾.综上所述4号门里是a,故选A.4.A ①由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;②由特殊到一般,此种推理为归纳推理,故选A.5.B 因为每天至少有四辆车可以上路行驶,E车明天可以上路,E车周四限行,所以今天不是周三;因为B车昨天限行,所以今天不是周一,也不是周日;因为A,C两车连续四天都能上路行驶,所以今天不是周五,周二和周六,所以今天是周四,故选B.6.B 根据题干图所示的规则排列,设第一层的一个数为a,则第二层的三个数为a+7,a+8,a+9,第三层的五个数为a+14,a+15,a+16,a+17,a+18,这9个数之和为a+3a+24+5a+80=9a+104.由9a+104=2 012,得a=212,是自然数.故选B.7.B 从S1,S2,S3猜想出数列的前n项和Sn,是从特殊到一般的推理,所以B是归纳推理,故选B.8. 由题意b1=1-a1=,bn+1=.∴b2=,b3=,b4=,…,∴bn=,则b2 018=.9.1和3 由丙说的话可知,丙的卡片上的数字可能是“1和2”或“1和3”.若丙的卡片上的数字是“1和2”,则由乙说的话可知,乙的卡片上的数字是“2和3”,甲的卡片上的数字是“1和3”,此时与甲说的话一致;若丙的卡片上的数字是“1和3”,则由乙说的话可知,乙的卡片上的数字是“2和3”,甲的卡片上的数字是“1和2”,此时与甲说的话矛盾.综上可知,甲的卡片上的数字是“1和3”.10. 由题图知第n个图形的小正方形个数为1+2+3+…+n=.11. 类比祖暅原理可得两个图形的面积相等,梯形面积为S=(1+2)×3=,所以图①的面积为.12.217 类比36的所有正约数之和的方法,有:100的所有正约数之和可按如下方法得到:因为100=22×52,所以100的所有正约数之和为(1+2+22)(1+5+52)=217.可求得100的所有正约数之和为217.13.A 由条件①知丁会说日语,故B错误;由条件②知会说日语和法语的不能是同一人,故D错误;由条件③知四人不能有共同懂的语言,故C错误;只有A符合题意,故选A.14.A 根据题意可知:(x1+x2+x3+x4)(y1+y2+y3+y4)>0,又(x1+x2+x3+x4)(y1+y2+y3+y4)去掉括号即得:(x1+x2+x3+x4)(y1+y2+y3+y4)=T1+T2+T3+T4>0,所以可知T1,T2,T3,T4中至少有一个为正数,故选A.15.B 经验证易知①②错误.依题意,注意到2S(x+y)=2(ax+y-a-x-y),S(x)C(y)+C(x)S(y)=2(ax+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y).16.211 观察题图可知,第一个拐弯处2=1+1,第二个拐弯处4=1+1+2,第三个拐弯处7=1+1+2+3,第四个拐弯处11=1+1+2+3+4,第五个拐弯处16=1+1+2+3+4+5,发现规律:拐弯处的数是从1开始的一串连续正整数相加之和再加1,在第几个拐弯处,就加到第几个正整数,所以第二十个拐弯处的正整数就是1+1+2+3+…+20=211.17.6 ∵23=3+5,是从3开始的2个奇数的和;33=7+9+11,是从5的下一个奇数7开始的3个奇数的和;……而31之前(包括31)除了1以外的奇数有15个,又2+3+4+5=14,∴63=31+33+35+37+39+41.故m的值应为6.18.m ①若A是错误的,则p是假命题,q是假命题,m是真命题,满足条件;②若B是错误的,则p与q至少有一个是真命题.又m是真命题,不满足条件;③若C是错误的,则p是真命题,p∨q不可能是假命题,不满足条件.故真命题是m.。
课时规范练53用样本估计总体基础巩固组1.一组数据分别为12,16,20,23,20,15,28,23,则这组数据的中位数是()A.19B.20C.21.5D.232.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是()A.甲B.乙C.丙D.丁3.(2017广西南宁一模,理3)某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在()A.第3组B.第4组C.第5组D.第6组4.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为()A.2B.3C.4D.5 〚导学号21500581〛5.在某次测量中得到的甲样本数据如下:42,43,46,52,42,50,若乙样本数据恰好是甲样本每个数据都减5后所得数据,则甲、乙两个样本的下列数字特征对应相同的是()A.平均数B.标准差C.众数D.中位数6.若数据x1,x2,…,x n的平均数为,方差为s2,则2x1+3,2x2+3,…,2x n+3的平均数和方差分别为()A.和s2B.2+3和4s2C.2+3和s2D.2+3和4s2+12s+97.(2017辽宁大连一模)某班级有50名同学,一次数学测试平均成绩是92,如果学号为1号到30号的同学平均成绩为90,那么学号为31号到50号同学的平均成绩为.8.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩在[16,18]的学生人数是.9.某市运动会期间30名志愿者年龄数据如下表:(1)求这30名志愿者年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这30名志愿者年龄的茎叶图;(3)求这30名志愿者年龄的方差.〚导学号21500582〛综合提升组10.若一组数据2,4,6,8的中位数、方差分别为m,n,且ma+nb=1(a>0,b>0),则的最小值为()A.6+2B.4+3C.9+4D.2011.已知样本(x1,x2,…,x n)的平均数为,样本(y1,y2,…,y m)的平均数为),若样本(x1,x2,…,x n,y1,y2,…,y m)的平均数=α+(1-α),其中0<α<,则n,m的大小关系为()A.n<mB.n>mC.n=mD.不能确定12.(2017山西晋中一模,理13)设样本数据x1,x2,…,x2 017的方差是4,若y i=2x i-1(i=1,2,…,2 017),则y1,y2,…,y2 017的方差为.13.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.〚导学号21500583〛创新应用组14.某学校随机抽取20个班,调查各班有网上购物经历的人数,所得数据的茎叶图如图所示,以5为组距将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()15.(2017河北邯郸一模)某校为指导学生合理选择文理科的学习,根据数理综合测评成绩,按6分为满分进行折算后,若学生成绩小于m分建议选择文科,不低于m分则建议选择理科(这部分学生称为候选理科生).现从该校高一随机抽取500名学生的数理综合成绩作为样本,整理得到分数的频率分布直方图(如图所示).(1)求直方图中t的值;(2)根据此次测评,为使80%以上的学生选择理科,整数m至多定为多少?(3)若m=4,试估计该校高一学生中候选理科学生的平均成绩.(精确到0.01)〚导学号21500584〛参考答案课时规范练53用样本估计总体1.B把该组数据按从小到大的顺序排列如下:12,15,16,20,20,23,23,28,排在中间的两个数是20,20,故这组数据的中位数为=20.故选B.2.C由题目表格中数据可知,丙的平均环数最高,且方差最小,说明丙的技术稳定,且成绩好,故选C.3.B由题图可得,前第四组的频率为(0.037 5+0.062 5+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,即中位数落在第4组,故选B.4.B依题意可得10×(0.005+0.01+0.02+a+0.035)=1,则a=0.03.所以身高在[120,130),[130,140),[140,150]三组内的学生人数比例为3∶2∶1.所以从身高在[140,150]内的学生中选取的人数应为×18=3.5.B设样本甲中的数据为x i(i=1,2,…,6),则样本乙中的数据为y i=x i-5(i=1,2,…,6),则样本乙中的众数、平均数和中位数与甲中的众数、平均数和中位数都相差5,只有标准差没有发生变化,故选B.6.B原数据乘2加上3得到一组新数据,则由平均数、方差的性质可知得到的新数据的平均数、方差分别是2+3和4s2.7.95设学号为31号到50号同学的平均成绩为x,则92×50=90×30+20x,解得x=95,故答案为95.8.54成绩在[16,18]的学生人数所占比例为,所以成绩在[16,18]的学生人数为120×=54.9.解 (1)众数为19,极差为21.(2)茎叶图如图.(3)年龄的平均数为=29,故这30名志愿者年龄的方差为[(19-29)2×7+2×(21-29)2+3×(28-29)2+4×(30-29)2+(31-29)2×5+(32-29)2×3+(40-29)2×6]=.10.D∵数据2,4,6,8的中位数是5,方差是(9+1+1+9)=5,∴m=5,n=5.∴ma+nb=5a+5b=1(a>0,b>0).∴(5a+5b)=5≥20(当且仅当a=b时等号成立),故选D.11.A由题意知样本(x1,…,x n,y1,…,y m)的平均数为.又=α+(1-α),即α=,1-α=.因为0<α<,所以0<,即2n<m+n,所以n<m,故选A.12.16根据题意,设样本数据x1,x2,…,x2 017的平均数为,又由其方差为4,则[(x1-)2+(x2-)2+(x3-)2+…+(x2 017-)2]=4.对于数据y i=2x i-1(i=1,2,…,2 017),其平均数(y1+y2+…+y2 017)=[(2x1-1)+(2x2-1)+…+(2x2 017-1)]=2-1,其方差[(y1-)2+(y2-)2+(y3-)2+…+(y2 017-)2]=[(x1-)2+(x2-)2+(x3-)2+…+(x2 017-)2]=16,故答案为16.13.解 (1)依题意,得10(2a+0.02+0.03+0.04)=1,解得a=0.005.(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分).(3)数学成绩在[50,60)的人数为:100×0.05=5,数学成绩在[60,70)的人数为:100×0.4×=20,数学成绩在[70,80)的人数为:100×0.3×=40,数学成绩在[80,90)的人数为:100×0.2×=25,所以数学成绩在[50,90)之外的人数为:100-5-20-40-25=10.14.A由组距可知选项C,D不对;由茎叶图可知[0,5)有1人,[5,10)有1人,故第一、二小组频率相同,频率分布直方图中矩形的高应相等,可排除B.故选A.15.解 (1)根据频率分布直方图,得0.15×1+t×1+0.30×1+t×1+0.15×1=1,解得t=0.2.(2)为使80%以上的学生选择理科,则0.15+0.2+0.3<0.8<0.15+0.2+0.3+0.2,故满足条件的m值为2.(3)当m=4时,≈4.93,估计该校高一学生中候选理科学生的平均成绩为4.93分.。
2019年高考数学(理)一轮复习精品资料1.了解数学归纳法的原理;2.能用数学归纳法证明一些简单的数学命题。
1.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.2.数学归纳法的框图表示高频考点一算法的顺序结构例1、f(x)=x2-2x-3.求f(3)、f(-5)、f(5),并计算f(3)+f(-5)+f(5)的值.设计出解决该问题的一个算法,并画出程序框图.第六步,把x=5代入y3=x2-2x-3.第七步,把y1,y2,y3的值代入y=y1+y2+y3.第八步,输出y1,y2,y3,y的值.该算法对应的程序框图如图所示:【特别提醒】(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.(2)解决此类问题,只需分清运算步骤,赋值量及其范围进行逐步运算即可.【变式探究】如图所示的程序框图,根据该图和下列各小题的条件回答下面的几个小题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?【解析】(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题;(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,f(x)=-x2+4x.则f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为3;高频考点二算法的条件结构例2、如图中x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,p为该题的最终得分.当x1=6,x2=9,p =8.5时,x3等于( )A .11B .10C .8D .7思维点拨 依据第二个判断框的条件关系,判断是利用“x 2=x 3”,还是利用“x 1=x 3”,从而验证p 是否为8.5. 【答案】C【解析】x 1=6,x 2=9,|x 1-x 2|=3<2不成立,即为“否”,所以再输入x 3;由绝对值的意义(一个点到另一个点的距离)和不等式|x 3-x 1|<|x 3-x 2|知,点x 3到点x 1的距离小于点x 3到点x 2的距离,所以当x 3<7.5时,|x 3-x 1|<|x 3-x 2|成立,即为“是”,此时x 2=x 3,所以p =x 1+x 32,即6+x 32=8.5,解得x 3=11>7.5,不合题意;当x 3>7.5时,|x 3-x 1|<|x 3-x 2|不成立,即为“否”,此时x 1=x 3,所以p =x 3+x 22,即x 3+92=8.5,解得x 3=8>7.5,符合题意,故选C.【特别提醒】(1)条件结构中条件的判断关键是明确条件结构的功能,然后根据“是”的分支成立的条件进行判断; (2)对条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支. 【变式探究】(2014·四川)执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .3【答案】C【解析】当条件x≥0,y≥0,x+y≤1不成立时输出S的值为1;当条件x≥0,y≥0,x+y≤1成立时S=2x+y,下面用线性规划的方法求此时S的最大值.高频考点三算法的循环结构例3、执行如图所示的程序框图,则输出s的值为( )A.10 B.17C.19 D.36【答案】C【特别提醒】利用循环结构表示算法,第一要确定是利用当型还是直到型循环结构;第二准确表示累计变量;第三要注意从哪一步开始循环.弄清进入或终止的循环条件、循环次数是做题的关键.【变式探究】当m=7,n=3时,执行如图所示的程序框图,输出的S值为( )A.7B.42C.210D.840【答案】C【解析】程序框图的执行过程如下:m=7,n=3时,m-n+1=5,k=m=7,S=1,S=1×7=7;k=k-1=6>5,S=6×7=42;k=k-1=5=5,S=5×42=210;k=k-1=4<5,输出S=210.故选C.高频考点四基本算法语句例4、阅读下面两个算法语句:图1 图2执行图1中语句的结果是输出________;执行图2中语句的结果是输出________.【答案】i=4 i=2【特别提醒】解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.【变式探究】 设计一个计算1×3×5×7×9×11×13的算法.图中给出了程序的一部分,则在横线上不能填入的数是( )A .13B .13.5C .14D .14.5 【答案】A1.【2016江苏高考,26】(1)求3467–47C C 的值; (2)设m ,n N *,n≥m,求证:(m+1)C m m +(m+2)+1C m m +(m+3)+2C mm ++n –1C m n +(n+1)C m n =(m+1)+2+2C m n .【答案】(1)0(2)详见解析【解析】(1)3467654765474740.321C C 4321⨯⨯⨯⨯⨯-=⨯-⨯=⨯⨯⨯⨯⨯(2)当n m =时,结论显然成立,当n m >时11(1)!(1)!(1)(1)(1),1,2,,.!()!(1)![(1)(1)]C !C m m k k k k k k m m k m m n m k m m k m +++⋅++==+=+=++-++-+又因为122112C C C ,m m m k k k +++++++=所以2221C C C (1)(1)(),1,+2,.m m m k k k k m k m m n +++++=+-=+,因此12122222222232432122(1)(2)(3)(1)(1)[(2)(3)(1)](1)(1)[()(C C C C C C C C CCCC C)(CCC )](1).m m m m m m m nm m m m m m m n m m m m m m m m m m m m n n m n m m m n m m m n m m m ++++++++++++++++++++++++++++=++++++++=+++-+-++-=+1.【2015江苏高考,23】(本小题满分10分)已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Y n ∈= ,{,),(a b b a b a S n 整除或整除= }n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.【答案】(1)13(2)()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩【解析】(1)()613f =.(2)当6n ≥时,()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩(t *∈N ).下面用数学归纳法证明: ①当6n =时,()666621323f =+++=,结论成立; ②假设n k =(6k ≥)时结论成立,那么1n k =+时,1k S +在k S 的基础上新增加的元素在()1,1k +,()2,1k +,()3,1k +中产生,分以下情形讨论:4)若163k t +=+,则62k t =+,此时有()()2122223k k f k f k k -+=+=++++ ()()1111223k k k +-+=++++,结论成立;5)若164k t +=+,则63k t =+,此时有()()1122223k kf k f k k -+=+=++++()()1111223k k k +-+=++++,结论成立; 6)若165k t +=+,则64k t =+,此时有()()1112123k k f k f k k -+=+=++++ ()()()11121223k k k +-+-=++++,结论成立.综上所述,结论对满足6n ≥的自然数n 均成立.2.【2015高考北京,理20】已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8【解析】(Ⅰ)由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,可知:12346,12,24,12,a a a a ===={6,12,24}M ∴=(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,可用用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.②n a 中没有3的倍数,则n a 都不是3的倍数,对于3a 除以9的余数只能是1,4,7,2,5,8中的一个,从3a 起,n a 除以9的余数是1,2,4,8,7,5,1,2,4,8,...... ,不断的6项循环(可能从2,4,8,7或5开始),而除以9的余数是1,2,4,8,5且是4的倍数(不大于36),只有28,20,4,8,16,32,所以M 中的项加上前两项最多8项,则11a =时,{1,2,4,8,16,32,28,20}M =,项数为8,所以集合M 的元素个数的最大值为8.3.(2014·安徽卷) 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p>1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p.(2)方法一:先用数学归纳法证明a n >c 1p.①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p 成立. 由a n +1=p -1p a n +c pa 1-p n 易知a n >0,n ∈N *.当n =k +1时,a k +1a k =p -1p +c pa -pk = 1+1p ⎝ ⎛⎭⎪⎫c a p k -1.由a k >c 1p >0得-1<-1p <1p ⎝ ⎛⎭⎪⎫c a p k-1<0.由(1)中的结论得⎝ ⎛⎭⎪⎫a k +1a k p=⎣⎢⎡⎦⎥⎤1+1p ⎝ ⎛⎭⎪⎫c a p k -1p>1+p · 1p ⎝ ⎛⎭⎪⎫c a p k -1=ca p k . 因此a pk +1>c ,即a k +1>c 1p,所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p均成立.再由a n +1a n =1+1p ⎝ ⎛⎭⎪⎫c a p n -1可得a n +1a n<1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p,则x p ≥c , 所以f ′(x )=p -1p +c p (1-p )x -p=p -1p ⎝ ⎛⎭⎪⎫1-c x p >0. 由此可得,f (x )在[c 1p,+∞)上单调递增,因而,当x >c 1p时,f (x )>f (c 1p)=c 1p. ①当n =1时,由a 1>c 1p>0,即a p1>c 可知a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎢⎡⎦⎥⎤1+1p ⎝ ⎛⎭⎪⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.4.(2014·陕西卷) 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1 (x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx =x1+(k +1)x,即结论成立.由①②可知,结论对n ∈N +成立.(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1). 证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x ,x >0.令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n xx +1d x = ⎠⎛0n⎝⎛⎭⎪⎫1-1x +1d x =n -ln (n +1),结论得证.5.(2014·重庆卷)设a1=1,a n+1=a2n-2a n+2+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.【解析】(1)方法一:a2=2,a3=2+1.再由题设条件知(a n+1-1)2=(a n-1)2+1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=n-1+1(n∈N*).方法二:a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想a n=n-1+1.下面用数学归纳法证明上式.当n=1时,结论显然成立.假设n=k时结论成立,即a k=k-1+1,则a k+1=(a k-1)2+1+1=(k-1)+1+1=(k+1)-1+1,这就是说,当n=k+1时结论成立.所以a n=n-1+1(n∈N*).再由f(x)在(-∞,1]上为减函数,得c=f(c)<f(a2k+2)<f(a2)=a3<1,故c<a2k+3<1,因此a2(k+1)<c<a2(k+1)+1<1,这就是说,当n=k+1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立. 假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1, 即(a 2n +1)2<a 22n -2a 2n +2, 因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2. 所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.。
高考数学(理科一轮复习数学归纳法学案带答案)一、数学归纳法的基本思想数学归纳法是数学中常用的一种证明方法,它的基本思想是将要证明的命题划分为若干个步骤,通过先证明第一个步骤成立,然后假设第k步成立,再证明第k+1步成立,最后利用归纳法原理得出整个命题成立。
二、数学归纳法的三个步骤数学归纳法一般包括以下三个步骤:1.基础步骤:证明命题在某个特定情况下成立,通常是当n=1时。
2.归纳假设:假设命题在第k步成立,即假设n=k时命题成立。
3.归纳步骤:通过归纳假设推导出命题在第k+1步成立,即证明n=k+1时命题成立。
三、数学归纳法的应用数学归纳法在高等数学、离散数学等领域具有广泛的应用。
在高考数学中,数学归纳法常常用于证明数列、数论等方面的命题。
下面我们通过一道例题来深入理解数学归纳法的应用。
例题:证明Fibonacci数列的通项公式Fibonacci数列是指这样的一个数列:除了前两项是1和1,从第三项开始,每一项都是前两项的和。
即F(1)=F(2)=1,对于n>2,有F(n)=F(n-1)+F(n-2)。
我们要使用数学归纳法来证明Fibonacci数列的通项公式:F(n) = ((1+√5)/2)^n - ((1-√5)/2)^n证明过程:1.基础步骤:当n=1时,左边是F(1),右边是((1+√5)/2)^1 - ((1-√5)/2)^1,容易验证相等,因此基础步骤成立。
2.归纳假设:假设当n=k时,F(k) = ((1+√5)/2)^k - ((1-√5)/2)^k 成立。
3.归纳步骤:我们要证明当n=k+1时,F(k+1) =((1+√5)/2)^(k+1) - ((1-√5)/2)^(k+1) 成立。
根据Fibonacci数列的定义,F(k+1) = F(k) + F(k-1)。
带入归纳假设的表达式,可以得到:F(k+1) = ((1+√5)/2)^k - ((1-√5)/2)^k + ((1+√5)/2)^(k-1) -((1-√5)/2)^(k-1)。
时间:45分钟满分:100分班级:________姓名:________ 学号:________ 得分:________一、选择题(本大题共6小题,每小题6分,共36分,在下列四个选项中,只有一项是符合题目要求的)1.(2014·白山一模)欲用数学归纳法证明:对于足够大的正整数n,总有2n>n3,那么验证不等式成立所取的第一个n的最小值应该是( )A.1 B.9C.10 D.n>10,且n∈N*解析:210=1024>103.故应选C.答案:C2.(2014·平顶山一模)用数学归纳法证明1+2+22+…+2n-1=2n-1(n∈N*)的过程中,第二步假设当n=k(k∈N*)时等式成立,则当n=k+1时应得到( )A.1+2+22+…+2k-2+2k-1=2k+1-1B.1+2+22+…+2k+2k+1=2k-1-1+2k+1C.1+2+22+…+2k-1+2k+1=2k+1-1D.1+2+22+…+2k-1+2k=2k-1+2k解析:由n=k到n=k+1等式的左边增加了一项,故选D.答案:D3.(2014·常州一模)用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N*)能被9整除”,要利用归纳假设证n=k+1(k∈N*)时的情况,只需展开( )A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3解析:假设n=k(k∈N*)时,k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设证明,只需将(k+3)3展开,让其出现k3即可.故应选A.答案:A4.(2014·洛阳一模)凸n多边形有f(n)条对角线,则凸(n+1)边形的对角线的条数f(n +1)为( )A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2解析:边数增加1,顶点也相应增加1个,它与它不相邻的n-2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n-1条.故选C.答案:C5.(2014·温州一模)数列{a n }中,已知a 1=1,当n≥2,且n ∈N *时,a n -a n -1=2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .3n -2B .n 2C .3n -1D .4n -3解析:计算出a 1=1,a 2=4,a 3=9,a 4=16.可猜a n =n 2(n ∈N *).故应选B. 答案:B6.(2014·山师附中质检)设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k 2成立时,总可推出f(k +1)≥(k+1)2成立”.那么,下列命题总成立的是( )A .若f(3)≥9成立,则当k≥1时,均有f(k)≥k 2成立 B .若f(5)≥25成立,则当k≤5时,均有f(k)≥k 2成立 C .若f(7)<49成立,则当k≥8时,均有f(k)<k 2成立 D .若f(4)=25成立,则当k≥4时,均有f(k)≥k 2成立解析:对于A ,若f(3)≥9成立,由题意只可得出当k≥3时,均有f(k)≥k 2成立,故A 错;对于B ,若f(5)≥25成立,则当k≥5时均有f(k)≥k 2成立,故B 错;对于C ,应改为“若f(7)≥49成立,则当k≥7时,均有f(k)≥k 2成立”,故选D.答案:D二、填空题(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上) 7.(2014·上海调研)观察下式:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72;….则可得出第n 个式子为____________________________.解析:各式的左边是第n 个正整数到第3n -2个连续正整数的和.右边是奇数的平方,故可得出第n 个式子是:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *).答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *)8.(2014·粤西北九校联考)设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+(n -1)2+n 2+(n -1)2+…+22+12,用数学归纳法证明S n =n 2n+13时,第二步从“k”到“k+1”应添加的项为________.解析:由S 1,S 2,…,S n 可以发现由n =k 到n =k +1时,中间增加了两项(k +1)2+k 2(n ,k ∈N +).答案:(k +1)2+k 29.(2014·江西八校联合模拟)若f(n)=12+22+32+…+(2n)2,则f(k +1)与f(k)的递推关系式是________.解析:∵f(k)=12+22+…+(2k)2,∴f(k +1)=12+22+…+(2k)2+(2k +1)2+(2k +2)2, ∴f(k +1)=f(k)+(2k +1)2+(2k +2)2. 答案:f(k +1)=f(k)+(2k +1)2+(2k +2)210.(2014·怀化二模)已知数组:⎝ ⎛⎭⎪⎫12,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,⎝ ⎛⎭⎪⎫14,23,32,41,…,⎝ ⎛⎭⎪⎫1n ,2n -1,3n -2,…,n -12,n 1,….记该数组为:(a 1),(a 2,a 3),(a 4,a 5,a 6),…,则a 200=________.解析:通过观察数组可以发现,第n 组数中共有n 个数,每个数的分子与分母的和等于n +1,又因为1+2+…+19=190<200,故a 200应是第20组中的第10个数,故应为1011.答案:1011三、解答题(本大题共3小题,共40分,11、12题各13分,13题14分,写出证明过程或推演步骤)11.(2014·海口二模)对于n ∈N *,用数学归纳法证明:1·n+2·(n-1)+3·(n-2)+…+(n -1)·2+n·1=16n(n +1)(n +2).证明:设左边=1·n+2·(n-1)+3·(n-2)+…+(n -1)·2+n·1. 右边=16n(n +1)(n +2)(1)当n =1时,左边=1,右边=1,等式成立;(2)设当n =k 时等式成立,即1·k+2·(k-1)+3·(k-2)+…+(k -1)·2+k·1=16k(k +1)(k +2),则当n =k +1时,f(k +1)=1·(k+1)+2[(k +1)-1]+3[(k +1)-2]+…+[(k +1)-2]·3+[(k +1)-1]·2+(k +1)·1=f(k)+1+2+3+…+k +(k +1) =16k(k +1)(k +2)+12(k +1)(k +1+1) =16(k +1)(k +2)(k +3). 12.(2014·湘潭二模)求证:12+13+14+…+12n -1>n -22(n≥2且n ∈N *).证明:(1)当n =2时,12>0,不等式成立.(2)假设n =k(k≥2且k ∈N *)时,原不等式成立. 即12+13+14+15+…+12k -1>k -22, 则当n =k +1时,左边=12+13+14+…+12k -1+12k -1+1+12k -1+2+…+12k -1+2k -1>k -22+12k -1+1+12k -1+2+…+12k -1+2k -1>k -22+12k +12k +…+12k =k -22+2k -12k =k -12=k +1-22.∴当n =k +1时,原不等式也成立.由(1)(2)知,原不等式对n≥2的所有的正整数都成立,即12+13+14+…+12n -1>n -22(n≥2且n ∈N *)成立.13.(2014·威海一模)设数列{a n }满足a n +1=a 2n -na n +1,n ∈N *. (1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式; (2)当a 1≥2时,证明n ∈N *,有a n ≥n+1. 解:(1)由a 1=2,得a 2=a 21-a 1+1=3, 由a 2=3,得a 3=a 22-2a 2+1=4, 由a 3=4,得a 4=a 23-3a 3+1=5. 由此猜想a n 的一个通项公式为: a n =n +1(n ∈N *).(2)证明:①当n =1时,a 1≥2,不等式成立.②假设当n =k(k ∈N *且k≥1)时不等式成立,即a k ≥k+1, 那么当n =k +1时,a k +1=a k (a k -k)+1≥(k+1)(k +1-k)+1=k +2, 也就是说,当n =k +1时,a k +1≥(k+1)+1. 根据①和②,对于所有k ∈N *, 都有a n ≥n+1.。
课时规范练数学归纳法
基础巩固组
.在用数学归纳法证明等式…()时,当时的左边等于()
.如果用数学归纳法证明:对于足够大的正整数,总有>,那么验证不等式成立所取的第一个的最小值应该是()
>,且∈*
.用数学归纳法证明…(∈)成立,其初始值至少应取()
.某同学回答“用数学归纳法证明<(∈)”的过程如下:
证明:()当时,显然命题是正确的.
()假设当时,有<,则当时(),所以当时命题是正确的.由()()可知对于∈*,命题都是正确的.以上证法是错误的,错误在于()
.从到的推理过程没有使用归纳假设
.归纳假设的写法不正确
.从到的推理不严密
.当时,验证过程不具体
.用数学归纳法证明“当为正奇数时能被整除”的第二步是()
.假设时正确,再推正确(∈)
.假设时正确,再推正确(∈)
.假设时正确,再推正确(∈)
.假设≤(≥)时正确,再推时正确(∈)
.凸多边形有()条对角线,则凸()边形的对角线的条数()为()
() ()
() ()
.(河南郑州模拟)用数学归纳法证明不等式…的过程中,由推导时,不等式的左边增加的式子是.
.由下列不等式>>……>,……你能得到一个怎样的一般不等式?并加以证明.
〚导学号〛.平面内有条直线,其中任何两条不平行,任何三条不共点,求证:这条直线把平面分割成()个区域.
综合提升组
.设()是定义在正整数集上的函数,且()满足:当()≥成立时,总能推出()≥成立,则下列命题总成立的是() .若()<成立,则()<成立
.若()≥成立,则当≥时,均有()≥成立
.若()<成立,则()≥成立。
课时规范练34 合情推理与演绎推理基础巩固组1.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出n边形的内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误3.(2017北京丰台一模,理8)在一次猜奖游戏中,1,2,3,4四扇门里摆放了a,b,c,d四件奖品(每扇门里仅放一件).甲同学说:1号门里是b,3号门里是c;乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c.如果他们每人都猜对了一半,那么4号门里是()A.aB.bC.cD.d〚导学号21500738〛4.①已知a是三角形一边的长,h是该边上的高,则三角形的面积是ah,如果把扇形的弧长l,半径r分别看成三角形的底边长和高,可得到扇形的面积为lr;②由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n-1=n2,则①②两个推理过程分别属于()A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理5.(2017河北石家庄质检)某市为了缓解交通压力实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A,B,C,D,E五辆车,保证每天至少有四辆车可以上路行驶.已知E车周四限行,B车昨天限行,从今天算起,A,C两车连续四天都能上路行驶,E车明天可以上路,由此可知下列推测一定正确的是()A.今天是周六B.今天是周四C.A车周三限行D.C车周五限行6.从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为()A.2 011B.2 012C.2 013D.2 0147.下列推理是归纳推理的是()A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=a,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇8.已知数列{a n},{b n}满足a1=,a n+b n=1,b n+1=,n∈N*,则b2 018=.9.有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.10.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n个图形中小正方形的个数是.11.(2017四川成都高三一诊,理15)我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,图①是一个形状不规则的封闭图形,图②是一个上底为1的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图①和图②所截得的两线段长始终相等,则图①的面积为.〚导学号21500739〛12.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得100的所有正约数之和为.综合提升组13.(2017河北衡水中学三调,理9)来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起,他们除懂本国语言外,每人还会说其他三国语言中的一种,有一种语言是三人都会说的,但没有一种语言人人都懂,现知道:①甲是日本人,丁不会说日语,但他俩都能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③甲、乙、丙、丁交谈时,找不到共同语言沟通;④乙不会说英语,当甲与丙交谈时,他都能做翻译.针对他们懂的语言,正确的推理是()A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英14.(2017北京海淀期末,理8)已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为x1,x2,x3,x4,大圆盘上所写的实数分别记为y1,y2,y3,y4,如图所示.将小圆盘逆时针旋转i(i=1,2,3,4)次,每次转动90° ,记T i(i=1,2,3,4)为转动i次后各区域内两数乘积之和,例如T1=x1y2+x2y3+x3y4+x4y1.若x1+x2+x3+x4<0,y1+y2+y3+y4<0,则以下结论正确的是()A.T1,T2,T3,T4中至少有一个为正数B.T1,T2,T3,T4中至少有一个为负数C.T1,T2,T3,T4中至多有一个为正数D.T1,T2,T3,T4中至多有一个为负数15.类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=a x-a-x,C(x)=a x+a-x,其中a>0,且a≠1,下面正确的运算公式是()①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).A.①②B.③④C.①④D.②③16.如图所示,将正整数从小到大沿三角形的边成螺旋状排列起来,2在第一个拐弯处,4在第二个拐弯处,7在第三个拐弯处,……,则在第二十个拐弯处的正整数是.〚导学号21500740〛创新应用组17.(2017山东临沂一模,理12)对于大于1的自然数m的三次方幂可用奇数进行以下方式的“分裂”:23=3+5,33=7+9+11,43=13+15+17+19,……,仿此,若m3的“分裂数”中有一个是31,则m的值为.18.(2017河北邯郸一模)已知三个命题p,q,m中只有一个是真命题,课堂上老师给出了三个判断:A:p是真命题;B:p∨q是假命题;C:m是真命题.老师告诉学生三个判断中只有一个是错误的,则三个命题p,q,m中的真命题是.参考答案课时规范练34合情推理与演绎推理1.C①是类比推理,②④是归纳推理,③是非合情推理.2.C因为大前提的形式:“有些有理数是无限循环小数”,不是全称命题,所以不符合三段论的推理方式,所以推理形式错误,故选C.3.A根据题意,若甲同学猜对了1-b,则乙同学猜对了3-d,丙同学猜对了2-c,丁同学猜对了4-a;若甲同学猜对了3-c,则乙同学猜对了2-b,丙同学猜对了4-b,这与2-b相矛盾.综上所述4号门里是a,故选A.4.A①由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;②由特殊到一般,此种推理为归纳推理,故选A.5.B因为每天至少有四辆车可以上路行驶,E车明天可以上路,E车周四限行,所以今天不是周三;因为B车昨天限行,所以今天不是周一,也不是周日;因为A,C两车连续四天都能上路行驶,所以今天不是周五,周二和周六,所以今天是周四,故选B.6.B根据题干图所示的规则排列,设第一层的一个数为a,则第二层的三个数为a+7,a+8,a+9,第三层的五个数为a+14,a+15,a+16,a+17,a+18,这9个数之和为a+3a+24+5a+80=9a+104.由9a+104=2 012,得a=212,是自然数.故选B.7.B从S1,S2,S3猜想出数列的前n项和S n,是从特殊到一般的推理,所以B是归纳推理,故选B.8.由题意b1=1-a1=,b n+1=.∴b2=,b3=,b4=,…,∴b n=,则b2 018=.9.1和3由丙说的话可知,丙的卡片上的数字可能是“1和2”或“1和3”.若丙的卡片上的数字是“1和2”,则由乙说的话可知,乙的卡片上的数字是“2和3”,甲的卡片上的数字是“1和3”,此时与甲说的话一致;若丙的卡片上的数字是“1和3”,则由乙说的话可知,乙的卡片上的数字是“2和3”,甲的卡片上的数字是“1和2”,此时与甲说的话矛盾.综上可知,甲的卡片上的数字是“1和3”.10.由题图知第n个图形的小正方形个数为1+2+3+…+n=.11.类比祖暅原理可得两个图形的面积相等,梯形面积为S=(1+2)×3=,所以图①的面积为.12.217类比36的所有正约数之和的方法,有:100的所有正约数之和可按如下方法得到:因为100=22×52,所以100的所有正约数之和为(1+2+22)(1+5+52)=217.可求得100的所有正约数之和为217.13.A由条件①知丁会说日语,故B错误;由条件②知会说日语和法语的不能是同一人,故D错误;由条件③知四人不能有共同懂的语言,故C错误;只有A符合题意,故选A.14.A根据题意可知:(x1+x2+x3+x4)(y1+y2+y3+y4)>0,又(x1+x2+x3+x4)(y1+y2+y3+y4)去掉括号即得:(x1+x2+x3+x4)(y1+y2+y3+y4)=T1+T2+T3+T4>0,所以可知T1,T2,T3,T4中至少有一个为正数,故选A. 15.B经验证易知①②错误.依题意,注意到2S(x+y)=2(a x+y-a-x-y),S(x)C(y)+C(x)S(y)=2(a x+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y).16.211观察题图可知,第一个拐弯处2=1+1,第二个拐弯处4=1+1+2,第三个拐弯处7=1+1+2+3,第四个拐弯处11=1+1+2+3+4,第五个拐弯处16=1+1+2+3+4+5,发现规律:拐弯处的数是从1开始的一串连续正整数相加之和再加1,在第几个拐弯处,就加到第几个正整数,所以第二十个拐弯处的正整数就是1+1+2+3+…+20=211.17.6∵23=3+5,是从3开始的2个奇数的和;33=7+9+11,是从5的下一个奇数7开始的3个奇数的和;……而31之前(包括31)除了1以外的奇数有15个,又2+3+4+5=14,∴63=31+33+35+37+39+41.故m的值应为6.18.m ①若A是错误的,则p是假命题,q是假命题,m是真命题,满足条件;②若B是错误的,则p与q至少有一个是真命题.又m是真命题,不满足条件;③若C是错误的,则p是真命题,p∨q不可能是假命题,不满足条件.故真命题是m.。