奥赛辅导练习
- 格式:doc
- 大小:52.00 KB
- 文档页数:4
五年级数学奥赛练习
第十四章利润问题
练习2
例食品厂销售的某种小包装豆腐干成本为17元5袋, 售出价为29元6袋。
食品厂一天售出180袋, 利润为多少元?
1. 玻璃厂生产种杯子, 成本为7只杯子15元, 售价为9只杯子29元。
玻璃厂共生产了7686只杯子, 如果全部售出, 那么共可获得利润多少元?
2. 在小商品商场中, 王叔叔以每3只40元的价格买进一些灯笼, 又以每2只32元的价格卖出。
如果他这天赚了160元, 那么这天他共卖出多少只灯笼?
3. 小区便利店销售的矿泉水进货时5元4瓶, 售出时5元3瓶。
便利店要想获利100元, 需售出矿泉水多少瓶?
4. 冷饮店销售的某种雪糕进货时11元4根, 售出时13元3根。
冷饮店要想获利133元, 需售出这种雪糕多少根?
例258
1. 8296
2. 60
3. 240
4. 84。
第一讲 集合与函数综合问题例1、数集M 由2003个不同的实数组成,对于M 中任何两个不同的元素a 和b,数2a +M 中任何一个数a,(2003年俄罗斯数学奥林匹克试题)分析:欲证证明:设a ,b ,c 是数集M 中任意三个两两不同的元素,由题设知2222a b c c ++++都是有理数,于是22((()(1(2)2a b a b a b +-+=-+= 是有理数.22((c c +-+=是有理数,从而1(2)2是有理数,进而11((22=+是有理数.例2、称有限集S 的所有元素的乘积为S 的“积数”.给定数集111,,,.23100M ⎧⎫=⎨⎬⎩⎭求数集M 的所有含偶数个元素的子集的“积数”之和.分析:数集M 的所有子集的积数之和为111(1)(1)(1)1.23100+++- 设数集M 的所有含偶数个元素的子集的积数和为x ,所有含奇数个元素的子集的积数之和为y ,则111(1)(1)(1) 1.23100x y +=+++- 只需再建立一个关于x ,y 的方程,就可解出x ,y .解答:设数集M 的所有含偶数个元素的子集的积数之和为x ,所有含奇数个元素的子集的积数之和为y ,则111(1)(1)(1)1,23100111(1)(1)(1)1,2310099,299.1004851.200x y x y x y x y x +=+++--=----+=-== 又所以解得例3、设集合S n ={1,2,…,n}.若X 是S n 的子集,把X 中的所有数的和称为X 的“容量”(规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集.(1)求证:S n 的奇子集与偶子集个数相等;(2)求证:当n ≥3时,S n 的所有奇子集的容量之和与所有偶子集的容量之和相等; (3)当n ≥3时,求S n 的所有奇子集的容量之和.(1992年全国高中数学联赛试题)分析:要证明两个集合的元素的个数一样多,一种方法是直接把这两个集合的元素个数算出来,另一种方法是在这两个集合之间建立一个一一对应.本题我们将用后一种方法来解.解答:(1)设A 是S n 的任一奇子集,构造映射f 如下:{1},1;{1},1.A A A A A A -∈∉ 若若(注:A —{1}表示从集合A 中去掉1后得到的集合) 所以,映射f 是将奇子集映为偶子集的映射.易知,若A 1,A 2是S n 的两个不同的奇子集,则f (A 1)≠f (A 2),即f 是单射. 又对S n 的每一个偶子集B ,若1∈B ,则存在A =B \{1},使得f (A )=B ;若1B ∉,则存在{1},A B = 使得f (A )=B ,从而f 是满射.所以,f 是S n 的奇子集所组成的集到S n 的偶子集所组成的集之间的一一对应,从而S n 的奇子集与偶子集个数相等,故均为11222n n -= 个.(2)设a n (b n )表示S n 中全体奇(偶)子集容量之和. 若n (≥3)是奇数,则S n 的奇子集由如下两类:(1)S n -1的奇子集;(2)S n -1的偶子集与集{n }的并,于是得a n =a n -1+(b n -1+n ²2n -2), ①又S n 的偶子集可由S n -1的偶子集和S n -1的奇子集与{n }的并构成,所以b n = b n -1+(a n -1+n ²2n -2), ② 由①,②,便得a n = b n . 若n (≥4)是偶数,同上可知a n =a n -1+(a n -1+n ²2n -2),b n = b n -1+(b n -1+n ²2n -2),由于n -1是奇数,由上面已证a n -1= b n -1,从而a n = b n . 综上即知,a n = b n ,n =3,4…(3)由于S n 的每一个元素均在2n -1个S n 的子集中出现,所以,S n 的所有子集容量之和为2n -1(1+2+…+n )=2n -2n (n +1).又由(2)知,a n =b n ,所以2312(1)2(1).2n n n a n n n n --=+=+说明(2)的证明中,建立了递推关系.这也是解决“计数”问题的一个有效方法. 例4、设A 是集合S ={1,2,…1000000}的一个恰有101个元素的子集.证明:在S中存在数t 1,t 2,…t 100,使得集合{|},1,2,,100j j A x t x A j =+∈= 中,每两个的交集为空集.(2003年国际数学奥林匹克试题)证明:考虑集合D ={x -y |x ,y ∈A },则||≤101100110101.D ⨯+=若i j A a ≠∅ ,设i j a A A ∈ ,则a =x +t i ,a=y +t j ,其中x ,y ∈A ,则t i -t j =y -x ∈D .若t i -t j ∈D ,即存在x ,y ∈A ,使得t i -t j =y -x ,从而x +t i = y +t j ,即.i j A A ≠∅ 所以,i j A A ≠∅ 的充要条件是t i -t j ∈D .于是,我们只需在集合S 中取出100个元素,使得其中任意两个差都不属于D .下面用递推方法来取出这100个元素.先在S 中任取一个元素t 1,再从S 中取一个t 2,使得122{|}.t t D t x x D +=+∈∈这是因为取定t 1后,至多有10101个S 中的元素不能作为t 2,从而在S 中存在这样的t 2.若已有k (≤99)个S 中的元素t 1,t 2,…,t k 满足要求,再取t k +1,使得t 1,…,t k 都不属于t k +1+D ={ t k +1+x |x ∈D },这是因为t 1,t 2,…,t k 取定后,至多有10101k ≤999999个S 中的数不能作为t k +1,故在S 中存在满足条件t k +1.所以,在S 中存在t 1,t 2,…,t 100,其中任意两个的差都不属于D .综上所术,命题得证.说明:条件|S |=106可以改小一些.一般地,我们有如下更强的结论:若A 是S ={1,2,…,n }的k 元子集,m 为正整数,满足条件n >(m -1)2(1),KC +则存在S 中的元素t 1,…,t m ,使A j ={x +t j |x ∈A },j =1,…m 中任意两个的交集为空集.例5、求函数y x =+的值域.(2001年全国高中数学联赛试题)≥0y x =-,所以 x 2-3x +2=y 2-2xy +x 2,即(2y -3)x =y 2-2.由上式知232,.223y y x y -≠=-且由222000022000002000002000002≥2332(1)(2)≥0,≥0.23231≤≥ 2.22[2,),,232(2)22≥0,2323≥2,32≥0,231,,,2231y y y x y y y y y y y y y y y x y y x y y x x x y x y y x y x -=--+----<-∈+∞=----=-=---+=-⎡⎫∈=⎪⎢-⎣⎭-得所以或又任取令则故所以且任取令则2200002(1)1≤0,2323y y y y --=-=--故x 0≤1,于是2000032≥0,x x y x -+=+且 综上,所求的函数的值域为31,[2,).2⎡⎫+∞⎪⎢⎣⎭说明:我们先求出了y 的范围31,[2,)2⎡⎫+∞⎪⎢⎣⎭ ,这是不是函数的值域呢?第二部分说明了对于31,[2,)2⎡⎫+∞⎪⎢⎣⎭ 中的任意一个数y 0,总存在一个x 0,使得00y x =+就证明了函数的值域是31,[2,).2⎡⎫+∞⎪⎢⎣⎭例6、求(31)(21)y x x =-+-的图象与x 轴的交点坐标.分析:仔细观察所给的式子,发现(31)(21)y x x =-+-,从而找到了解题途径.解答:因为(31)(21)y x x =-+-,令()1)f t t =,易知f (t )是奇函数,且f (t )是严格递增函数.所以y =f (3x -1)+f (2x -3).当y=0时,f (3x -1)=-f (2x -3)=f (3-2x ),所以3x -1=3-2x ,解得4.5x =故图象与x 轴的交点坐标为(4,05).例7、设a >0,211().ax r x ax x x+==+讨论函数r (x )在(0,+∞)中的单调性、最小值与最大值.解答:先讨论它的单调性. 设0<x 1<x 2<+∞212121211212212112212212212112212111()()()()1()()0≤,1()()()()1()()≤0;,1()()()()1()()≥0,r x r x ax ax x x x x a x x x x r x r x x x a x x x x a x x x r x r x x x a x x x x a x -=+-+=--<<-=--<--<-=-->--当有时有所以,在⎛ ⎝上,r (x )是严格递减的;在⎫+∞⎪⎭上,r (x )是严格递增的. 由此可知,r (x )没有最大值;当且仅当x 时,r (x )取最小值说明:此题的结论非常重要,许多问题最后可化归为讨论函数1()(())ar x ax r x x x x=+=+或的增减性来解.例8、设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R ,a ≠0)满足条件: (1)当x ∈R 时,f (x -4)=f (2-x ),且f (x )≥x ;(2)当x ∈(0,2)时,21()≤();2x f x +(3)f (x )在R 上的最小值为0.求最大的m (m >1),使得存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x .(2002年全国高中数学联赛试题)分析:先根据题设条件(1),(2),(3),把f (x )的解析式求出来,进而再确定m 的最大值.解答:由f (x -4)=f (2-x ),t ∈R ,可知二次函数f (x )的对称轴为x =-1.又由(3)知,二次函数f (x )的开口向上,即a >0,故可设f (x )=a (x +1)2(a >0)由(1)知f (1)≥1,由(2)知f (1)≤211()12+=,所以f (1)=1,故2211(11),.41()(1).4a a f x x =+==+所以因为21()(1)4f x x =+的图象开口向上,而y =f (x +t )的图象是由y =f (x )的图象平移|t |个单位得到.要在区间[1,m ]上,使得y =f (x +t )的图象在y =x 的图象的下方,且m 最大,则1和m 应当是关于x 的方程21(1)①4x t x ++=的两个根. 令x =1代入方程①,得t =0或t =-4.当t =0时,方程①的解为x 1=x 2=1(这与m >1矛盾!);当t =-4时,方程①的解为x 1=1,x 2=9.又当t =-4时,对任意x ∈[1,9],恒有 2(1)(9)≤0,1(41)≤,4x x x x --⇔-+ 即f (x -4)≤x .所以,m 的最大值为9.说明:我们由f (x -4)= f(2-x ),x ∈R 导出f (x )的图象关于x =-1对称.一般地,若f (x -a )=f (b -x ),x ∈R ,则()()()(),2222b a b a b a b a f x f x a f b x f x -++-+=+-=--=-故f (x )的图象关于2b ax -=对称.这个性质在解题中常常用到.例9、设f 为R +→R +的函数,对任意正实数x ,f(3x)=3f(x),且f (x )=1-|x -2|,1≤x ≤3.求最小的实数x ,使得f (x )=f (2004).分析:先用递推关系推出函数f (x )的解析式,然后再求解. 解答:由已知条件得1,1≤≤2,()3,2≤≤ 3.x x f x x x -⎧=⎨-⎩当3≤x ≤6时,令,3xt =则1≤t ≤2,此时 f (x )=f (3t )=3f (t )=3(t -1) =x -3, 即得 f (x )=|x -3|,2≤x ≤6.当6≤x ≤18时,令,3xt =则2≤x ≤6,于是 f (x )=f (3t )=3f (t )=3|t -3|=|x -9|.1,1≤≤2,|3|,2≤≤6,|9|,6≤≤18,|27|,18≤≤54,()|81|,54≤≤162,|243|,162≤≤486,|729|,486≤≤1458,|2187|,1458≤≤4374.x x x x x x x x f x x x x x x x x x -⎧⎪-⎪⎪-⎪-⎪=⎨-⎪⎪-⎪-⎪⎪-⎩所以f (2004)=2187-2004=183.由于162-81<183,486-243>183,而243-162<183,所以,最小的满足f (x )=f (2004)的实数x =243+183=426.说明:请读者自己证明:不存在实数x ∈(0,1),使得f (x )=183.例10、k 是实数,42421()1x kx f x x x ++=++,对任意三个实数a ,b ,c ,存在一个以f (a ),f (b ),f (c )为三边长的三角形,求k 的取值范围.分析:首先,对于任意实数x ,f (x )要恒大于0.在这个前提下,对任意三个实数a ,b ,c ,f (a ),f (b ),f (c )均能构成一个三角形的三边长,只需2f min (x )>f max (x )即可.解答:首先确定k 的范围,使得f (x )恒大于0,即只需x 4+kx 2+1恒大于0即可. 当k ≥0时,x 4+kx 2+1恒大于0;当k <0时,只需 △=k 2-4<0,即-2<k <0.所以,当k >-2时,f (x )恒大于0. (1)当k =1时,f (x )≡1满足题意. (2)当k >1时,有24222422(1)()1≥1(0),1(1)(1)()1≤1132(1),3k x f x x x x k x k x f x x x x k x -=+=++--=+++++==时等号成立当时等号成立所以,max max 2()1,(),3k f x f x +==从而由三角形的两边之和大于第三边的性质,有221,3k +⨯>解得k <4. 故1<k <4满足条件.(3)当-2<k <1时,与(2)类似,有max max 2()1,(),3k f x f x +==由221,3k +⨯>解得1.2k >-故112k-<<满足条件.综上所述,所求的k的取值范围为14. 2k-<<说明:本题的关键是把“对任意实数a,b,c,存在一个以f(a),f(b),f(c)为三边长的三角形”这一条件,转化为“2f min(x)>f max(x)”.例11、设N是非负整数集,f:N→N是一个函数,使得对任一n∈N,都有(f(2n+1))2-(f(2n))2=6f(n)+1,①f(2n)≥f(n).问:f(N)中有多少元素小于2003?解答:由题设(f(2n+1)2-(f(2n))2≥1>0,所以f(2n+1)> f(2n).又(f(2n+1)2=(f(2n))2+6 f(n)+1<(f(2n)2+6 f(2n)+9,所以f(2n+1)< f(2n)+3,故f(2n+1)< f(2n)+1或f(2n)+2.而(f(2n+1)2-(f(2n))2是奇数,所以f(2n+1)与f(2n)的奇偶性不同,从而f(2n+1)= f(2n)+1.代入①式,得f(2n)=3 f(n).令n=0,f(0)=3f(0),所以f(0)=0.令n=0代入①式,得f(1)=1,于是f(2)=3 f(1)=3.下面用数学归纳法证明:f是严格递增函数,即证f(n+1)>f(n).当n=0,1,2时,命题成立.假设对小于等于n的情形命题成立.则当n=2k(k≥1)为偶数时,有f(n+1)=f(2k+1)=f(2k)+1> f(2k)=f(n).当n=2k+1(k≥0)为奇数时,因为0≤k<k+1≤n,所以f(k+1)>f(k),从而f(k+1)≥f(k)+1,于是f(n+1)=f(2k+2)=3 f(k+1)≥3 f(k)+3= f(2k)+1+2= f(2k+1)+2> f(2k+1)= f(n)综上,f(n)是严格单调递增函数.显然,f(27)=3 f(26)=…=37 f(1)=2187>2003,而f(127)= f(126)+1=3 f(63)+4=9 f(31)+4=9 f(30)+13=27 f(15)+13=27 f(14)+40=81 f(7)+40=81 f(6)+121=243 f(3)+121=243 f(2)+364=729 f(1)+364=1093<2003,所以,共有f(0),f(1),f(2),…,f(127)这128个元素不超过2003.第二讲三角函数及反三角函数例1、化简11(,). cos()cos[(1)]nkk kk kβπαβαβ=≠∈+++∑Z分析:本题目的化简是利用一个递推模型来实现的,即找到这个题目的“源生地”.可先由产生分母cos αcos(α+β)的正切函数之和入手.sin tan()tan ,cos cos()11[tan()tan ].cos cos()sin βαβαααβαβαααββ+-=+=+-+考查即得到递推模型:1.c o s ()c o s [(1)]1{t a n [(1)]t a n ()}s i n k k k k αβαβαβαββ+++=++-+再求和,即得原式1{tan[(1)]tan()}sin k k αβαββ=++-+. 解答:略. 例2、不等式22(1)cos (cos 5)3sin 11x x x x θθθ+--+>--+对任何实数x 均成立,求θ.分析:这是一个关于x 的不等式,以解集为全体实数作为背景条件来求参数θ的范围问题.可将θ的正弦(或余弦)值表示成x 的函数f (x ),再利用f (x )的值域,对正弦(或余弦)值的制约去求得θ.解答:将不等式化成222253153sin cos 11153)1.41x x x x x x x x x x x θθπθ++-++-<=+-+-++-<+-+即利用判别式法可求得2531x y x x +=-+的值域为25[1,].3y ∈-)0,4πθ-<从而322,.44k k k πππθπ-<<+∈Z 例3、设,,1,x y z z +∈=R 试求xy +2xz 的最大值.分析:这是一个在限定条件下,求多元函数的最值问题.如何将多元函数在限定的条件中转化成单元函数,是破解这一问题的关键.可用三角法代换及平均值去求解.1,,,,z x y z +=∈R 且故可令22sin cos ,z αα=而x=cos 2αsin β,y =cos 2αcos β,其中,0,.2παβ⎛⎤∈ ⎥⎝⎦于是2222222222222222(2)cos sin (cos sin 2sin )sin (2cos )cos (cos cos 2sin )2cos sin (2cos cos cos )(cos cos 2sin )2cos sin 2cos cos cos cos cos 2sin ≤2cos 2sin .2cos xy xz x y z αβαβαββαβααββαβαβααββαβαβααβββ+=+=+=-+-=-+-⎛⎫-++ ⎪ ⎪-⎝⎭=-222222221tansin ,cos .2112212≤≤1131t t t t t t t t xy xz t tt βββ-===++++==-++令则故当133x y z ===时,取等号.即xy +2xz的最大值为3例4、已知θ1+θ2+…+θn =π,θi ≥0(i =1,2,…,n ),求sin 2θ1+sin 2θ2+…+sin 2θn 的最大值.(1985年IMO 预选题)分析:由于变量多,变式的目标难确定,不妨先将问题简单化,即先退到θ1+θ2为常数时探讨sin 2θ1+sin 2θ2的最大值的情形.这种策略往往在竞赛题解答中时用到.解答:先考查θ1+θ2=常数的情形.因为22212121222121212122212121221212212122112sin sin (sin sin )2sin sin 4sin cos cos()cos()222cos (2sin 1)1cos().22,,2sin 10;22,2sin 10;22,2sin 2θθθθθθθθθθθθθθθθθθθθθθπθθθθπθθθπθθ+=+-+-=--++-+=-+++++<-<++=-=++>上式中当时时时210.2θ->由此可得出,当122πθθ+<时,θ1与θ2有一个为零时,sin 2θ1+sin 2θ2有最大值;当122πθθ+=且|θ1-θ2|越小时,sin 2θ1+sin 2θ2值越大.n =3时,即θ1+θ2+θ3=π时,2221239sin sin sin ≤4θθθ++是容易证明的.而n ≥4时,可知θ1、θ2、θ3、θ4中必有两个角和不超过.2π 由前面的结论知,12≤2πθθ+时,sin 2θ1+sin 2θ2当θ1或θ2=0时,有最大值.于是所求的最大值可转化成三个角的和为π,其正弦值的平方的最大值问题.另一方面n =2时,θ1+θ2=π,sin 2θ1+sin 2θ2≤2.因此,sin 2θ1+sin 2θ2+…+sin 2θn 的最大值为9.4且当12345,03n πθθθθθθ======= 时,取等号.例5、如图2.1,△ABC 中,高AD =h ,BC =a ,AC =b ,AB =c .若a +h =b +c ,求∠BAC 的范围.分析:许多平面几何中的推导过程可用“三角法”进行转换,尤其是几何不等式的证明问题.经常以正、余弦定理及面积公式等结论作为依据.本题目还要从三角变换及不等式的推理中得出角的范围.解答:由,sin b c a h bc BAC ah +=+⎧⎨∠=⎩得出.sin ahbc BAC =∠令∠BAC =a .于是由22222222()2cos 22()1(1)sin 1.22sin 2cos 1cos 2sin ,cot 1.221122b c a b c bc a bc bca h a h ah a a h h h a a aαααααα+-+--==+-=-=+-+===+++得 故作CE ⊥BC ,使CE =2h .在Rt △BCE中,有BE =且AE +AB =b +c =a +h ≥BE .即2≥≤.3h a h a +得出于是41[1,],23h a +∈从而44cot [1,].[2arccot ,].2332BAC απ∈∠∈故例6、n ∈N +,x 0=0,x i >0,i =1,2,…n 且11.ni i x ==∑求证1≤.2ni π=<(1996年CMO 试题)分析:所证不等式左侧部分可用2a b+得出.右侧部分可引用θi =arcsin(x 0+x 1+…+x i ),再利用三角公式得出.解答:因11,ni ==∑由平均值不等式,有011≤ 1.2n x x x ++++=故1ni =成立.令θi =arcsin(x 0+x 1+…+x i ),i =0,1…,n .故101[0,]0.22n ππθθθθ∈=<<<= 且而11111111111sin sin 2cos sin222cos sin.2sin ,[0,],22(cos )()cos .2(1,2,,).cos i i i i i i i i i i i i i i i i i ii i i x x x x x x i n θθθθθθθθθπθθθθθθθθθ-----------+-=-=-<<∈-<=-<-= 利用可知故对上述求和有11101211.cos 2sin ,cos ni n i i i i i x x x x x πθθθθθ-=---<-==++++==∑ 但故代入上式可得出所证不等式右侧成立.例7、如图2.2,锐角△ABC 的外接圆中过A 、B 两点的切线分别与过C 的切线交于V 、T ,且AT ∩BC =P ,BV ∩AC =R .设AP 、BR 的中点分别是Q 、S .求证:∠ABQ =∠BAS ,并求当BC ︰CA ︰AB 取何值时,∠ABQ 取最大值. (第41届IMO 预选题)分析:要证∠ABQ =∠BAS ,由条件中的对称性,只要求得∠ABQ 的三角函数值与已知中的△ABC 边及角建立一个结构式即可.作QN ⊥AB 于N ,从cot BNNBQ QN∠=入手,而作PM ⊥AB 于M ,可用BN =BM +MN =111(cos )sin 222c BP B QN PM BP B +== 且是解决问题的突破点.解答:作PM ⊥AB 于M ,QN ⊥AB 于N .记BC =a ,AB =b ,AB =c ,∠A =∠BAC ,∠B =∠CBA ,∠C =∠ACB .由221sin()sin 2,1sin sin()2ABTACTAB BT C S BP c C c PC S b B b AC CT B ππ-====-又BP +CP =a ,故22211.sin ,22ac BP QN PM BP B b c===+而于是 2222222222221()21()21(cos ),2cot cot cot sin sin cos 2sin sin 3.2sin BN BM MN BM AB BM BM AB c BP B BN c b c ABQ B B QN BP B ac Ba cb ac b c ac B b c ac ac B ab C a b c ab C=+=+-=+=++∠==+=++-++++==+-=同理可得出2223cot 2sin a b c BAS ab C++∠=故∠ABQ =∠BAS .2222222223cot 2sin 3(2cos )2sin 2()43cot ≥3cot .sin sin 43cot ,sin 43cos sin )≤.a b c ABQ ab Ca b a b ab C ab C a b C C ab C C y C CC y C C θθ++∠=+++-=+=---=+=-⎫=由记=于是解得≥,y即≤ABQ ∠当且仅当a =b ,3arccos ,4C ∠=即BC ︰CA ︰AB1时取等号.第三讲 等差数列与等比数列例1、给定正整数n 和正数M ,对于满足条件2211≤n a a M ++的所有等差数列a 1,a 2,a 3,…,试求S= a n +1+a n +2+…+a 2n +1的最大值.分析:本题属于与等差数列相关的条件最值问题,而最值的求解运用的方法灵活多样,针对条件的理解不同,将有不同的解法.解答:方法一(代数法).设公差为d ,a n +1=a ,则1221222211222(1)(1),2,21,≥()41()(43)102104≥(),101n n n n n n S a a a n d nd S n M a a nd nd nd S n αααααα+++++=+++=+++=++=-+=++-+ 所以另一方面由从而有||≤1)S n d α+且当时,(1)2(1)n S n n n ⎛=+⎭=+=+由于此时有22211443,(),101n S nd a a M n α+=+==+故因此max S n =+122112111()(1)21(3)21(3sin cos )21)sin(),n n n n n n S a a a a a n n a a n r n r θθθϕ++++++=+++++=+=-+=-=+- 故其中cos sin()1,rϕϕθϕ==-=因此当时,有max2S n=+方法三(判别式法).设首项为a,公差为d,则221122222222(1)(23).222.①3(1)3≤,()≤.②①②,44109≤0.③1(1)③,444109≥0.1(1),||≤1),10nn andSSnd ana a Ma a nd MS Sa a Mn naS SMn nS nad+++==-++++++-++⎡⎤⎛⎫=-⨯⨯-⎢⎥⎪++⎝⎭⎢⎥⎣⎦+=-=故因为所以将代入得因为不等式关于有解所以解之得且当max,10nS=有方法四(不等式法).因为111112222211111122111111max(1)(1)21(3).2,(3)≤(31)()≤10,3≤1,,,nnnn nnnnna an nS n anna aa a a a Ma aa a Ma aa aS+++++++++-+=+++=--++--=+====由柯西不等式得所以3等号当且仅当时取到即有说明:这是1999年全国高中数学联赛的一道试题,在解答过程中,要分清什么是常量,什么是变量,注意条件和结论的结构形式.解法一通过配方来完成,解法二运用三角代换的方法,解法三运用二次方程根的判别式来完成,解法四则主要运用了柯西不等式.本题入口宽,解法多样,对培养学生的发散思维能力很有好外.例2、n 2(n ≥4)个正整数排成几行几列:a 11 a 12 a 13 a 14 … a 1n a 21 a 22 a 23 a 24 … a 2n a 31 a 32 a 33 a 34 … a 3n … …a n 1 a n 2 a n 3 a n 4 … a nn其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等,已知2442431122131,,,.816nn a a a a a a ===+++ 求分析:由于等差数列可由首项与公差惟一确定,等比数列可由首项与公比惟一确定,如果设a 11=a ,第一行数的公差为d ,第一列数的公比为q ,容易算出a st =[a +(t -1)d ]q s -1,进而由已知条件,建立方程组,求出a ,d ,q .解答:设第一行数列公差为d ,各列数列公比为q ,则第四行数列公差是dq 3.于是可得方程组:24113421134342(3)1,1(),83,16a a d q a a d q a a dq ⎧⎪=+=⎪⎪=+=⎨⎪⎪=+=⎪⎩解此方程组,得111.2a d q ===±由于所给n 2个数都是正数,故必有q >0,从而有111.2a d q ===故对任意的1≤k ≤n ,有111112323412311[(1)].2123,22221123,22222:11111,2222222.22k k kk k k n n n n n n ka a q a k d q nS nS n S n nS --++-==+-==++++=++++=+++++=-- 故又两式相减后可得所以 说明:这是1990年全国高中学数学联赛的一道试题,涉及到等差数列、等比数列、数列求和的有关知识和方法.通过建立方程组确定数列的通项;通项确定后,再选择错位相减的方法进行求和.例3、设{a n }是由正数组成的等比数列,S n 是其前n 项之和.(1)证明:21lg lg lg ;2n n n S S S +++<(2)是否存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立?并证明你分析:对于问题(1),运用对数的性质将所证不等式转化为221,n n n S S S ++<运用等比数列求和公式时,要分q =1和q ≠1两种情况讨论;对于问题(2),充分运用已知条件,进行分析论证,可先假设存在常数C >0,使所证等式成立,然后设法推出矛盾.如果不能推出矛盾,再逆推来考虑常数C >0的存在性.解答:(1)证明:设{a n }的公比为q ,由已知得a 1>0,q >0. (i )当q =1时,S n =na 1,从而2222211111(2)(1)0.n n n S S S na n a n a a ++-=+-+=-<即有221.n n n S S S ++<(ii )当q ≠1时,1(1)1n n a q S q-=-,所以22212221121122(1)(1)(1)0.(1)(1)n n n nn n n a q q a q S S S a q q q ++++----=-=-<--由(i )与(ii )知,221n n n S S S ++<恒成立,又由于S n >0,两边取常用对数即得21lg lg lg .2n n n S S S +++<(2)不存在.要使21lg()lg()lg()2n n n S C S C S C ++-+-=-成立,则有221()()(),0.n n n nS C S C S C S C ++⎧--=-⎪⎨->⎪⎩ 分两种情况讨论: (i )当q =1时221211121()()()()[(2)][(1)]0,n n n S C S C S C na C n a C n a C a ++----=-+--+-=-<即不存在常数C >0使结论成立.(ii )当q ≠1时,若条件(S n -C ) (S n +2-C )= (S n +1-C )2成立,则(S n -C ) (S n +2-C )- (S n +1-C )222111111(1)(1)(1)111[(1)]0,n n n n a q a q a q C C C q q q a q a C q ++⎡⎤⎡⎤⎡⎤---=----⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=--= 因a 1q n ≠0,故只能有a 1-C (1-q )=0,即11a C q=-,此时由于C >0,a 1>0,必有0<q <1.但当0<q <1时,110,11nn n a a q S C S q q--=-=<--不满足S n -C >0,即不存在常数C >0,使结论综合(i )、(ii )可得,不存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立.说明:这是1995年的一道全国高考试题,主要考查等比数列、对数、不等式等基础知识和推理论证能力以及分析和解决问题的能力.其中第(2)问属探索性问题.探索性问题对数学思想方法的运用以及分析问题、解决问题的能力要求更高,探索性问题是高考与竞赛的热点问题.第(2)问还可以用反证法进行如下证明:假设存在常数C >0,使21lg()lg()lg(),2n n n S C S C S C ++-+-=-12221221210,①0,②0,③()()(),④④(2),⑤n n n n n n n n n n n n S C S C S C S C S C S C S S S C S S S ++++++++⎧->⎪->⎪⎨->⎪⎪--=-⎩-=+-则有由得 根据平均值不等式及①、②、③、④知212112()()2()≥2()0,n n n n n n n S S S S C S C S C S C ++++++-=-+----=因为C >0,故⑤式右端非负,而由第(1)问证明知,⑤式左端小于零,矛盾.故不存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立.例4、如图3.1,有一列曲线P 0,P 1,P 2,…,已知P 0所围成的图形是面积为1的等边三角形,P k +1由对P k 进行如下的操作得到:将P k 的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(k =0,1,2,…).记S n 为P n 所围成图形的面积.(1)求数列{S n }的通项公式;(2)求lim .n n S →∞分析:这是一道有关几何图形的操作性问题.采用从特殊到一般的思考方法,便容易入手.解答:如图,对P 0进行操作,容易看出P 0的每条边变成P 1的4条边,故P 1的边数为3³4,同样,对P 1进行操作,P 1的每条边变成P 2的4条边,故P 2的边数为3³42.类似地,容易得到P n 的边数为3³4n .已知P 0的面积为S 0=1,比较P 1与P 0,容易看出P 1在P 0的每条边上增加了一个小等边三角形,其面积为213,故1021131.33S S =+⨯=+再比较P 2与P 1,可知P 2在P 1的每条边上增加了一个小等边三角形,其面积为221133⨯,面P 1有3³4条边,故2143114341.333S S =+⨯⨯=++类似地有22326351144341.3333S S =+⨯⨯=+++于是猜想2135211211114441333343411493441()399144193483411()().①59559n n n kk nn k k k n n n S ----===+++++⎛⎫=+=+ ⎪⎝⎭⎡⎤-⎢⎥⎣⎦=+⨯-⎡⎤=+-=-⨯⎢⎥⎣⎦∑∑ 下面用数学归纳法证明①式.当n =1时,由上面已知①式成立.假设n =k 时,有834().559k k S =- 当n =k +1时,易知第k +1次操作后,比较P k +1与P k ,P k +1在P k 的每条边上增加了一个小等边三角形,其面积为2(1)13k +,而P k 有3³4k 条边,故12(1)12(1)13434834.5593k k k k k kk k S S S ++++=+⨯⨯⎛⎫=+=-⨯ ⎪⎝⎭综上,由数学归纳法①式得证.8348(2)lim lim .5595n n n n S →+∞→+∞⎡⎤⎛⎫=-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦说明:本题是2002年全国高中数学联赛的第14题,这类问题的一般解题过程是:实验——归纳——猜想——论证,主要考查学生探索能力.例5、设a 0为常数,且a n =3n -1-2a n -1(n ∈N +) (1)证明:对任意n ≥1,101[3(1)2](1)2;5n n n n n n a a -=+-+-(2)假设对任意n ≥1有a n >a n -1,求a 0的取值范围.分析:本题中数列{a n }由递推关系确定,第一问可以用数学归纳法给予证明,也可以将数列{a n }转化为等比数列直接计算,第二问要对n 进行讨论.解答:(1)证法一:(i )当n =1时,由已知a 1=1-2a 0,等式成立; (ii )假设当n =k (k ≥1)等式成立,即101110111101[3(1)2](1)2,53223[3(1)2](1)251[3(1)2](1)2,5k k k k k k k k kk k k k k k k k k k k a a a a a a -+-+++++=+-+-=-=-+---=+-+- 则也就是说,当n =k +1时,等式也成立.根据(i)和(ii),可知等式对任何n ∈N +成立.证法二:如果设a n -λ3n =-2(a n -1-λ3n -1),用a n =3n -1-2a n -1代入,可解出1.5λ=所以135n n a ⎧⎫-⎨⎬⎩⎭ 是公式比为-2,首项为135a -的等比数列.所以10120133(12)(2)(),551[3(1)2](1)2.5n n n n n n n n a a n a a -+--=---∈=+-+-N 即 (2)解法一:由a n 通项公式得11111023(1)32(1)32,5n n n n n n n a a a -----⨯+-⨯⨯-=+-⨯所以a n >a n -1(n ∈N +)等价于1203(1)(51)()()2n n a n --+--<∈N(i )当n =2k -1,k =1,2,…时,①式即为222302303(1)(51)(),2131(),525k k k a a -----<<+即上式对k =1,2,…都成立,故有101311().5253a -<⨯+=(ii )当n =2k ,k =1,2,…时,①式即为212202203(1)(51)(),2131().525k k k a a -----<>-⨯+即为上式对k =1,2,…都成立,有2120131()0.525a ⨯->-⨯+=综上,①式对任意n ∈N +成立,有010,3a <<故a 0的取值范围为1(0,).3解法二:如果a n >a n -1(n ∈N +)成立,特别取n =1、2有a 1-a 0=1-3a 0>0,a 2-a 1=6a 0>0,因此010.3a <<下面证明当0103a <<时,对任意n ∈N +,有a n -a n -1>0.由a n 通项公式知:5(a n -a n -1)=2×3n -1+(-1)n -1³3³2n -1+(-1)n ³5³3³2n -1a 0. (i)当n =2k -1,k =1,2,…时,5(a n -a n -1)=2×3n -1+3³2n -1-5³3³2n -1a 0>2×2n -1+3³2n -1-5³2n -1 =0.(ii)当n =2k ,k =1,2,…时,5(a n -a n -1)=2×3n -1-3³2n -1+5³3³2n -1a 0>2×3n -1-3³2n -1 ≥0.故a 0的取值范围为1(0,).3说明:本题是2003年全国高考的最后一道压轴题,有一定难度.特别是第二问求参数a 0的取值范围,要转化为相关数列的最大值和最小值来进行分析讨论,请读者对这一方法务必理解透彻.例6、设{a n }为等差数列,{b n }为等比数列,且22211223312,,()b a b a b a a a ===<,又12lim ()2,n n b b b →+∞+++= 试求{a n }的首项与公差.分析:题中有两个基本量{a n }中的首项a 1和公差d 是需要求的,利用222123,,a a a 成等比数列和给定极限可列两个方程,但需注意极限存在的条件.解答:设所求数列{a n }的公差为d ,因为a 1<a 2,故d =a 2-a 1>0.又{b n }为等比数列,故2422213213,,b b b a a a == 即即422111()(2),a d a a d +=+化简得2211240a a d d ++=,解得1(2,20,d a =--±<而故a 1<0.若222121(2,1);a d a q a =-==则若222121(2,1),a d a q a =-==-则但12lim ()1n n b b b →+∞+++= 存在,故|q |<1,于是21)q =不可能.从而只有1(2,d a =-于是由212lim ()1,n n b b b →+∞+++== 得21a =111)2,(2 2.a d a ===-+=所以故数列{a n }的首项公差分别为 2.说明:本题是2001年全国高中数学联赛的第13题,涉及到的知识主要是等差数列、等比数列、无穷递缩等比数列所有项的和等知识,用到方程的思想和方法,且在解题过程中要根据题意及时取舍,如由题意推出d >0,a 1<0,|q |<1等,在解题中都非常重要.例7、设S ={1,2,3,…,n },A 为至少含有两项的、公差为正的等差数列,其项都在S 中,且添加S 的其他元素于A 后均不能构成与A 有相同公差的数列,求这种A 的个数(这里只有两项的数列也看作等差数列).[分析]:可先通过对特殊的n (如n =1,2,3),通过列举求出A 的个数,然后总结规律,找出a n 的递推关系,从而解决问题;也可以就A 的公差d =1,2,…,n -1时,讨论A 的个数.解答:解法一:设A 的公差为d ,则1≤d ≥n -1,分两种情况讨论:(i )设n 为偶数,则当1≤≤2n d 时,公差为d 的A 有d 个;当1≤≤12nd n +-时,公差为d 的A 有n -d 个,故当n 为偶数时,这种A 共有2(12){12[(1)]}().224n n n n +++++++-+= 个(ii )当n 为奇数,则当1≤≤2n d 时,公差为d 的A 有d 个;当1≤≤12n d n +-时,公差为d 的A 有n -d 个,故当n 为奇数时,这种A 共有2111(12)(12)().224n n n ---+++++++= 个综合(i )、(ii )可得,所求的A 有2[]4n 个.解法二:设n 元素集S ={1,2,…,n )中满足题设的A 有a n 个,则a 1=0,a 2=1,a 3=2(A ={1,3},A ={1,2,3}),a 4=4(A={1,3},{1,4},{2,4},{1,2,3,4}),故1[].2n n na a -=+事实上,S ={1,2,…,n }比S ={1,2,…,n -1}的A 增加有公差为n -1的1个,公差为n -2的1个,…,公差为2n (n 为偶数)或12n +(n 为奇数)的增加1个,共增加[]2n个.由{a n }的递推式可得2[].4n n a =说明:这是1991年全国高中数学联赛第二试的第一题,主要考查应用等差数列和分类讨论的知识与方法解决综合问题的能力.第四讲 递归数列例1、数列{a n }定义如下:1111,(1416n n a a a +==+求它的通项公式.分析:带根号的部分不好处理,容易想到作代换:令n b =解答:设n b 211, 5.24n n b a b -==于是原递推式可化为2211111(14),241624n n n b b b +---=++ 即(2b n +1)2=(b n +3)2,由于b n 、b n +1非负,所以2b n +1=b n +3,故111222113(3),213(3)(),213(),21111.243322n n n n n n n n n n b b b b b b a +----=--=-=+-==++ 故即故说明:这是1981年IMO 的预选题,解题的关键是换元、转化. 例2、设数列{a n }和{b n }满足a 0=1,b 0=0,且11763,()87 4.n n n n n n a a b n b a b ++=+-⎧∈⎨=+-⎩N 证明: a n (n ∈N )是完全平方数.分析:二元递推式给定二数列,可先消元,化为一元递推式,进而求出通项公式,问题就好办了.证明:由a n +1=7a n +6b n -3,b n +1=8a n +7b n -4可得b n +2-14b n +1+b n =0,其特征方程λ2-14λ+1=0的根为λ1=7+27λ=-因此,(7(7,n n n b A B =++-由a 0=1,b 0=0,得b 1=4,所以0,(7(74,A B A B +=⎧⎪⎨++-=⎪⎩解得66A B ==,故10112220112220(7],1(74)8111(7(744211[(2(2].2211(2(2221[222]21[222(]22n n n n n n n n n n n nn n n n n n n n n n n n n n n n n n n n n b a b b e C C C C C C C C C +----=+--=-+=++-+=+=+=++++-++=+ 从而由于2223,n n n C M -++其中,当n为偶数时,n n n nM C =为整数,当n为奇数时,11n n n n M C --=为整数.从而无论n 为奇数,还是n 为偶数,对n ∈N ,均有e n 为整数,故a n 为完全平方数.说明:如果消去b n 得到a n 的递推关系a n +1=14a n -a n -1-6(n ≥1),则求a n 的过程稍微麻烦一点.本题是2000年全国高中数学联赛二试第二题.这类题型也是二试考查的重点.例3、数列{a n }定义如下:1212110,1,(1)(1)(1),222n n n n na a a na n n a --===+-+--n ≥3.试求1221122123(1)n n n n nn n n n n f a C a C a n C a nC a ----=++++-+ 的最简表达式. 分析:仔细研究所给数列{a n }的递推式和所要化简的f n 的表达式,可以发现通过适当换元就能解决问题.123121111111211112:,0,,,()(1).!232!111(1)!!()!21(1)!()!22(1)!(1)!n n n n n n n nn kn n n k kk k n nn n k kk k k k k n a b b b b b b b n n n k g f n k C a b n n n k n k n k g g b b n k n k n k n k b b n k n k ---==++==-=-=====++--+==-+=--+-+-=-+---+-+=-+--+∑∑∑∑ 解答令则且再令故121122().(1)!n nk n k k k n k b b n k +=+-=-+=-+-∑∑∑令d n =(-2)n(b n -b n -1),则12(1),2!nn n n d d n -=+-所以d 2=2,且3222(1),2!!l nnn t l d l n ==+-=∑1112122112202(1),,!(2)(2)!2(1)(1)!!(1)(1)()!!(1)!!111(1)()(1)().!(1)!1(1)()0,(1)()0,nnnn n n n kn n n k k knn k k n n k k k k nkk k k d b b n n n k g g n k k n k k n k k n n k k n n nn k k -++=+==++===--===---+--=+---=+-+-+=-+-++-=-=∑∑∑∑∑∑因此于是又故11323344311(1)[1(1)]!(1)!11(1)!(1)!42,311!!()(2)!!111!()2!(1).2!3!!n n n n nn n k k g g n n n n n n g b b f n g n g k k n n g n n n +=+==-=----++=--+=+===-+-+=++-=-+∑∑∑ 由于则说明:这是2000年全国数学冬令营的第二题,运算量大,需要进行多次换元,将问题逐步转化.解题过程要求运算准确、细心.例4、设a 1=1,a 2=3,对一切自然数n 有a n +2=(n +3) a n +1-(n +2) a n ,求所有被11整除的a n 的值.解答:设b n +1= a n +1-a n (n ≥1),则由条件有b n +1=(n +1)( a n -a n -1)= (n +1) b n (n ≥2),故b n =nb n -1=n (n -1) b n -2=…= n (n -1)…3b 2=n ! (n ≥2).所以a n =( a n -a n -1)+( a n -1-a n -2)+…+( a 2-a 1)+a 1=b n +b n -1+…+b 2+1=1!.nk k =∑由此可算出:44188110101!33113,!46233114203,!403791311367083.k k k a k a k a k ======⨯===⨯===⨯∑∑∑当n ≥11时,注意到11!n k k =∑可被11整除,因而10111!!nn k k a k k ===+∑∑也可被11整除.故当n =4,n =8或n ≥10时,a n 均可被11整除.说明:这是1990年巴尔干地区的数学奥林匹克试题,本题中换元起了重要的作用.例5、数列{a n }按如下法则定义:1111,,24n n n a a a a +==+证明:对n >然数.分析:因为结论中涉及到根号及2n a项,因而令n b =平方就容易找到解题思路.解答:令2222122221111,,,2442116n n nnn n n na b b a a a b a +===+=++-则因为于是 22122221222211122211111111(),11242416()22(2),2[2(2)2]4(1).①n n nn n n n n n n n n b b b b b b b b b b b b +++---+=++++=+=++=+即所以因为34,24,n b b ====由①式及b 2,b 3∈N 知,当n >1时,b n ∈N .说明:这是1991年全苏数学冬令营的一道试题,通过换元,将关于a n 的问题转化为关于b n 的问题,可使问题得到顺利解决.例6、设数列{a n }满足101262,(≥1)1n n n a a a n a --+==+,求a n .分析:引入待定系数λ,设法将所给问题转化为我们所熟悉的问题.先求得数列{a n }的不动点λ1、λ2,则数列12{}n n a a λλ--为一个等比数列.解答:126(2)626(),1112n n n n n n n a a a a a a λλλλλλλ++-+----=-==++++- 令62λλλ--=-,得λ2-λ-6=0,解之得:λ1=3,λ2=-2,1111100111143(3),2(2),11331,24231{},243311()(),2244342(1)(0,1,2,)4(1)n n n n n n n n n n n n n n n n n n n n na a a a a a a a a a a a a a a a a n ++++++++--=-+=+++--=-++-+--=-=-+++-==+- 所以故即是公比为-的等比数列从而故说明:用待定系数法求一些数列的通项是非常有效的.这类问题的一般情形就是在知识梳理部分提到的第9个问题.例7、(1)已知a 1=0,a 2=4,a n +2=2a n +1-2a n ,n ∈N +,求a n .(2)已知a 1=0,a 2=2,a 3=6,a n +3=2a n +2+a n +1-2a n ,n ∈N +,求a n . (3)已知a 1=1,a 2=2,a 3=8,a n +3=6a n +2-12a n +1+8a n ,n ∈N +,求a n . (4)已知a 1=2,a 2=1,a 3=-13,a n +3=7a n +2-16a n +1+12a n ,n ∈N +,求a n . 分析:本题中四个小题均属于线性递归数列问题,可用特征根的方法来解决. 解答:(1)特征方程x 2=2x -2有两个相异的根x 1=1+i ,x 2=1-i ,则{a n }的通项公式为a n =c 1(1+i)n +c 2(1-i)n ,代入前两项的值,得122221(1)(1)0,(1)(1)4,i c i c i c i c ++-=⎧⎪⎨++-=⎪⎩ 解得c 1=-1-i ,c 2=-1+i .故31121(1)(1)2cos.4n n n n n a i i π++++=-+--=- (2)特征方程x 3=2x 2+x -2有三个相异的根x 1=1,x 2=-1,x 3=2,于是{a n }的通项公式为a n =c 1+c 2(-1)n +c 32n .代入初始值,得12312312320,42,86,c c c c c c c c c -+=⎧⎪++=⎨⎪-+=⎩ 解得c 1=-2,c 2=0,c 3=1,故a n =-2+2n .(3)特征方程x 3=6x 2-12x +8有三重根x =2,故{a n }的通项公式为c n =( c 1+c 2n +c 3n 2)²2n , 其中c 1,c 2,c 3满足方程组1231231232221,48162,824728,c c c c c c c c c -+=⎧⎪++=⎨⎪++=⎩ 解此方程组,得123311,,,44c c c ==-=故。
五年级数学奥赛练习
第七章行程问题·变速运动
练习3
例小江进行跑步训练, 今天的训练计划是跑2400米, 其中前三分之一的时间为快速跑, 中间三分之一的时间为中速跑, 后三分之一的时间为慢速跑。
如果小江快速跑的速度是每秒5米, 中速跑的速度是每秒4米, 慢速跑的速度是每秒3米。
那么, 小江跑后面的1200米用了多少时间?
1. 小丽进行竞走训练, 今天的训练计划是走9000米, 其中前三分之一的时间每秒走4米, 中间三分之一的时间每秒走3米, 后三分之一的时间每秒走2米。
那么, 小丽走后面的3200米用了多少时间?
2. 一列货运列车从甲地去乙地, 两地相距3300千米。
其中前三分之一的时间每小时行驶45千米, 中间三分之一的时间每小时行驶55千米, 后三分之一的时间每小时行驶65千米。
那么, 这列货运列车行驶前面的1230千米用了多长时间?
例350秒
1. 1400
2. 26。
《奥赛天天练》第54讲《排队的学问》。
在这一讲中,要引导孩子学会有序排列,现阶段主要是教孩子运用一一列举的方法找出排列数,在脑中留下直观印象,这样在后续学习中就可以运用乘法原理推导排列数的求法了。
《奥赛天天练》第54讲,模仿训练,练习1【题目】:小华、小花、小马三个好朋友要在一起站成一排拍一张照片。
三个人争着要站在排头,无法拍照了。
后来照相师傅想了一个办法,说:“我给你们每人站在不同位置都拍一张,好不好?”这下大家同意了。
那么,照相师傅一共要给他们拍几张照片呢?【解析】:首先小华站在排头,共有两种站法:小华→小花→小马;小华→小马→小花同理,分别以小花、小马站在排头,也各有两种站法。
所以有3个两种站法,共有站法:3×2=6(种)《奥赛天天练》第54讲,巩固训练,习题1【题目】:二(1)班的小平、小宁、小刚、小超4人排了一个小块板,准备“六、一”演出。
在演出过程中,队形不断变化。
(都站成一排)算算看,他们在演出小快板过程中,一共有多少种队形变化形式?【解析】:上面一题是3人站成一排,这题是4人站成一排,我们可以运用上面一题的研究结果来解决这一题。
我们假设小平站在排头,在小平右边有3个人,根据上题可知,这3个人在右边的三个位置上共有6种不同的站法,如下图:小宁小刚小超↗小宁小超小刚小刚小宁小超小平→小刚小超小宁↘小超小刚小宁小超小宁小刚分别让小宁、小刚、小超站在排头,也各有6种不同的站法,共有4个6种。
因为排头的人不同,所以每组6种站法是不会有重复情况出现的。
因此,队形变化形式共有:4×6=24(种)。
以此类推,如果有5个人站一排有多少种站法呢?因为4人一排有24种不同站法,5人一排,任取一人站排头就要24种站法,共有5个24种站法,共:5×24=120(种)。
《奥赛天天练》第54讲,巩固训练,习题2【题目】:“69”顺倒过来看还是“69”,我们把这两个顺倒一样的数,称为一对数。
五年级数学奥赛练习
第十四章利润问题
练习1
例生产厂家将一批电热水壶以比成本高30元的价格出售, 已知成本为每台77元, 销售这批电热水壶共收入14124元。
这批电热水壶有多少台?
1. 商店将积压的一批台灯以购进价一半的价格出售, 已知购进价为每盏54元, 处理这批积压台灯共收入1215元。
这批台灯有多少盏?
2. 一家水果店购进苹果4.5吨, 每千克成本和运费-共是2.90元。
按每千克4.60元出售, 结果5天就卖完了。
平均每天盈利多少元?
3. 商场以每支11.5元的价格购进120支钢笔, 以22元的价格售出90支后, 剩余的以每支8元的价格降价处理。
商场从这批钢笔中总计获得多少元利润?
4. 水果店购进490千克橘子, 花了2156元, 在以每千克8.6元的价格售出120千克后,剩余的橘子由于天气原因出现腐烂, 只好以每千克2.2元的价格亏本处理。
水果店销售这批橘子是盈利还是亏损? 盈利或亏损了多少元?
例132
1. 45
2. 1530
3. 840
4. 310。
数学奥赛课复习题几何题练习题数学奥赛课复习题:几何题练习题一、平面几何1. 设四边形ABCD为菱形,且∠C为锐角。
若∠CAD=30°,∠ACD=45°,求∠ADB的度数。
解析:由于ABCD为菱形,所以∠ABC=∠CDA=2×∠CAD=60°。
又因为∠ACD=45°,所以∠CAB=∠ABC-∠ACD=60°-45°=15°。
由∠ADB+∠CAB+∠CDA=360°,得∠ADB+15°+30°=360°,即∠ADB=360°-45°=315°。
2. 已知△ABC中,AB=AC,∠BAC=100°,O是BC的中点,连接AO并延长交BC于点D,求∠BDC的度数。
解析:由于△ABC中,AB=AC,所以∠ABC=∠ACB。
又因为O是BC的中点,所以∠AOC=∠BOC=90°,得四边形ABOC为圆形,所以∠BOC=2×∠BAC=200°。
又因为△ABC中,∠ABC=∠ACB,所以∠ABC=∠ACB=(180°-∠BAC)/2=(180°-100°)/2=40°。
所以∠BDC=∠BOC-∠ABC=200°-40°=160°。
二、立体几何1. 已知一棱长为10cm的立方体。
过它两个相对面上的两点A和C,以AC为直径做圆,求这一圆的面积。
解析:过一棱长为10cm的立方体的两个相对面上的两点A和C画圆,连接AC并延长交另两个相对面于点B和D。
由于AC为直径,所以∠ABC=90°。
所以BC=AC=10cm,所以AB=BC=10cm。
所以所求的圆的直径为10cm。
所以所求的圆的半径为5cm。
所以所求的圆的面积为π×5^2=25π(cm^2)。
2. 在一个边长为6cm的正方体上,连接其两条对角线所得的直线段所在的平面,该平面与正方体的全部棱交于G、H、I三点。
一、单项选择题:2000年1、促进机体产热效应最强的激素是:A.肾上腺素B.甲状腺素B皮质醇 D.胰岛素答(B )2、促进机体生长发育的一组激素是:A.生长素、肾上腺素、甲状腺素B.生长素、肾上腺素、皮质激素、甲状旁腺素C.生长素、甲状腺素、性激素、胰岛素D.生长抑素、促肾上腺皮质激素、甲状腺素答(C)19、两栖类脑最高级的整合中枢所在部位是:A.问脑B.中脑B.小脑 D.大脑答(B)51、你如果发怒,哪种激素分泌量会加强A.甲状腺素B.胰岛素c肾上腺素 D.雄激素答(C )65、哪种眼是平行光线聚焦在视网膜的后面?A.近视眼b远视眼C.青光眼D.散光答(B )66、膝跳反射属于何种反射?A.内脏反射 b。
二元反射C.多元反射D.条件反射答( B)2001年34.下列哪一种恶性肿瘤在人类中发生的平均年龄较小?答( D )A.胃癌B.肝癌 C膀胱癌 D.白血病46.下列哪种物质产生的热量最高?答( B )A. 1克的糖B.1克的脂肪 C1克的蛋白质 D克维生素49.下面哪种提法是对的?答( A )A,人的身高在早晨略高于晚上,而体温略低于晚上B. 人的身高在早晨略低于晚上,而体温略高干晚上C. 人的身高和体温早晨与晚上相同D. 中午时人的身高和体温最高52,人在炎热的环境中一一一。
答( C )A. 交感神经活动加强,皮肤的血管收缩D. 副交感神经活动加强,皮肤的血管收缩C. 交感神经活动加强,汗腺活动增加D. 副交感神经活动加强54.下列哪种做法是对的?答( A )A. 静脉注射葡萄糖可以有效缓解饥饿B. 深呼气可排出体内的二氧化碳,有利于健康C. 蹲得越低,跳得越高D.当一个睡眠者脸上出现各种表情时表明快醒来了,也很容易被唤醒73.关于动物对高低温的耐受极限,下面哪项特征不属于高温致死的原因?答( B )A. 酶活性彼破坏B. 脱水使蛋白质沉淀C. 氧供不足,排泄功能失调D. 神经系统麻痹2002年5. 周围神经系统包括BA.脊髓、脑神经、自主神经系统 B.自主神经系统、脑神经、脊神经C.脑、脊神经、交感神经 D.脑、脊神经、交感神经、副交感神经8.下列哪种人类疾病与蚊子有关系DA.昏睡病 B.血吸虫病 C.痢疾D.疟疾11.下列结构中,哪一种不是淋巴器官DA.头肾 B.扁桃体 C.脾脏 D.甲状旁腺20.哺乳动物的卵子与精子在下列哪一部分相遇?B A.在输卵管伞部 B.在输卵管壶腹部 C.子宫腔内 D.在子宫内膜上22.估计现在在中国大陆HIV病毒的感染者已达:DA.几百万 B.1000万 C. 几万 D. 十万41.神经调节的基本方式是CA.反射 B.反应 C.应激D.负反馈调节48.哪些病基础代谢率明显升高AA.甲状腺机能亢进 B.糖尿病 C.甲状腺机能低下 D.呆小症49.结扎输卵管后的妇女CA.无排卵,有月经 B.无排卵,无月经C.有排卵,有月经 D.有排卵,无月经50.人与动物的区别之一是BA.具有第一信号系统 B.具有第一和第二信号系统C.具有条件反射能力 D.具有对具体信号形成条件反射的能力53.免疫球蛋白是一种BA.铁蛋白 B.糖蛋白 C. 核蛋白 D.铜蛋白63,破伤风抗毒素是以(C )为抗原注射于马体后得到的可治疗破伤风病的生物制品A.外毒素B.内毒素 C.类毒素 D.破伤风杆菌69.不能杀伤靶细胞的免疫细胞为BA.T细胞 B.B细胞 C.巨噬细胞 D.NK细胞2003年36.对于一块骨来说,其传导声波的特点之一是:BA.对方向性敏感 B.低频感应强 C.效率较高D.随年龄增大传音功能下降42.某小孩儿喜欢晒太阳,但有时却发生抽搐,那么应建议他服用哪种物质防止抽搐发生?DA.维生素 A B.生理盐水 C.糖水 D.钙片43.下列各项中,哺乳动物体内激素和维生素共同具有的特性是:CA.都从食物中摄取B.都是蛋白质C.需要量很小,作用很大D.都是由体内细胞产生的46.“小儿麻痹”病是由于:CA.大脑灰质部分区域被病毒感染产生炎症的结果B.大脑白质部分区域被病毒感染产生炎症的结果C.脊髓灰质被病毒感染发生炎症的结果D.脊髓白质被病毒感染发生炎症的结果47.用冷冻的方法贮存人和动物精子的地方叫做精子库。
奥赛无机元素化学习题_第十七章__铜_锌_分_族(总8页)-本页仅作为预览文档封面,使用时请删除本页-【高中化学奥林匹克竞赛辅导】无机元素化学练习第十七章铜锌分族1. 完成并配平下列各反应方程式:(1) Cu + NaCN + H2O (4) AuCl3 + H2O2 + KOH(2) Ag2S +HNO3(浓) (5) CuS+HNO3(稀)(3) Ag(S2O3)23 + H2S (6) Cu + I- + H+2. 为什么Cu2+(aq)比Cu+(aq)稳定?而固态时Cu(I)比Cu(II)稳定?3. 往硫酸铜溶液中加入Na2CO3溶液能否得到碳酸铜沉淀为什么写出相应的反应方程式。
4. 试说明:AuCl在水中能自动分解成为Au和AuCl3,而Au3+和I作用则得到AuI。
5. 为把银线上的灰暗色Ag2S除去,可以把这灰暗色的银线放入盛有热的Na2CO3溶液的铝器皿中。
试解释这是为什么?(已知EөAg2S/Ag = -,EөAg+/Ag =6. CuSO4水溶液加入I或CN时,会得到Cu(I)化合物的沉淀,但是Cu2SO4一遇水就会变成CuSO4和Cu,这是为什么?7. 为什么在水中CuF2存在而CuF不存在;CuI存在而CuI2不存在。
8. 解释下列各现象:(1) CuCl2的稀溶液是兰色,加入浓HCl后呈绿色。
(2) CuCl不溶于水和稀HCl中,但溶于浓HCl中。
(3) 把KCN加入Cu2+离子溶液中,溶液的兰色显著减少,再向此溶液中通入H2S气体,不产生CuS沉淀。
(4) AgCl的盐酸中的溶解度一开始减少,然后随着盐酸浓度的增加而增加。
(5) 氯化银在氨溶液中溶解,但碘化银不溶于氨溶液。
9. 将CuCl22H2O加热,能否制得无水CuCl210. 不用H2S或硫化物,如何分离Ag+、Cu2+、Ba2+、Al3+离子?11. 化合物A溶于水,加入NaOH后得兰色沉淀B。
B溶于盐酸,也溶于氨水,生成兰色溶液C。
小学数学奥赛参考资料篇一:2016年经典小学奥数资料2016年经典小学奥数实用教材第一讲巧算1.1加减法的巧算引子森林王国的歌舞比赛进行得既紧张又激烈。
选手们为争夺冠军,都在舞台上发挥着自己的最好水平。
台下的工作人员小熊和小白兔正在统计着最后的得分。
由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。
观众的情绪也影响着两位分数统计者。
只见分数一到小白兔手中,就像变魔术般地得出了答案。
等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。
小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。
于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。
你可以试一试。
”小熊照着小白兔说的去做,果然既快又对。
这下小熊明白了,掌握了速算的技巧,在工作和生活中的作用很大。
它不仅可以节省运算时间,更主要的是提高了我们的工作效率例题与方法第一题:巧算下面各题① 36+87+64 ②99+136+101 ③ 1361+972+639+28解答:①式=(36+64)+87 ②式=(99+101)+136=100+87=187 =200+136=336③式=(1361+639)+(972+28)=2000+1000=3000第二题:拆数补数188+873 ②548+996 ③9898+203 ①解答:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=10101第三题:减法中的巧算① 300-73-27 ② 1000-90-80-20-10解答:①式= 300-(73+ 27)=300-100=200②式=1000-(90+80+20+10)=1000-200=800第四题:巧算① 4723-(723+189)② 2356-159-256解答:①式=4723-723-189=4000-189=3811②式=2356-256-159=2100-159 =1941第五题:巧算① 506-397 ②323-189③467+997 ④987-178-222-390解答:①式=500+6-400+3(把多减的 3再加上)=109②式=323-200+11(把多减的11再加上) =123+11=134③式=467+1000-3(把多加的3再减去)=1464④式=987-(178+222)-390=987-400-400+10=197【举一反三】1.计算:(1)2458+503(2)574+7982.计算:(1)956-597 (2)3475-3083.用简便方法计算:(1)783+25+175 (2)2803+(2178+5497)+47224. 计算:999+99+91.2 分数的巧算我们在进行异分母分数加减法时,一般要先通分,再计算。
高中物理奥赛讲义:设计新情境 巧妙求时间 “素质教育”要求注重培养学生解决实际问题的能力,而实际问题的相关信息往往不能和物理规律直接对接,这是学生在学习中的最大障碍之一,因此需要学生会建立合理的、最佳的物理情境,巧妙地解决实际问题。
下面以几个求时间的具体实例来说明转换设计新的物量情境的重要性。
1 化“曲线”为“直线”
例1 把一根长为L 的光滑钢丝均匀地绕成一个高为h 的弹簧,现把该弹簧竖直固定在地面上,让一个小环穿在钢丝上,并使其由静止开始下滑,假设整个过程中弹簧的形变不计,求小环下滑过程中所用的时间。
析与解:小环下滑时,速度和加速度方向时刻在变化,是一个变速曲线运动,但是我们发现改变速度大小的力是重力沿钢丝切线方向的分力,而大小是不变的,即加速度的大小是不变的。
因此转换物理情境:把小环沿曲线的下滑转化为沿直线的下滑,即将弹簧以其中心轴为轴展开形成如图1所示的三角形ABC ,其中AC =h ,AB =L 。
即把曲线问题转变成了直线问题,小环沿弹簧下滑的运动等效为沿直线的下滑运动,把复杂问题简单化了,由运动学公式得: L h g a at L ===θθθsin ,sin ,sin ,212
整理得:
gh L t 2
=。
2.化“立体”为“平面”
例2 一位电脑动画爱好者设计了一个“猫捉老鼠”的动画游戏。
如图2所示,在一个边长为a 的大立方体箱子的顶角G 上,老鼠从猫的爪子之间逃出,选择了一条最短的路线,沿着箱子的棱边奔向洞口,洞口处在大箱子的另一个顶角A 处,若老鼠在奔跑中保持速度大小v 不变,并不重复跑过任一条棱边及不再回到G 点。
聪明的猫也选择了一条最短的路线奔向洞口(设猫和老鼠同时从C 点出发),则猫奔跑的速度为多大时,猫恰好在洞口再次捉住老鼠?
析与解:这是一个立体的追击问题,如果用求极值的方法是很繁琐的,但如果转换一下物理情境把大立方体展开铺平如图3所示,就会发现GA 连线就是猫追老鼠的最短践线,这样问题就变得非常简单了。
老鼠沿棱边跑的最短路程为3a ,猫追击的最短路程为
a a a 5)2(22=+。
又因两者的时间相等,则有:
v a v a 3'5=。
所以,猫奔跑的速度为v v 35'=
3.化“间断”为“连续”
例3 回旋加速器的D 形盒最大半径为R ,两盒间距为d ,加速电压为U ,磁感应强度为B 。
用它加速一个带电粒子,则带电粒子在回旋加速器中运动的总时间为多少?
析与解:带电粒子间断地在电场中做匀加速直线运动,在磁场中做匀速圆周运动,运动的总时间等于电场力加速的总时间(t E )加上在磁场中运动的总时间(t E ),一般来说, 是先导出每次加速时间的表达式,再用数学知识求其和,
繁琐程度是可想而知。
如果我们设计一个新的物理情境:把粒子间断的加速转化为连续不断的加速直到飞离加速器。
这样问题就变成了初速度为零的匀加速运动了。
由运动学公式和轨道半径公式有:
qB mv R t md qU at v E E ===及。
消去v 解得U BRd
t E =。
由位移公式有:
221E at nd =。
粒子在电场中加速的次数:
mU R n 2qB 2
2=。
所以:
U BR qB m mU R qB T n t B 2222
22ππ=⨯=⨯= 在加速器中运动的总时间为:
)2(222R d U BR U BR U BRd t t t B E ππ+=+=+=
4 化“路线”为“光线”
例4 一辆汽车在轨道MN 上行驶的速度v 1可达到50km/h ,轨道外的平地上行
驶的速度v 2可达到40km/h ,与轨道的垂直距离为30km 的B 处有一基地,如图4
所示。
问汽车从基地B 出发到离D 点100km 的A 处的过程中最短需要多长时间(设汽车在不同路面上的运动都是匀速运动,启动时的加速速时间忽略不计)
析与解:常规方法是先写出时间关于汽车上路点O 到A 点距离的函数式再求极值,但过程是比较繁琐的。
然而我们知道光在反(折)射现象中总是以时间最短的路径传播的。
为此本题可以设计一个新情境:把汽车的运动路线类比为光线的传播,这样此问题恰好是全反射中的临界状态。
由光学知识结合图5得:
53cos ,54sin 12===C v v C 。
km tgC BD DA OA km C BD BO 603430100.5030cos 5
3=⨯
-=-==== 所以汽车运动的最短时间为:
h v OA v BO t 45.25060405012=+=+=
5 化“老鼠奔跑”为“力拉弹簧”
例5 (第四届全国中学生物理竞赛试题)
老鼠离开沿穴沿直线前进,它的速度与到洞穴的距离成反比,当它行进到离洞穴距离为d 1的甲处时的速度为v 1,则它行进到洞穴为d 2的乙处时,又用去的
时间是多少?
析与解;这道竞赛题大有开动脑筋一般多采用图像法、分割法等等,但都没有离开题干叙述的实际情境,解答过程也不够简捷,如果转换其情境联想到汽车以恒定功率启动的情形:速度与牵引力成反比,即:F P
v =。
再使牵引力随位移
成正比(F=kx )变化,这样汽车的启动过程中速度就与位移成反比了,即:kx P v =。
由于弹簧的弹力与受力端的位移成正比,于是便把“老鼠的奔跑”转换为“外力以恒定的功率拉伸弹簧”的运动情境,问题就便于解决了。
由题干已知量和
kx P v =得:11d v P k =。
对弹簧的端点由动能定理得:
0)(12=--d d F Pt 即0)(21221=-+-
d d kd kd Pt 把11d v P k =把代入上式整理得:
1121222d v d d t -=。