椭圆孔正方形点阵聚合物光子晶体光纤偏振特性
- 格式:pdf
- 大小:326.39 KB
- 文档页数:5
光子晶体光纤的双折射和偏振耦合特性研究的开题报告摘要:光子晶体光纤作为一种新型的光导纤维,由于其具备优秀的光学性能,已经在光通信、传感器、激光器等领域得到广泛的应用。
本文将主要研究光子晶体光纤的双折射和偏振耦合特性,明确其物理机制和影响因素,为其在实际应用中的调制和控制提供科学的依据和理论基础。
关键词:光子晶体光纤,双折射,偏振耦合,物理机制,调制和控制一、问题的提出随着信息技术的不断发展,对于传输、处理和存储信息的需求不断增加。
而光通信作为一种高速、大带宽的通信方式,正逐渐取代传统的电信技术。
其中,光子晶体光纤作为一种具备很多优秀性能的新型光导纤维,在光通信、传感器、激光器等领域得到了广泛的应用。
但是,光子晶体光纤的双折射和偏振耦合特性对其应用带来了一定的限制。
双折射会引起信号的偏移和扩散,偏振耦合会导致信号的损失和交叉干扰。
因此,深入研究光子晶体光纤的双折射和偏振耦合特性,明确其物理机制和影响因素,对其在实际应用中的调制和控制具有重要意义。
二、研究的目的和意义本文旨在研究光子晶体光纤的双折射和偏振耦合特性,明确其物理机制和影响因素,为其在实际应用中的调制和控制提供科学的依据和理论基础。
目的:1.探究光子晶体光纤的双折射现象及其物理机制。
2.研究光子晶体光纤的偏振耦合特性及其影响因素。
3.研究光子晶体光纤的调制和控制方法。
意义:1.为光子晶体光纤的应用提供重要的理论基础。
2.提高光子晶体光纤在光通信、传感器、激光器等领域的应用效率和性能。
3.对于新型光导纤维的研究具有借鉴意义。
三、研究的内容和方法研究内容:1.光子晶体光纤的结构及其光学特性。
2.光子晶体光纤的双折射现象及其物理机制的分析。
3.光子晶体光纤的偏振耦合特性及其影响因素的研究。
4.光子晶体光纤的调制和控制方法的研究。
研究方法:1.基于光学理论和数值模拟方法分析光子晶体光纤的结构和光学特性。
2.采用双折射和偏振分析技术,研究光子晶体光纤的双折射和偏振耦合特性。
第一章绪论光子晶体(Photonic Crystals)是近年来迅速发展起来的一种介电常数随空间周期性变化的新型结构材料。
光子晶体光纤(Photonic Crystal Fiber,PCF)是近年来出现的一种新型光纤,这种光纤通常由单一介质构成,其微结构包层由在二维方向上紧密排列而在轴向结构不变的波长量级空气孔组成。
光子晶体光纤表现出很多传统光纤难以实现的特性,因而受到了社会各界的广泛关注,成为近年来光学与光电子学研究的一个焦点。
1.1 本设计的背景21世纪是信息技术广泛普及的时代。
在过去的50年里,对半导体技术的深入研究和广泛应用直接推动了信息产业的迅速发展。
作为信息载体的“电子”,在信息传输速率和效率等诸多方面遇到的“瓶颈”问题,越来越引起人们的广泛关注。
在此背景下,以光子作为信息载体代替电子的构想被提出了。
作为信息载体,光子与电子相比,具有能耗低、效率高、传输速度快、彼此之间无相互作用等许多独特的优点。
但是光子很难控制,因而人们期盼寻找一种能够像半导体超晶格这类电子流动的材料,以便于有效地控制光子的运动。
因此人们提出了光子晶体—光子微结构材料的概念。
光子晶体的概念是根据传统的晶体概念类比而得来的,由于其具有独特的传光机理,人们便对光子晶体的理论分析和实验研究产生了极大的兴趣。
它可以如愿以偿地控制光子的运动,是受光通讯、光子集成、光电集成、微波通讯、空间光电技术以及国防科技等现代高新技术青睐的一种新概念材料。
从科学角度而言,光电集成线路就将使信息技术产业发生巨大变革的前提就是光学器件能像电子器件一样集成化。
一旦这一目标变成现实,定将产生不亚于微电子革命所带来的深刻影响,极大地推动社会发展与进步。
光子晶体光纤的概念最早是由1987 年美国Princeton大学的S.John和美国Bell实验室的E.Yablonovitch 分别同时提出。
为了得到超平坦色散,研究者们已经提出了基于光子晶体光纤的多种设计方式,其中,最简单高效的方式是在纤芯中加入一个小的空气孔。
光子晶体光纤特性及应用【摘要】光子晶体光纤以其特殊的传输机理和优异的性能,其应用领域正不断扩大,本文介绍了光子晶体光纤的概念、原理和分类,说明两种光子晶体光纤的结构,并讨论了光子晶体光纤的特性及相应的应用。
【关键词】光子晶体光纤;微结构光纤;光子带隙1 概述光子晶体可以认为是一种由折射率周期性变化而产生光子能带和带隙的物质。
频率处于禁带范围内的光子不能在这种物质中传播,如在光子晶体中引入缺陷以破坏其周期性结构时,光子带隙就会形成具有一定频带宽度的缺陷区,与其对于的特定频率的光波可以在其中传播。
这就是光子晶体概念的来源。
光子晶体光纤又称为微结构光纤是一种二维光子晶体,通常的结构为光纤的横截面内存在着很多按一定规律周期性排列的空气孔,这些孔的尺寸和光波的波长相当。
如在周期性的结构中引入线缺陷,如改变孔径的大小,或以玻璃代替空气孔,便形成了光子晶体光纤结构,光可以沿着缺陷在光纤中传输。
缺陷构成光子晶体光纤的纤芯,缺陷外的周期性结构便是光子晶体光纤的包层,光在缺陷内传播。
光子晶体光纤是具有空洞的微列阵结构的光纤,被称为多孔光纤或微结构光纤。
光子晶体光纤有很多奇特的性质。
例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应。
2 光子晶体光纤的结构根据传光机制,光子晶体光纤可以分为两大类,全反射型光子晶体光纤和光子带隙型光子晶体光纤。
2.1全反射型光子晶体光纤的结构。
全反射型光子晶体光纤和传统光纤的传光原理相似,利用光纤内部全反射(TIR)原理,使被传送的光能量在高折射率实体的“芯”中传播,周围规则排列的微结构做为低折射率的光学皮层,如图1和图2所示。
2.2光子带隙型光子晶体光纤结构。
这种类型的光纤不是光的全反射原理,而是利用光子晶体的光子带隙效应(PBG),被传送的光被光子带隙限定在“芯”中,沿微结构方向传输。
如图3和图4所示,光子带隙型光子晶体光纤的结构,中间空的部分是“芯”,周围规则排列的微结构区域是光纤的包层。
光子晶体及其特性王娟娟摘要: 光子晶体是一种介电常数不同的、 其空间呈周期分布的新型光学材料。
通过深入研究,达到进一步了解光子晶体的原理、 特性、 制备方法以及应用之目的。
关键词: 光子晶体 光子禁带 光子局域 Purce ll 效应1.引言20世纪,半导体的发现并应用引发了一场影响开半导体材料,半导体内部存在周期性势场 电子受到周期性势场的调制发生布拉格散射形成能带结构,而带与带之间可能存在禁带,落入禁带中的电子则无法继续传播。
1987 年 E. Yablonovich 和 S. John 分别提出了光子晶体的概念[1-2]光子晶体是由不同介电常数的物质在空间周期性排列而形成的人工微结构,当电磁波通过光子晶体时 光子晶体中周期性排布的介电常数会对电磁波进行调制,从而产生光子能带能带之间可能存在禁带 与半导体对比可以发现在光子晶体中,周期性分布的介电常数起到了半导体中周期性势场的作用,同时与电子禁带相对应的也有光子禁带的存在,因此有人又把光子晶体称为光半导体 光子晶体可以用于制作光子晶体偏振器件、光子晶体微波天线、光子晶体棱镜、光子晶体光纤光子晶体波导等[3-6]在光通信,光电集成等方面具有极其广阔的应用前景。
2.光子晶体 光子晶体按照其周期性排列方式可分为一维、二维和三维光子晶体,它们的介电常数分别在一维、二维和三维空间上周期性排列,其中一维光子晶体就是常见的多层膜结构,二维光子晶体是周期性排列的介质柱或空气孔,三维光子晶体中介电常数则在3个方向具有周期性 在实际应用中,二维光子晶体有着更广泛的前景更受到人们的重视光子晶体具有高低折射率材料交替排列的周期性结构 可以对相应频率的电磁波进行调制产生光子禁带[7-8],如果在3个方向上都存在周期结构,可以产生全方位的光子禁带,在全方位光子禁带中与该禁带频率相对应的电磁波将被完全禁止传播光子禁带是光子晶体的主要特性,光子晶体的另一个特性是光子局域 若光子晶体的周期结构被破坏就会在光子禁带中产生缺陷态,与之频率相对应的光子就被局域在缺陷态中,偏离缺陷态就会被强烈散射,我们可以通过在光子晶体中引入缺陷,制造缺陷态的方式来制作各种光子晶体功能器件,另外光子晶体可以抑制自发辐射 若光子禁带频率与光子晶体中原子自发辐射频率相吻合,则该频率光子的态密度为零,自发辐射被抑制,光子禁带和光子局域现象的存在为人为控制光的传播提供了可能。
光子晶体光纤的特征光子晶体光纤是指具有光子晶体结构的光纤。
光子晶体是一种具有周期性折射率的介质,其结构类似于晶体,但其周期性不在空间晶格坐标上,而是在光学尺寸的尺度范围内实现。
与普通的光纤相比,光子晶体光纤在光学性能上具有很多独特的特点。
高效传输光子晶体光纤的介电常数分布呈现出光子能带结构,这意味着该光纤可以实现“禁带”的传输,并且允许特定波长范围内的光线沿着光纤中推进,并在纤芯中无损耗地传输。
此外,光子晶体光纤还可以实现全反射,使得光线可以沿着光纤中的同一路径传输,从而使其具有高效传输的能力。
宽波长范围光子晶体光纤的禁带频率是可以通过调节光子晶体的结构进行调控的,从而使其在不同的波段内均可以实现光传输。
因此,光子晶体光纤具有宽波长范围的优点,在不同的领域均能够实现优秀的性能。
高灵敏度光子晶体光纤的光学性能可以通过纤芯中的微观结构进行调控,从而使其具有高灵敏度的特点。
例如,通过在纤芯中引入缺陷等微小的结构变化,就可以实现对光信号的高效检测。
此外,光子晶体光纤还可用于制作传感器等领域,具有很高的应用价值。
抗干扰能力强光子晶体光纤具有很高的抗干扰能力。
它可以有效地抑制光纤中的各种杂散光,避免光信号受到干扰或衰减。
独特的光场分布特性光子晶体光纤的纤芯结构可以自由地调控,因此它具有很多独特的光场分布特性。
例如,光子晶体光纤可以实现单模传输,从而避免了多模光纤传输所带来的光学噪声。
此外,光子晶体光纤的光学场分布与在普通光纤中的有所不同,因此它还可以用于调制光场、实现光学非线性效应等领域。
综上所述,光子晶体光纤具有特定波长范围内高效传输、宽波长范围、高灵敏度、抗干扰能力强、独特的光场分布特性等特点,因此在通信、传感器、量子光学、生物医学、材料等领域均有广泛的应用。
光子晶体光纤陀螺光纤环偏振特性李晶;王巍;王学锋;张智华【摘要】光子晶体光纤陀螺技术是解决光纤陀螺空间辐照及热漂移问题的重要技术途径,其中光子晶体光纤环是影响光纤陀螺性能的关键。
仿真分析了光子晶体光纤的双折射与结构设计的关系,并计算了光纤的双折射和光纤环绕制过程引入的附加双折射的温度灵敏度,利用白光干涉仪,对光子晶体光纤环和普通的保偏光纤环进行了对比测试分析。
试验结果表明,光子晶体光纤环具有较低的偏振特性温度灵敏度,双折射温度系数比普通保偏光纤低接近1个量级,引起的陀螺偏振误差也比普通保偏光纤环小1倍左右。
试验结果验证了理论分析的正确性。
%Photonic crystal fiber optical gyroscope(PC-FOG) is an important technical approach to overcome the influences of space irradiation and thermal effect on fiber-optic gyroscope. The fiber coil is an essential part of a FOG which affects the FOG’s performance in space envi ronment. In this paper, the birefringence of photonic crystal fiber(PCF) coil was simulated and its temperature coefficient was calculated. Comparison tests were conducted to analyze the difference between PCF coil and polarization maintaining fiber(PMF) coil. The results indicate that the birefringence temperature coefficient of PCF coil is lower by one order of magnitude than that of PMF coil, and this tends to reduce the polarization error of FOG by one times. The experiment measurements demonstrate their good agreement with theoretical analyses.【期刊名称】《中国惯性技术学报》【年(卷),期】2014(000)003【总页数】6页(P381-385,390)【关键词】光纤陀螺;光子晶体光纤;光纤环;偏振;温度【作者】李晶;王巍;王学锋;张智华【作者单位】北京航天控制仪器研究所,北京100854;北京航天控制仪器研究所,北京100854;北京航天控制仪器研究所,北京100854;北京航天控制仪器研究所,北京 100854【正文语种】中文【中图分类】U666.1光纤陀螺是利用Sagnac效应的全固态陀螺仪,具有长寿命、高可靠、体积小、重量轻等特点[1],是满足空间应用的首选陀螺之一,已经广泛应用于卫星、飞船、空间站等空间任务中。