光纤的特性
- 格式:ppt
- 大小:737.50 KB
- 文档页数:47
光纤的传输特性光纤的传输特性包括损耗、色散、衰减、偏振和非线性效应等,其中,损耗和色散是光纤最重要的传输特性。
损耗限制系统的传输距离,色散限制系统的传输容量。
(1)光纤的损耗特性。
在光发射机和接收机之间由光缆吸收、反射、散射和辐射的信号功率被认为是损耗。
光纤损耗是光纤传输系统中限制中继距离的主要因素之一。
下表列出了3种石英光纤的典型损耗值。
(2)光纤的色散特性。
色散是光纤的一个重要参数,它会引起传输信号的畸变,使通信质量变差,限制通信容量与距离,特别是对高速和长距离光纤通信系统的影响更为突出。
光纤色散的产生涉及多方面的原因,这里只介绍模式色散、材料色散和波导色散。
①模式色散。
模式色散是指光在多模光纤中传输时会存在许多种传播模式,因为每种传播模式在传输过程中都具有不同的轴向传输速度,所以虽然在输入端同时发送光脉冲信号,但光脉冲信号到达接收端的时间却不同,于是产生了时延,使光脉冲发生展宽与畸变。
②材料色散。
材料色散是由构成纤芯的材料对不同波长的光波所呈现的不同折射率造成的,波长短则折射率大,波长长则折射率小。
就目前的技术水平而言,光源尚不能达到严格单频发射的程度,因此无论谱线宽度多么狭窄的光源器件,它所发出的光也会包含多根谱线(多种频率成分),只不过光波长的数量以及各光波长的功率所占的比例不同而已。
每根谱线都会受到光纤色散的作用,而接收端不可能对每根谱线受光纤色散作用所造成的畸变进行理想均衡,故会产生脉冲展宽现象。
③波导色散。
波导色散是指由光纤的波导结构对不同波长的光产生的色散作用。
波导结构是指光纤的纤芯与包层直径的大小、光纤的横截面折射率分布规律等。
这种色散通常很小,可以忽略不计。
光纤特性及传输实验在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进 行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。
不管用什么方式调制,调制后 的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹 的带宽。
载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。
能够用作无线电通信的频率 资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。
通 信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波 和亚毫米波时遇到了困难。
光波波长比微波短得多,用光波作载波,其潜在的通信容量是微波通信 无法比拟的,光纤通信就是用光波作载波,用光纤传输光信号的通信方式。
与用电缆传输电信号相比,光纤通信具有通信容量大、传输距离长、价格低廉、重量轻、易敷 设、抗干扰、保密性好等优点,已成为固定通信网的主要传输技术,帮助我们的社会成功发展至信 息社会。
实验目的1 . 了解光纤通信的原理及基本特性。
2 .测量半导体激光器的伏安特性,电光转换特性。
3 .测量光电二极管的伏安特性。
4 .基带(幅度)调制传输实验。
5 .频率调制传输实验。
6 .音频信号传输实验。
7 .数字信号传输实验。
实验原理1.光纤光纤是由纤芯、包层、防护层组成的同心圆柱体,横 截面如图1所示。
纤芯与包层材料大多为高纯度的石英玻 璃,通过掺杂使纤芯折射率大于包层折射率,形成一种光 波导效应,使大部分的光被束缚在纤芯中传输。
若纤芯的 折射率分布是均匀的,在纤芯与包层的界面处折射率突变, 称为阶跃型光纤:若纤芯从中心的高折射率逐渐变到边缘 与包层折射率一致,称为渐变型光纤。
若纤芯直径小于 1011m ,只有一种模式的光波能在光纤中传播,称为单模光纤。
若纤芯直径5011m 左右,有多个模式的光波能在光纤中传播,称为多模光纤。
防护层由缓冲涂层、加强材料涂覆层及套塑层组成。
光纤的光学特性实验报告光纤的光学特性实验报告引言:光纤是一种用于传输光信号的细长柔软的玻璃或塑料线材。
它具有高速传输、大容量、抗干扰等优点,在通信、医学、工业等领域得到广泛应用。
本实验旨在探究光纤的光学特性,了解其传输特性、损耗和色散等参数。
一、实验原理光纤的传输原理是基于全反射的现象。
当光线从光密度较高的介质射入光密度较低的介质时,会发生全反射。
光纤由两部分组成:芯和包层。
芯是光的传输通道,包层则用于保护芯。
光纤的传输特性与芯和包层的折射率有关。
二、实验设备和材料1. 光纤:包括单模光纤和多模光纤。
2. 光源:如激光器或LED。
3. 光功率计:用于测量光纤的光功率。
4. 光纤衰减器:用于调节光纤的损耗。
5. 光纤色散分析仪:用于测量光纤的色散。
三、实验步骤1. 准备工作:将实验设备连接好,确保光源的稳定输出和光功率计的准确测量。
2. 测量光纤的损耗:将光纤连接到光源和光功率计之间,记录不同长度下的光功率值,并计算损耗。
3. 测量光纤的色散:将光纤连接到光源和光纤色散分析仪之间,调节光纤的长度,记录不同长度下的色散值。
四、实验结果与分析1. 光纤的损耗:根据测量数据,绘制光功率与光纤长度的关系曲线。
从曲线中可以观察到光纤的损耗随着长度的增加而增加,这是由于光纤材料的吸收和散射引起的。
同时,可以计算出单位长度的损耗值,评估光纤的传输质量。
2. 光纤的色散:根据测量数据,绘制色散值与光纤长度的关系曲线。
色散是指光信号在光纤中传输过程中不同波长的光速度差异引起的现象。
从曲线中可以观察到色散值随着光纤长度的增加而增加,这是由于光纤的折射率剖面引起的。
通过计算色散系数,可以评估光纤对不同波长光信号的传输性能。
五、实验结论通过本实验,我们了解到光纤的光学特性与其折射率、长度等因素密切相关。
光纤的损耗和色散是影响光纤传输质量的重要参数。
在实际应用中,需要根据具体需求选择合适的光纤类型和长度,以达到最佳的传输效果。
光纤的基本特性衰耗、色散1、光纤的损耗光纤的衰减或损耗是一个非常重要的、对光信号的传播产生制约作用的特性。
光纤的损耗限制了没有光放大的光信号的传播距离。
光纤的损耗主要取决于吸收损耗、散射损耗、弯曲损耗三种损耗。
1)吸收损耗光纤吸收损耗是制造光纤的材料本身造成的,包括紫外吸收、红外吸收和杂质吸收。
a:红外和紫外吸收损耗光纤材料组成的原子系统中,一些处于{氐能的电子会吸收光波能量而跃迁到高能级状态,这种吸收的中心波长在紫外的0.16μm处,吸收峰很强,其尾巴延伸到光纤通信波段,在短波长区,吸收峰值达ldB/km,在长波长区则小得多,约O.O5dB∕km.在红外波段光纤基质材料石英玻璃的Si-O键因振动吸收能量,这种吸收带损耗在9.1μm,12.5μm及21μm处峰值可达IOdB∕km以上,因此构成了石英光纤工作波长的上限。
红外吸收带的带尾也向光纤通信波段延伸。
但影响小于紫外吸收带。
在λ=L55μm时,由红外吸收引起的损耗小于0.01dB∕kmβb:氢氧根离子(OH-)吸收损耗在石英光纤中,O-H键的基本谐振波长为2.73μm,与Si-O键的谐振波长相互影响,在光纤的传输频带内产生一系列的吸收峰,影响较大的是在1.39、1.24及0.95μm波长上,在峰之间的低损耗区构成了光纤通信的三个传输窗口。
目前,由于工艺的改进,降低了氢氧根离子(OH-)浓度,这些吸收峰的影响已很小。
c:金属离子吸收损耗光纤材料中的金属杂质,如:金属离子铁(Fe3+)、铜(Cu2+)、镒(Mn3+)、镇(Ni3+)、钻(Co3+)、铭(Cr3+)等,它们的电子结构产生边带吸收峰(0.5~Llμm),造成损耗。
现在由于工艺的改进,使这些杂质的含量低于10-9以下,因此它们的影响已很小。
在光纤材料中的杂质如氢氧根离子(OH・)、过渡金属离子(铜、铁、铭等)对光的吸收能力极强,它们是产生光纤损耗的主要因素。
因此要想获得低损耗光纤,必须对制造光纤用的原材料二氧化硅等进行十分严格的化学提纯,使其纯度达99.9999%以上。
光纤的传输特性光纤的传输特性主要包括光纤的损耗特性,色散特性和非线性效应。
光纤的损耗特性*************************************************************概念:光波在光纤中传输,随着传输距离的增加光功率逐渐下降。
衡量光纤损耗特性的参数:光纤的衰减系数〔损耗系数〕,定义为单位长度光纤引起的光功率衰减,单位为dB/km。
其表达式为:式中求得波长在λ 处的衰减系数; Pi 表示输入光纤的功率, Po 表示输出光功率, L 为光纤的长度。
(1)光纤的损耗特性曲线•损耗直接关系到光纤通信系统的传输距离,是光纤最重要的传输特性之一。
自光纤问世以来,人们在降低光纤损耗方面做了大量的工作,1.31μm光纤的损耗值在0.5dB/km以下,而1.55μm的损耗为0.2dB/km以下,接近了光纤损耗的理论极限。
总的损耗随波长变化的曲线,叫做光纤的损耗特性曲线—损耗谱。
•从图中可以看到三个低损耗“窗口〞:850nm波段—短波长波段、1310nm波段和1550nm波段—长波长波段。
目前光纤通信系统主要工作在1310nm波段和1550nm波段上。
(2)光纤的损耗因素光纤损耗的原因主要有吸收损耗和散射损耗,还有来自光纤结构的不完善。
这些损耗又可以归纳以下几种:1、光纤的吸收损耗光纤材料和杂质对光能的吸收而引起的,把光能以热能的形式消耗于光纤中,是光纤损耗中重要的损耗。
包括:本征吸收损耗;杂质离子引起的损耗;原子缺陷吸收损耗。
2、光纤的散射损耗光纤部的散射,会减小传输的功率,产生损耗。
散射中最重要的是瑞利散射,它是由光纤材料部的密度和成份变化而引起的。
物质的密度不均匀,进而使折射率不均匀,这种不均匀在冷却过程中被固定下来,它的尺寸比光波波长要小。
光在传输时遇到这些比光波波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生散射,引起损耗。
另外,光纤中含有的氧化物浓度不均匀以与掺杂不均匀也会引起散射,产生损耗。
光纤的特点及其原理介绍光纤是一种通过光信号进行信息传输的传输介质,具有以下特点:1.高带宽:光纤传输带宽远远高于传统的铜质电缆,可以同时传输大量的数据信号。
2.长传输距离:光纤传输的衰减非常小,在传输距离上远大于铜质电缆,可以覆盖更广泛的区域。
3.抗干扰能力强:光纤传输不受电磁干扰影响,可以在高电压、强电场和强磁场等环境下稳定传输。
4.体积小、重量轻:与传统的铜质电缆相比,光纤可以大大减少传输设备的体积和重量,方便安装和维护。
5.安全性高:光纤传输的光信号难以窃听和干扰,提供了更高的传输安全性。
6.灵活性好:光纤具有较大的弯曲半径和柔韧性,可以适应复杂的网络布线环境。
光纤传输的基本原理是基于光的全反射效应。
光是一种电磁波,在光密介质(如玻璃)与光疏介质(如空气)之间传播时,当入射角大于临界角时,光会发生全反射,完全被反射回原介质内部。
光纤由两部分构成:光纤芯和包层。
光纤芯是传输光信号的中心部分,一般由高纯度的玻璃或塑料制成。
包层则是用来反射光信号的辅助层,一般由折射率较低的材料制成。
光纤传输的过程如下:1.发光器:发光器将电信号转化为光信号,发射到光纤芯中。
2.光信号传输:光信号沿着光纤内部的纤芯进行传输,通过不断发生全反射而在光纤中保持传播。
3.接收器:光信号到达目的地后,通过接收器将光信号转化为电信号。
在光纤传输过程中,还存在着一些衰减和失真的现象,主要包括:1.光衰减:光信号在光纤中传播时会发生衰减,衰减主要由光纤本身的材料和结构等因素引起。
2.线性色散:不同频率的光信号在光纤中传输速度不同,导致信号畸变。
3.模式间色散:由于纤芯的不规则形状,不同传输模式的光信号传播速度不同,也会导致信号畸变。
为了克服这些问题,光纤传输系统中通常会采用增强技术,如:1.信号放大器:使用光放大器对衰减的光信号进行放大,使其能够更远距离传输。
2.色散补偿:通过在光纤中引入特定的材料和结构,减少线性和模式间色散,保持信号的准确传输。
光纤传输知识点总结一、光纤传输的基本原理光纤传输的基本原理是利用光的全内反射特性进行信号的传输。
当光线进入光纤时,如果入射角小于临界角,光线就会被完全反射在光纤的内壁上,不会发生透射。
由于光的速度很快,因此通过光纤的传输速度也非常快。
在光纤传输过程中,光信号会在光纤中不断地进行全内反射,达到信息传输的目的。
二、光纤的特点1. 带宽大:由于光的波长较短,因此光纤的带宽远远大于传统的铜线传输。
2. 传输速度快:光的传输速度非常快,因此光纤传输的速度也非常快,是传统电信号传输的数倍甚至数十倍。
3. 抗干扰能力强:光信号在光纤中传输时,不会受到外界电磁干扰的影响,因此光纤传输的抗干扰能力非常强。
4. 传输距离远:由于光的传输损耗小,因此光纤传输可以实现更远距离的信号传输。
5. 体积小、重量轻:与传统的电缆相比,光纤具有较小的体积和重量,便于安装和维护。
三、光纤传输系统的结构光纤传输系统主要由光源、光纤、光接收器组成。
光源可以是激光、LED等发光器件,发出的光信号通过光纤传输到目标地点,然后被光接收器接收并转换成电信号。
在实际应用中,光纤传输系统通常还包括光纤放大器、光纤复用器、光纤解复用器等辅助设备,以及光纤连接器、光纤延长器等光纤配件。
四、光纤传输的应用1. 通讯领域:光纤传输在通讯领域得到了广泛的应用,包括电话通讯、数据传输、因特网接入等。
光纤传输的高速、大带宽特性,使其成为现代通讯系统的重要组成部分。
2. 电视信号传输:光纤传输可以实现高清晰度、高质量的电视信号传输,能够满足用户对高品质影视娱乐的需求。
3. 医疗领域:在医疗影像诊断和手术中,常常需要传输大量的影像数据。
光纤传输的高速、大带宽、抗干扰能力强的特性,使其成为医疗领域的首选传输介质。
4. 工业自动化:自动化生产线通常需要大量的传感器和执行器进行数据传输和控制,光纤传输可以满足这些设备的高速、抗干扰的需求。
5. 军事领域:光纤传输在军事通讯、雷达系统、导航系统等领域得到了广泛的应用,其高速、高可靠性的特性可以满足军事通讯的各种需求。