河北省沧州市2019届高三下学期普通高等学校招生全国统一模拟考试理科数学试卷含详解
- 格式:pdf
- 大小:161.94 KB
- 文档页数:3
FDCBA 2019年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并收回。
一.选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ⋂)(=A .}3,2{B .}4,3,2{C .}2{D .φ2.已知i 是虚数单位,iz +=31,则z z ⋅= A .5B .10C .101D .51 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为A .3B .4C .5D .6(第3题) (第4题)4.如图,ABCD 是边长为8的正方形,若13DE EC =,且F 为BC 的中点,则EA EF ⋅=u u u r u u u rA .10B .12C .16D .205.若实数y x ,满足⎪⎩⎪⎨⎧≥≤-≤+012y x y y x ,则yx z 82⋅=的最大值是A .4B .8C .16D .326.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+C.32216+ D .32216516++7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A .101 B .51 C .103 D .548.设n S 是数列}{n a 的前n 项和,且11-=a ,11++⋅=n n n S S a ,则5a = A .301 B .031- C .021 D .201- 9. 函数()1ln1xf x x-=+的大致图像为10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥ABCD P -的外接球体积最小值是A .π625 B .π125 C .π6251 D .π25 11. 已知抛物线()220y px p =>,过焦点且倾斜角为30°的直线交抛物线于A,B 两点,以AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为 A .1x =- B .3x =-C .3x =- D .3x =- 12. 已知函数x x x f ln )(2-=(22≥x ),函数21)(-=x x g ,直线t y =分别与两函数交于B A ,两点,则AB 的最小值为A .21B .1C .23D .2二.填空题:本大题共4小题,每小题5分,共20分.13. 设样本数据1x ,2x ,...,2018x 的方差是5,若13+=i i x y (2018,...,2,1=i ),则1y ,2y ,...,2018y 的方差是________14. 已知函数x x x f ωωcos 3sin )(-=(0>ω),若3=ω,则方程1)(-=x f 在),0(π的实数根个数是_____15. 我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯ 的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…, 2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则5N =_______16.已知ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1c =,π3C =.若sin sin()sin 2C A B B +-=,则ABC ∆的面积为三、解答题:本大题共6小题,其中17-21小题为必考题,每小题12分,第22—23题为选考题,考生根据要求做答,每题10分. 17.(本小题满分12分)设数列}{n a 是公差为d 的等差数列. (Ⅰ) 推导数列}{n a 的通项公式;(Ⅱ) 设0≠d ,证明数列}1{+n a 不是等比数列.18.(本小题满分12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图.(Ⅰ)写出女生组频率分布直方图中a 的值;(Ⅱ)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取2人,并用X 表示随机抽取的2人中男生的人数,求X 的分布列和数学期望.19.(本小题满分12分)在直三棱柱111C B A ABC -中,21===AA AC AB ,CA BA ⊥。
张家口市、沧州市2019届高三3月模拟联考数学试卷(理科)(A 卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A ={x |x ≤-12},B ={x |1<12x()<2},则(∁R A )∩B =( )A .{x |﹣12≤x <0} B .{x |﹣12<x <0} C .{x |﹣1≤x <-12} D .{x |﹣1<x <-12}【答案】B【解析】12x()=2x -,所以,对于集合B ,有:01222x -<<, 所以,B ={x |﹣1<x <0},又∴;所以,(∁R A )∩B ={x |﹣12<x <0},故选:B . 2.复数z =,则|z |=( )A .B .5C .D .【答案】A 【解析】z =====﹣2+i ,则|z |==,故选:A .3.随着时代的发展,移动通讯技术的进步,各种智能手机不断更新换代,给人们的生活带来了巨大的便利,但与此同时,长时间低头看手机对人的身体如颈椎、眼睛等会造成一定的损害,“低头族”由此而来.为了了解某群体中“低头族”的比例,现从该群体包含老、中、青三个年龄段的1500人中采用分层抽样的方法抽取50人进行调查,已知这50人里老、中、青三个年龄段的分配比例如图所示,则这个群体里老年人人数为( )A .490B .390C .1110D .410【答案】B【解析】由图可知这50人里老、中、青三个年龄段的分配比例为26%:34%:40%,则这个群体里老年人人数为26%×1500=390,故选:B.4.已知直线a,b和平面α,a⊂α,则b⊄α是b与a异面的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】当b⊄α,则a与b可能相交,即b与a异面不一定成立,即充分性不成立,若b与a异面,则b⊄α成立,即必要性成立,即b⊄α是b与a异面的必要不充分条件,故选:B.5.若变量x,y满足,则使z=x+2y取得最小值的最优解为()A.(﹣3,﹣1)B.()C.(2,﹣1)D.()【答案】C【解析】作出变量x,y满足对应的平面区域如图:由z=x+2y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最小,此时z最小,由,解得A(2,﹣1),则z=x+2y取得最小值的最优解为(2,﹣1),故选:C.6.在△ABC中,O为△ABC的重心,若=+,则λ﹣2μ=()A.B.﹣1 C.D.【答案】D【解析】设AC的中点为D,因为O为△ABC的重心,所以===+=﹣,所以,μ=,所以λ﹣2μ=﹣,故选:D.7.已知函数f(x)=2sin()cos()(ω>0),且满足f(x+)=﹣f(x),把f(x)的图象上各点向左平移个单位长度得到函数g(x),则g(x)的一条对称轴为()A.x=0 B.x=C.x=D.x=【答案】D【解析】由f(x+)=﹣f(x),得f(x+π)=﹣f(x+)=f(x),即函数的周期是π,且函数关于(,0)对称,f(x)=2sin()cos()=sin(2ωx﹣),T==π,即ω=1,则f(x)=sin(2x﹣),将f(x)的图象上各点向左平移个单位长度得到函数g(x),即g(x)=sin[2(x+)﹣]=sin2x,由2x=kπ+,k∈Z,即x=+,当k=1时,对称轴为x=+=,故选:D.8.已知函数f(x)=()|x|﹣x,且满足f(2a﹣1)>f(3),则a的取值范围为()A.a<﹣1或a>2 B.﹣1<a<2 C.a>2 D.a<2【答案】B【解析】f(x)=()|x|﹣x=()|x|﹣,则f(﹣x)=f(x),即函数f(x)是偶函数,当x≥0时,f(x)=()x﹣x为减函数,则不等式f(2a﹣1)>f(3),等价为f(|2a﹣1|)>f(3),即|2a﹣1|<3,得﹣3<2a﹣1<3,得﹣1<a<2,故选:B.9.已知点F(﹣c,0)为双曲线=1(a>0,b>0)的左焦点,圆O:x2+y2=c2与双曲线的两条渐近线在第一、二象限分别交于A,B两点.若AF⊥OB,则双曲线的离心率为()A.B.C.2 D.【答案】C【解析】点F(﹣c,0)为双曲线=1(a>0,b>0)的左焦点,圆O:x2+y2=c2与双曲线的两条渐近线在第一、二象限分别交于A,B两点.若AF⊥OB,如图:可得渐近线的倾斜角为60°或120°,可得=,b2=3a2,所以c2=4a2,可得e==2.故选:C.10.中国最早的天文学和数学著作《周髀算经》里提到了七衡,即七个等距的同心圆.七衡的直径和周长都是等差数列,最里面的一圆叫内一衡,外面的圆依次叫次二衡,次三衡,…设内一衡直径为a1,衡间距为,则次二衡直径为a2=a1+d,次三衡直径为a1+2d,…,执行如图程序框图,则输出的T i中最大的一个数为()A.T1B.T2C.T3D.T4【答案】D【解析】模拟程序的运行,可得i=1时,T1=a1a7=a1(a1+6d)=a12+6da1,i=2时,T2=a2a6=(a1+d)(a1+5d)=a12+6da1+5d2,i=3时,T3=a3a5=(a1+2d)(a1+4d)=a12+6da1+8d2,i=4时,T4=a4a4=(a1+3d)2=a12+6da1+9d2,可得:T4>T3>T2>T1.故选:D.11.在锐角三角形ABC中,cos(A+)=﹣,AB=7,AC=2,则=()A.﹣40 B.40 C.﹣34 D.34【解析】由cos(A+)=﹣得:cos A cos﹣sin A sin=﹣,得cos A=sin A﹣,两边平方得:cos2A=sin2A﹣sin A+,整理得sin2A﹣sin A+﹣=0,解得sin A=或sin A=﹣(舍去),又A为锐角,∴cos A=,∴BC2=AB2+AC2﹣2AB•AC•cos A=72+(2)2﹣2××=43,∴BC=,∴cos B===,∴•=AB•BC•cos(π﹣B)=7××(﹣)=﹣40.故选:A.12.某棱锥的三视图如图所示,则该棱锥的外接球的表面积为()A.8πB.9πC.D.π【答案】C【解析】作出该棱锥的实物图如下图所示,该几何体为三棱锥P﹣ABC,且△ABC为等腰直角三角形,腰长为BC=2,如下图所示,过点P作PD⊥平面ABC,则AD⊥CD,以点D为坐标原点,DA、DC、DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系D﹣xyx,则点A(1,0,0)、B(2,1,0)、C(0,1,0)、P(0,0,2),设球心的坐标为(x,y,z),则,解得,所以,该棱锥的外接球的半径为,因此,该棱锥的外接球的表面积为.故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止,每次投中与否相互独立,某同学一次投篮投中的概率为p,若该同学本次测试合格的概率为0.784,则p=0.4.【解析】每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止,每次投中与否相互独立,某同学一次投篮投中的概率为p,∵该同学本次测试合格的概率为0.784,∴p+(1﹣p)p+(1﹣p)2p=0.784,解得p=0.4.故答案为:0.4.14.在()6的展开式中x3的系数为﹣.【解析】()6的展开式的通项公式为T r+1=••(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中x3的系数为••(﹣1)=﹣,故答案为:﹣.15.点F为抛物线y2=2px(p>0)的焦点,E为其准线上一点,且EF=.若过焦点F且与EF垂直的直线交抛物线于A,B两点,且=3,则p=1.【解析】设|BF|=m.∵过抛物线C:y2=2px(p>0)的焦点F的直线交该抛物线于A、B两点,|AF|=3|BF|,O为坐标原点,∴|AF|=3m.如图,作出准线l,AM⊥l,BM⊥l,过B作BH⊥AM,交AM于H,∴由抛物线的性质得:|AB|=4m,|AH|=2m.∴∠BAH=60°,⇒∠EFK=30°.∴.∵FK=p,∴p=.故答案为:1.16.已知函数f(x)=,g(x)=ax﹣2(a∈R),满足:①当x<0时,方程f(x)=g(x)无解;②当x≥0时,至少存在一个整数x0使f(x0)≥g(x0).则实数a的取值范围为(,3].【解析】①当x<0时,f(x)=g(x)即﹣ln|x|=ax﹣2无解,即ax=2﹣ln(﹣x),a=无解设h(x)=,则h′(x)==,由h′(x)>0得ln(﹣x)﹣3>0,得ln(﹣x)>3,得﹣x>e3,即x<﹣e3,此时函数h(x)为增函数由h′(x)<0得ln(﹣x)﹣3<>0,得ln(﹣x)<3,得﹣x<e3,即﹣e3<x<0,此时函数h(x)为,减函数,即当x=﹣e3时,函数h(x)取得极大值h(﹣e3)===,当x<0且x→0,f(x)→﹣∞,则要使a=无解,则a>,②当x≥0时,f(x)的图象如图:当a≤0时,满足f(x0)≥g(x0)的整数由很多,满足条件,当a>0时,函数f(x)过A(1,1),要至少存在一个整数x0使f(x0)≥g(x0).则g(1)=a﹣2≤1,即0<a≤3,综上a≤3,同时满足①②的实数a的范围满足,即<a≤3,即实数a的取值范围是(,3],故答案为:(,3],三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}满足a n+1﹣a n=0(n∈N*),且a2,a3+2,a4成等差数列.(1)求数列{a n}的通项公式;(2)令b n=(n∈N*),数列{b n}的前n项和为T n,求T n的取值范围.【解析】(1)数列{a n}满足a n+1﹣a n=0(n∈N*),可得数列{a n}为公比为2的等比数列,a2,a3+2,a4成等差数列,可得2(a3+2)=a2+a4,即有2(4a1+2)=2a1+8a1,解得a1=2,则a n=2n;(2)b n==﹣=﹣,可得T n=﹣+﹣+﹣+…+﹣=﹣1,由2n+1≥4,可得∈(0,],则T n的取值范围为(﹣1,﹣].18.(12分)如图,在三棱台ABC﹣A1B1C1中,底面ABC是边长为2的等边三角形,上、下底面的面积之比为1:4,侧面A1ABB1⊥底面ABC,并且A1A=A1B1,∠AA1B=90°.(1)平面A1C1B∩平面ABC=l,证明:A1C1∥l;(2)求平面A1C1B与平面ABC所成二面角的正弦值.【解析】(1)证明:三棱台ABC﹣A1B1C1中,A1C1∥AC,且A1C1⊄平面ABC,AC⊂平面ABC,所以A1C1∥平面ABC,又平面A1C1B∩平面ABC=l,所以A1C1⊂平面A1C1B,且l⊂平面A1C1B,所以A1C1∥l;(2)根据题意,以AB的中点为原点,AB为x轴,OC为y轴,建立空间直角坐标系O﹣xyz,如图所示;由题意知,平面ABC的法向量为=(0,0,1),AB=2,AA1=A1B1=1,∠AA1B=90°,∴B(1,0,0),A1(﹣,0,),C1(0,,);则=(﹣,0,),=(﹣1,,);设平面A1C1B的法向量为=(x,y,z),则,即,化简得;令x=1,得z=,y=﹣,∴=(1,﹣,);∴cos<,>===,∴sin<,>==,即平面A1C1B与平面ABC所成二面角的正弦值为.19.(12分)近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了100天,得到的统计数据如表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图.(1)若从以上六家“农家乐”中随机抽取两家深入调查,记ξ为“入住率”超过0.6的农家乐的个数,求ξ的概率分布列;(2)令z=lnx,由散点图判断=bx+与=z+哪个更适合于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)(3)若一年按365天计算,试估计收费标准为多少时,年销售额L最大?(年销售额L=365•入住率•收费标准x)x50 100 150 200 300 400t90 65 45 30 20 20参考数据:=,=,=200,x i y i=377.5,x=325000,≈5.1,y i z i≈12.7,z≈158.1,e3≈148.4.【解析】(1)ξ的所有可能取值为0,1,2,则P(ξ=0)=,P(ξ=1)=,P(ξ=2)=.∴ξ的分布列为:ξ0 1 2P(2)由散点图可知,=z+更适合于此模型.其中,,∴所求回归方程为;(3)L=365(﹣0.5lnx+3)x=﹣,L′=,令L′=0,得lnx=5,∴x=e5≈148.4.∴若一年按365天计算,当收费标准约为148.4元/日时,年销售额L最大,最大值约为27083元.20.(12分)如图,菱形ABCD的面积为8,=﹣4,斜率为k的直线l交y轴于点P,且=2,以线段BD为长轴,AC为短轴的椭圆与直线l相交于M,N两点(M与A在x轴同侧).(1)求椭圆的方程;(2)求证:AN与CM的交点在定直线y=1上.【解析】(1)设∠BAD=2θ,菱形ABCD的边长为m,∵菱形ABCD的面积为8,=﹣4,∴|AB|•|AD|•sin2θ=m2sin2θ=8,=||•||•cos2θ=m2cos2θ=﹣4,∴m2=12,tan2θ=﹣2,∴tan2θ==﹣2,∴tanθ=,∵线段BD为长轴,AC为短轴的椭圆,∴BD=2a,AC=2b,∴=,a2+b2=12,∴a2=8,b2=4,∴椭圆的方程为+=1,证明(2)∵=2,|OA|=2,∴|OP|=4,∴直线l的方程为y=kx+4,由(1)可得A(0,2),C(0,﹣2),设M(x1,y1),N(x2,y2),联立方程组,消y可得(1+2k2)x2+16kx+24=0,△=(16k)2﹣4×24(1+2k2)=32(2k2﹣3)>0,解得k>或k<﹣,又x1+x2=﹣,x1•x2=,直线AN的方程为y=x+2,即x=直线CM的方程为y=x﹣2,即x=消x整理可得=,即=,整理可得y===+1=+1=1,故AN与CM的交点在定直线y=1上.21.(12分)已知函数f(x)=e x(ax+1).(1)讨论f(x)在(0,+∞)上的单调性;(2)令g(x)=xlnx﹣x2﹣x+e,当a=﹣,0<m<时,证明:对∀x1,x2∈(0,e2],使g (x1)>f(x2).【解析】(1)f′(x)=e x(ax+a+1),(x>0),当a≥0时,由于x>0,故f′(x)>0恒成立,f(x)在(0,+∞)递增,当a<0时,①若1+a≤0,a≤﹣1,f′(x)<0恒成立,f(x)在(0,+∞)递减,②若1+a>0,a>﹣1,令f′(x)=0,得x=﹣,故f(x)在(0,﹣)递增,在(﹣,+∞)递减,综上,当a≥0时,f(x)在(0,+∞)递增,当﹣1<a<0时,f(x)在(0,﹣)递增,在(﹣,+∞)递减,a≤﹣1时,f(x)在(0,+∞)递减,(2)证明:此时原题目等价于g(x)min>f(x)max,当a=﹣时,f(x)=e x(﹣x+1),由(1)知f(x)在(0,1)递增,在(1,e2]递减,故f(x)max=f(1)=,g′(x)=lnx﹣mx,令p(x)=lnx﹣mx,p′(x)=﹣m=,令p′(x)=0,解得:x=>e2,故p′(x)>0在(0,e2]恒成立,p(x)在(0,e2]递增,即g′(x)在(0,e2]递增,当x→0时,g′(x)→﹣∞,g′(e2)=lne2﹣me2=2﹣me2,由于0<m<,故g′(e2)>0,故存在x0使得g′(x0)=0,即lnx0﹣mx0=0,m=,g′(1)=﹣m<0,g′(e)=1﹣me>0,故x0∈(1,e),g(x)在(0,x0)递减,在(x0,e2]递增,g(x)min=g(x0)=x0lnx0﹣﹣x0+e=﹣x0+e,令h(x)=﹣x+e(1<x<e),h′(x)=<0恒成立,故h(x)在(1,e)递减,h(x)>h(e)=,从而g(x)min>,故命题成立.(二)选考题:共10分.请考生在第22、23题中任选一道作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.(10分)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρ(1﹣cos2θ)=8cosθ,直线ρcosθ=1与曲线C相交于M,N两点,直线l过定点P(2,0)且倾斜角为α,l交曲线C于A,B两点.(1)把曲线C化成直角坐标方程,并求|MN|的值;(2)若|P A|,|MN|,|PB|成等比数列,求直线l的倾斜角α.【解析】(1)由ρ(1﹣cos2θ)=8cosθ得ρ2﹣ρ2cos2θ+ρ2sin2θ=8ρcosθ,∴x2+y2﹣x2+y2=8x,即y2=4x.由ρcosθ=1得x=1,由的M(1,2),N(1,﹣2),∴|MN|=4.(2)直线l的参数方程为:,联立直线l的参数方程与曲线C:y2=4x,得t2sin2α﹣4t cosα﹣8=0,设A,B两点对应的参数为t1,t2,则t1+t2=,t1t2=﹣,因为|P A|,|MN|,|PB|成等比数列,∴|P A||PB|=|MN|2=16,∴|t1||t2|=16,∴|t1t2|=16,∴=16,∴sin2α=,∴sinα=,∵0≤α<π,∴α=或α=.[选修4-5:不等式选讲]23.已知f(x)=|x﹣1|+|x﹣2|.(1)解不等式f(x)≥2;(2)若f(x)≥﹣2x2+m,求实数m的最大值.【解析】(1)f(x)≥2,即|x﹣1|+|x﹣2|≥2,x≥2时,x﹣1+x﹣2≥2,解得:x≥,1<x<2时,x﹣1+2﹣x≥2不成立,x≤1时,1﹣x+2﹣x≥2,解得:x≤,故不等式的解集是(﹣∞,]∪[,+∞);(2)f(x)≥﹣2x2+m,即|x﹣1|+|x﹣2|≥﹣2x2+m,x≥2时,x﹣1+x﹣2≥﹣2x2+m,即m≤2x2+2x﹣3,而y=2x2+2x﹣3=2﹣,故m≤﹣,1<x<2时,x﹣1+2﹣x≥﹣2x2+m,即m≤2x2+1,故m≤1,x≤1时,1﹣x+2﹣x≥﹣2x2+m,即m≤2x2﹣2x+3,而y=2x2﹣2x+3=2+,故m≤,故m的最大值是.。
2019届全国高考高三模拟考试卷数学(理)试题(一)(解析版)(可编辑修改word版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届全国高考高三模拟考试卷数学(理)试题(一)(解析版)(可编辑修改word版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届全国高考高三模拟考试卷数学(理)试题(一)(解析版)(可编辑修改word版)的全部内容。
2019届全国高考高三模拟考试卷数学(理)试题(一)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·深圳期末]已知集合(){}22log 815A x y x x ==-+,{}1B x a x a =<<+,若A B =∅,则a 的取值范围是( ) A .(],3-∞B .(],4-∞C .()3,4D .[]3,42.[2019·广安期末]已知i 为虚数单位,a ∈R ,若复数()1i z a a =+-的共轭复数z 在复平面内对应的点位于第三象限,且5z z ⋅=,则z =( )A .12i -+B .12i --C .2i -D .23i -+3.[2019·潍坊期末]我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷()gu ǐ长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为1996分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为( )A .19533分B .110522分C .211513分D .512506分4.[2019·恩施质检]在区间[]2,7-上随机选取一个实数x ,则事件“2log 10x -≥”发生的概率是( ) A .13B .59C .79D .895.[2019·华阴期末]若双曲线()2210mx y m -=>的一条渐近线与直线2y x =-垂直,则此双曲线的离心率为( ) A .2B .52C .3D .56.[2019·赣州期末]如图所示,某空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是四分之三圆,则该几何体的体积为( )A .π4B .π2C .3π4D .3π27.[2019·合肥质检]函数()2sin f x x x x =+的图象大致为( )A .B .C .D .8.[2019·江西联考]已知0.21.1a =,0.2log 1.1b =, 1.10.2c =,则( ) A .a b c >>B .b c a >>C .a c b >>D .c a b >>9.[2019·汕尾质检]如图所示的程序框图设计的是求9998210099321a a a a ++⋯+++的一种算法,在空白的“"中应填的执行语句是( )A .100i n =+B .99i n =-C .100i n =-D .99i n =+10.[2019·鹰潭质检]如图所示,过抛物线()220y px p =>的焦点F 的直线l ,交抛物线于点A ,B .交其准线l 于点C ,若2BC BF =,且21AF =+,则此抛物线的方程为( )A .22y x =B .22y x =C .23y x =D .23y x =11.[2019·陕西联考]将函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π3个单位,在向上平移一个单位,得到()g x 的图象若()()124g x g x =,且1x ,[]22π,2πx ∈-,则122x x -的最大值为( )A.9π2B .7π2C .5π2D .3π212.[2019·中山期末]如图正方体1111ABCD A B C D -,棱长为1,P 为BC 中点,Q 为线段1CC 上的动点,过A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是( )①当102CQ <<时,S 为四边形; ②当12CQ =时,S 为等腰梯形; ③当34CQ =时,S 与11C D 交点R 满足1113C R =; ④当314CQ <<时,S 为六边形; ⑤当1CQ =时,S 的面积为6.A .①③④B .②④⑤C .①②④D .①②③⑤二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·西安一模]已知向量a 与b 的夹角为60︒,3=a ,13+=a b ,则=b _____. 14.[2019·吴忠中学]()()52x y x y +-的展开式中33x y 的系数为__________.15.[2019·广安一诊]某车间租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品8件和B 类产品15件,乙种设备每天能生产A 类产品10件和B 类产品25件,已知设备甲每天的租赁费300元,设备乙每天的租赁费400元,现车间至少要生产A 类产品100件,B 类产品200件,所需租赁费最少为_________元 16.[2019·湖师附中]已知数列{}n a 满足:11a =,()*12nn n a a n a +=∈+N ,()1121n n b n a λ+⎛⎫=-⋅+ ⎪⎝⎭()*n ∈N ,1b λ=-,且数列{}nb 是单调递增数列,则实数λ的取值范围是___________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·濮阳期末]已知ABC△的内角A,B,C所对的边分别为a,b,c,且()+=.c A a C1cos3sin(1)求角A的大小;(2)若7a=,1△的面积.b=,求ABC18.(12分)[2019·揭阳一模]如图,在四边形ABED中,AB DE∥,AB BE⊥,点C在AB上,且AC BC CD△沿CD折起,使点A到达点P的位置,且PE与平面PBC ===,现将ACD⊥,2AB CD所成的角为45︒.(1)求证:平面PBC⊥平面DEBC;(2)求二面角D PE B--的余弦值.19.(12分)[2019·合肥质检]某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率.记X表示这2台机器超过质保期后延保的两年内共需维修的次数.(1)求X的分布列;(2)以方案一与方案二所需费用的期望值为决策依据,医院选择哪种延保方案更合算?20.(12分)[2019·鹰潭期末]已知椭圆C 的方程为()222210x y a b a b+=>>,1F ,2F 为椭圆C 的左右焦点,离心率为2,短轴长为2.(1)求椭圆C 的方程;(2)如图,椭圆C 的内接平行四边形ABCD 的一组对边分别过椭圆的焦点1F ,2F ,求该平行四边形ABCD 面积的最大值.21.(12分)[2019·菏泽期末]已知函数()ln 1a f x x x=+-,a ∈R .(1)当0a >时,若函数()f x 在区间[]1,3上的最小值为13,求a 的值;(2)讨论函数()()3x g x f x '-=零点的个数.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4—4:坐标系与参数方程】[2019·哈三中]已知曲线1:C x 2:x C y ϕϕ⎧=⎪⎨=⎪⎩,(ϕ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位. (1)把曲线1C 和2C 的方程化为极坐标方程;(2)设C与x,y轴交于M,N两点,且线段MN的中点为P.若射线OP与1C,2C交于P,Q两1点,求P,Q两点间的距离.23.(10分)【选修4-5:不等式选讲】[2019·江南十校]设函数()()=-++-.lg2121f x x x a(1)当4f x的定义域;a=时,求函数()(2)若函数()f x的定义域为R,求a的取值范围.2019届高三第三次模拟考试卷理 科 数 学(一)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】由题意,集合(){}{}{}222log 815815035A x y x x x x x x x x ==-+=-+>=<>或,{}1B x a x a =<<+;若A B =∅,则3a ≤且15a +≤,解得34a ≤≤,∴实数a 的取值范围为[]3,4.故选D . 2.【答案】A 【解析】由5z z⋅=可得()2215a a +-=,解得1a =-或2a =,∴12i z =-+或2i z =-,∵z 在复平面内对应的点位于第三象限,∴12i z =-+.故选A . 3.【答案】B【解析】一年有二十四个节气,每相邻两个节气之间的日影长度差为1996分, 且“冬至”时日影长度最大,为1350分;“夏至"时日影长度最小,为160分. ∴135012160d +=,解得119012d =-, ∴“立春”时日影长度为:11901135031052122⎛⎫+-⨯= ⎪⎝⎭(分).故选B .4.【答案】B【解析】区间[]2,7-的长度为()729--=;由2log 10x -≥,解得2x ≥,即[]2,7x ∈, 区间长度为725-=,事件“2log 10x -≥”发生的概率是59P =.故选B . 5.【答案】B【解析】设双曲线()2210mx y m -=>为2221x y a-=,它的一条渐近线方程为1y x a =,直线2y x =-的斜率为2-,∵直线1y x a =与2y x =-垂直,∴()121a⨯-=-,即2a =,∴2c e a ==.故选B .6.【答案】D【解析】由三视图可知,该几何体是底面半径为1、高为2的圆柱的34, ∴该几何体的体积为233ππ1242⨯⨯⨯=.故选D . 7.【答案】A【解析】∵()()()22sin sin f x x x x x x x f x -=--=+=,∴()f x 为偶函数,选项B 错误,()()2sin sin f x x x x x x x =+=+,令()sin g x x x =+,则()1cos 0g x x ='+≥恒成立, ∴()g x 是单调递增函数,则当0x >时,()()00g x g >=, 故0x >时,()()f x xg x =,()()()0f x g x xg x =+'>', 即()f x 在()0,+∞上单调递增,故选A . 8.【答案】C【解析】0.201.1 1.11a =>=,0.20.2log 1.1log 10b =<=, 1.1000.20.21c <=<=,故a c b >>.故选C . 9.【答案】C【解析】由题意,n 的值为多项式的系数,由100,99⋯直到1, 由程序框图可知,输出框中“”处应该填入100i n =-.故选C .10.【答案】A【解析】如图,过A 作AD 垂直于抛物线的准线,垂足为D ,过B 作BE 垂直于抛物线的准线,垂足为E ,P 为准线与x 轴的交点,由抛物线的定义,BF BE =,21AF AD =,∵2BC BF =,∴2BC BE =,∴45DCA ∠=︒, ∴222AC AD ==+,22211CF =+--=, ∴222CF PF ==,即22p PF ==,∴抛物线的方程为22y x =,故选A .11.【答案】D【解析】将函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π3个单位,再向上平移一个单位,得到()2ππsin 21cos 2136g x x x ⎛⎫=-++=-+ ⎪⎝⎭的图象,故()g x 的最大值为2,最小值为0,若()()124g x g x =,则()()122g x g x ==,或()()122g x g x ==-(舍去). 故有()()122g x g x ==,即12cos2cos21x x ==-,又1x ,[]22π,2πx ∈-,则12πx =,22πx =-,则122x x -取得最大值为π3ππ22+=.故选D . 12.【答案】D【解析】当102CQ <<时,如图,是四边形,故①正确;当12CQ =时,如图,S 为等腰梯形,②正确;当34CQ =时,如图,由三角形CQP 与三角形1A AH 相似可得123A H =,113D H =,由三角形ABP 与三角形1RD H 相似可得,123D R =,113C R =,③正确;当314CQ <<时,如图是五边形,④不正确;当1CQ =时,如图S 是菱形,面积为362⋅=,⑤正确,正确的命题为①②③⑤,故选D .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】1【解析】根据题意,设t =b ,()0t >,向量a 与b 的夹角为60︒,3=a ,则32t⋅=a b ,又由13+=a b ,则()222229313t t +=+⋅+=++=a b a a b b , 变形可得:2340t t +-=,解可得4t =-或1, 又由0t >,则1t =;故答案为1. 14.【答案】40【解析】()52x y -展开式的通项公式为()()()555155C 221C r r r r r r r r r T x y x y ---+=⋅=--.令52r -=,得3r =;令53r -=,得2r =;∴()()52x y x y +-的展开式中33x y 系数为()()3223325521C 2140C ⨯-⨯+⨯-=⨯. 故答案为40. 15.【答案】3800【解析】设甲种设备需要生产x 天,乙种设备需要生产y 天, 该公司所需租赁费为z 元,则300400z x y =+,甲、乙两种设备生产A ,B 两类产品的情况为45503540,x y x y x y +≥⎧⎪+≥⎨⎪∈∈⎩N N ,做出不等式表示的平面区域,由45503540x y x y +=⎧⎨+=⎩,解得()10,2,当300400z x y =+经过的交点()10,2时,目标函数300400z x y =+取得最低为3800元. 故答案为3800.16.【答案】2,3⎛⎫-∞ ⎪⎝⎭【解析】由题意,数列{}n a 满足12n n n a a a +=+ ,取倒数可得1121n na a +=+, 即111121n n a a +⎛⎫+=+ ⎪⎝⎭,∴数列11n a ⎧⎫+⎨⎬⎩⎭表示首项为2,公比为2的等比数列, ∴112n na +=,∴()()112122n n nb n n a λλ+⎛⎫=-+=-⋅ ⎪⎝⎭, ∵数列{}n b 是单调递增数列,∴当2n ≥时,1n n b b +>, 即()()122122n n n n λλ--⋅>--⋅,21n λ>-,221λ>-,32λ<; 当1n =时,21b b >,()122λλ-⋅>-,23λ<, 综上,23λ<.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)π3A =;(2)S =.【解析】(1)∵()1cos sin c A C +=,由正弦定理可得()sin 1cos sin C A A C +cos 1A A -=,∴π1sin 62A ⎛⎫-= ⎪⎝⎭,A 是ABC △的内角,∴ππ66A -=,∴π3A =.(2)∵a =1b =.由余弦定理可得2222cos a b c bc A =+-, 即217c c +-=,可得260c c --=,又0c >,∴3c =,∴ABC △的面积11sin 1322S bc A ==⨯⨯= 18.【答案】(1)见解析;(2).【解析】(1)证明:∵AB CD ⊥,AB BE ⊥,∴CD EB ∥,∵AC CD ⊥,∴PC CD ⊥,∴EB PC ⊥,且PC BC C =,∴EB ⊥平面PBC , 又∵EB ⊂平面DEBC ,∴平面PBC ⊥平面DEBC . (2)由(1)知EB ⊥平面PBC ,∴EB PB ⊥,由PE 与平面PBC 所成的角为45︒得45EPB ∠=︒,∴PBE △为等腰直角三角形,∴PB EB =,∵AB DE ∥,结合CD EB ∥得2BE CD ==,∴2PB =,故PBC △为等边三角形, 取BC 的中点O ,连结PO , ∵PO BC ⊥,∴PO ⊥平面EBCD ,以O 为坐标原点,过点O 与BE 平行的直线为x 轴,CB 所在的直线为y 轴,OP 所在的直线为z 轴建立空间直角坐标系如图,则()0,1,0B ,()2,1,0E ,()2,1,0D -,(3P , 从而()0,2,0DE =,()2,0,0BE =,(2,1,3PE =,设平面PDE 的一个法向量为(),,x y z =m ,平面PEB 的一个法向量为(),,a b c =n ,则由00DE PE ⎧⋅=⎪⎨⋅=⎪⎩m m 得20230y x y z =⎧⎪⎨+=⎪⎩,令2z =-得()3,0,2=-m ,由00BE PE ⎧⋅=⎪⎨⋅=⎪⎩n n 得20230a abc =⎧⎪⎨+-=⎪⎩,令1c =得()3,1=n ,设二面角D PE B --的大小为θ,则7cos 72θ⋅===⋅⨯m n m n , 即二面角D PE B --的余弦值为7.19.【答案】(1)见解析;(2)选择延保方案二较合算. 【解析】(1)X 所有可能的取值为0,1,2,3,4,5,6,()11101010100P X ==⨯=,()1111210525P X ==⨯⨯=,()11213225551025P X ==⨯+⨯⨯=, ()13121132210105550P X ==⨯⨯+⨯⨯=,()22317425510525P X ==⨯+⨯⨯=, ()2365251025P X ==⨯⨯=,()33961010100P X ==⨯=, ∴X 的分布列为(2)选择延保一,所需费用1Y 元的分布列为:117117697000900011000130001500010720100502525100EY =⨯+⨯+⨯+⨯+⨯=(元). 选择延保二,所需费用2Y 元的分布列为:267691000011000120001042010025100EY =⨯+⨯+⨯=(元). ∵12EY EY >,∴该医院选择延保方案二较合算.20.【答案】(1)2212x y +=;(2)【解析】(1)依题意得22b =,c e a ==,解得a =1b c ==,∴椭圆C 的方程为2212x y +=.(2)当AD 所在直线与x 轴垂直时,则AD 所在直线方程为1x =,联立2212x y +=,解得y =,此时平行四边形ABCD 的面积S =当AD 所在的直线斜率存在时,设直线方程为()1y k x =-,联立2212x y +=,得()2222124220k x k x k +-+-=,设()11,A x y ,()22,D x y ,则2122412k x x k +=+,21222212k x x k -=+,则)22112k AD k +=+,两条平行线间的距离d =则平行四边形ABCD的面积)22112k S k +==+令212t k =+,1t >,则S =()10,1t ∈,开口向下,关于1t单调递减,则(S 0,=,综上所述,平行四边形ABCD 的面积的最大值为 21.【答案】(1)13e a =;(2)见解析. 【解析】(1)()()2210a x af x x xx x-=-=>', 当01a <≤时,()0f x '>在()1,3上恒成立,这时()f x 在[]1,3上为增函数,∴()()min 11f x f a =-=,令113a -=得413a =>(舍去),当13a <<时,由()0f x '=得,()1,3x a =∈,若()1,x a ∈,有()0f x '<,()f x 在[]1,a 上为减函数, 若(),3x a ∈有()0f x '>,()f x 在[],3a 上为增函数,()()minln f x f a a '==,令1ln 3a =,得13e a =.当3a ≥时,()0f x '<在()1,3上恒成立,这时()f x 在[]1,3上为减函数, ∴()()min 3ln313a f x f ==+-',令1ln3133a +-=得43ln 32a =-<(舍去). 综上知,13e a =.(2)∵函数()()()21033x a xg x f x x xx -=--'=>, 令()0g x =,得()3103a x x x =-+>.设()()3103x x x x ϕ=-+>,()()()2111x x x x ϕ'=-+=--+, 当()0,1x ∈时,()0x ϕ'>,此时()x ϕ在()0,1上单调递增, 当()1,x ∈+∞时,()0x ϕ'<,此时()x ϕ在()1,+∞上单调递减,∴1x =是()x ϕ的唯一极值点,且是极大值点,因此1x =也是()x ϕ的最大值点,()x ϕ的最大值为()121133ϕ=-+=.又()00ϕ=,结合()x ϕ的图象可知: ①当23a >时,函数()g x 无零点;②当23a =时,函数()g x 有且仅有一个零点; ③当203a <<时,函数()g x 有两个零点; ④当0a ≤时,函数()g x 有且只有一个零点;综上所述,当23a >时,函数()g x 无零点;当23a =或0a ≤时,函数()g x 有且仅有一个零点; 当203a <<时,函数()g x 有两个零点.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【答案】(1)1π:sin 6C ρθ⎛⎫+= ⎪⎝⎭,2226:12sin C ρθ=+;(2)1.【解析】(1)∵2C 的参数方程为x y ϕϕ⎧=⎪⎨=⎪⎩,(ϕ为参数),∴其普通方程为22162x y +=,又1:C x∴可得极坐标方程分别为1π:sin 6C ρθ⎛⎫+=⎪⎝⎭,2226:12sin C ρθ=+.(2)∵)M ,()0,1N ,∴12P ⎫⎪⎪⎝⎭,∴OP 的极坐标方程为π6θ=,把π6θ=代入πsin 6ρθ⎛⎫+= ⎪⎝⎭得11ρ=,π1,6P ⎛⎫ ⎪⎝⎭,把π6θ=代入22612sin ρθ=+得22ρ=,π2,6Q ⎛⎫⎪⎝⎭, ∴211PQ ρρ=-=,即P ,Q 两点间的距离为1.23.【答案】(1)53,,44⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭;(2)3a <.【解析】(1)当4a =时,()f x 定义域基本要求为21214x x -++>, 当1x ≤-时,5122244x x x --->⇒<-;2019届全国高考高三模拟考试卷数学(理)试题(一)(解析版)(可编辑修改word 版)当112x -<<时,12224x x -++>,无解; 当12x ≥时,3212244x x x -++>⇒>,综上:()f x 的定义域为53,,44⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭; (2)由题意得2121x x a -++>恒成立()min 2121a x x ⇒<-++,()()()min 2121212221223x x x x x x -++=-++≥--+=,∴3a <.。
2019 年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的XX、XX号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并收回。
一.选择题:本大题共12 个小题,每小题 5 分,共60 分。
在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合A {x x2230},B{ 2,3,4},则(C R A) B= xA.{ 2,3 }B.{ 2,3,4}C.{2} D.2.已知i是虚数单位,z 1 ,则 z z =3 iA.5 B.10 C.1D.110 5 3.执行如图所示的程序框图,若输入的点为P(1,1),则输出的n 值为A. 3 B.4C.5D. 6ED CF AB(第 3题)(第 4题)4.如图,ABCD 是边长为8的正方形,若DE1 EC ,且F为BC的中点,则EA EF3专业技术 . 整理分享A. 10B.12C.16D. 20x y 25.若实数x, y满足y x 1 ,则 z 2 x 8 y的最大值是y 0A. 4 B.8 C.16D. 3 26.一个棱锥的三视图如右图,则该棱锥的表面积为A.16 5 8 232B.32 5 32C.16 2 32D.16 5 16 2 327. 5X卡片上分别写有0, 1, 2, 3, 4,若从这 5 X卡片中随机取出 2 X,则取出的2 X卡片上的数字之和大于5 的概率是A.1B.1 C .3 D .410 5 10 58.设S n是数列{ a n}的前n项和,且a1 1 , a n 1 S n S n 1,则 a5=A .1B. 1 C .1 D . 130 30 20 209. 函数 f x ln 1x 的大致图像为1 x10.底面为矩形的四棱锥P ABCD 的体积为8,若PA平面 ABCD, 且 PA3 ,则四棱锥P ABCD 的外接球体积最小值是专业技术 . 整理分享A.25 B . 125 C. 125 D . 256 611 .已知抛物线y2 2 px p 0 ,过焦点且倾斜角为30°的直线交抛物线于A,B 两点,以 AB 为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为A.x1 B.x3C. x3D . x 32 312 .已知函数 f( x) x2ln x ( x 2 ),函数 g( x)x 1 ,直线 y t 分别与两函数交于2 2A, B 两点,则AB 的最小值为A.1B.1 C .3D.22 2二.填空题:本大题共 4 小题,每小题5 分,共 20 分.13 . 设样本数据 x1,x2,...,x2018的方差是5,若y i3x i1( i1,2,...,2018 ),则 y1,y2,...,y2018的方差是________14 . 已知函数 f( x)sin x 3 cosx(0 ),若3,则方程 f( x) 1在 (0, ) 的实数根个数是_____15 . 我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9 填入 3 3 的方格内,使三行、三列、两对角线的三个数之和都等于15( 如图) . 一般地,将连续的正整数1,2,3,⋯,n2填入 nn 的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记 n 阶幻方的一条对角线上数的和为N n( 如:在 3 阶幻方中,N315 ),则 N 5=_______16. 已知ABC 中,内角A,B,C所对的边分别为a ,b, c ,且c 1 , C π.3专业技术 . 整理分享若 sin C sin( A B) sin 2B ,则ABC 的面积为三、解答题:本大题共6 小题,其中17-21 小题为必考题,每小题12 分,第 22— 23 题为选考题,考生根据要求做答,每题10 分.17.( 本小题满分12 分)设数列 { a n } 是公差为d的等差数列.(Ⅰ )推导数列 { a n} 的通项公式;(Ⅱ )设 d0 ,证明数列{ a n1} 不是等比数列.18. ( 本小题满分12 分)某中学为了解全校学生的上网情况,在全校随机抽取了40 名学生 ( 其中男、女生各占一半 )进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5 组:[0 ,5), [5 , 10) , [10 , 15) , [15 ,20) , [20 , 25] ,得到如图所示的频率分布直方图.( Ⅰ ) 写出女生组频率分布直方图中a 的值;( Ⅱ ) 在抽取的40 名学生中从月上网次数不少于20 的学生中随机抽取 2 人,并用X 表示随机抽取的 2 人中男生的人数,求X 的分布列和数学期望.19.( 本小题满分12 分)在直三棱柱 ABC A1B1C1中, AB AC AA1 2 ,BACA 。
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档, 请点击下载,另外祝您生活愉快,工作顺利,万事如意!2019高考理科数学模拟题及答案(带解析)【满分150分,考试时间为120分钟】一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出 的四个选项中,只有一项是符合题目要求的。
1.已知集合 4 = {-2,-l,0,2,3},B = {y|y = x2—1,"冯,贝 lj A B 中元素的个 数是4・已知 tan& = Z ,贝lj tan I ^-2^D-45•《九章算术》中,将底面是直角三角形的直三棱柱称之为"堑堵",已知某"堑堵"的三视图如图所示,则该"堑堵"的表面积为A. 4A. 2B. 3C. 4D. 52. i 是虚数单位,复数 z = a + i i +z = l-3i, 则\z\ = A. y[2 或 y/sB. 2 或53 .设向量a 与〃的夹角为e,且 a = (—2,1),a + 2b = (2,3),则 cos&--1A. 7B. -7D. 5C.侧视图B. 6 + 4A /2C. 4 + 4 血D. 26. 已知数列{a n },{b n }满足b n = a n + a^,则"数列匕}为等差数列"是"数列{$}为等差数列"的A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件7. 执行如图所示的程序框图,则输出的。
-A. 1B. -1C. -4D.--28. 在(x-2)10展开式中,二项式系数的最大值为°,含;项的系数为b,x-2y-5<09.设实数s 满足约束条件L + y-4<0 ,则z = x 2 + j 2的最小值为3x+y-10>0A. s/wB. 10C.8D. 510.现有一半球形原料,若通过切削将该原料加工 成一正方体工件,则所得工件体积与原料体积之比 的最大值为A.西E .心 C. 班B.— 8021 80 80 213兀6疗%兀D.班4兀2 211.已知o为坐标原点,F是双曲线r:^-4 = i(«>0^>0)的左焦点,a bA,B分别为r的左、右顶点,P为r上一点,且”丄*轴,过点4的直线/与线段PF交于点M,与y轴交于点E,直线BM与y轴交于点N, 若|OI\=2\ON\,则r的离心率为A. 3B. 2C. -D.-2 3 12.已知函数/(x) =ln(e*+厂)+亍,则使得/(2x) >/(x+3)成立的x的取值范围是A. (-1,3)B. (-oo,-3)(3,+oo)C. (-3,3)D. (^o,-l) (3,^o)二、填空题:本题共4小题,每小题5分,共20分。
2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1 •答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴 在答题卡上的指定位置。
2 •选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3 •非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和 答题卡上的非答题区域均无效。
4 •考试结束后,请将本试题卷和答题卡一并上交。
目要求的.C . 1兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个 作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取 礼物都满意,则选法有( )、选择题:本大题共12小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题a i1. [2019南昌一模]已知复数za R 的实部等于虚部,则xx 3n 1,n N , B6,8,10,12,14,则集合AI B 中元素的个数为( )A . 2B . 33. [2019菏泽一模 ]已知向量 a 1, 1 , b22A .B .554. [2019 •州期末 ]已知圆 C 2x 1y A . x y 3 0B . x y 3 0C . 4D . 52,3 , 且aa mb ,则 m( )C . 0D . 1522 8,则过点 P 3,0 的圆C 的切线方程为( )C . x2y 3 0D . x 2y 3又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、A . 30 种B . 50 种C . 60 种D . 90 种6. [2019汕尾质检]某空间几何体的三视图如图所示,正视图是底边长为 边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为(3的等腰三角形,侧视图是直角 )2. [2019梅州质检]已知集合A 5. [2019东北三校]中国有十二生肖,函数g x 的图象,则下列说法正确的是()A •函数g x 的图象关于点 -,0对称 12B •函数g x 的周期是上2C .函数g x 在0, n上单调递增6 D .函数g x 在0, n上最大值是16& [2019临沂质检]执行如图所示的程序框图,输出的值为()开始/输出s/ 结束A .B .2C . 1D . 19. [2019重庆 中严门80 COS70cos20 ( )A .3B.1 C . 3D . 210..[2019揭阳一模]函数 f x 在 0, 单调递减, 且为偶函数. 若f 21,则满足f x 31的x 的取值范围是( )A . 1,5B.1,3 C . 3,5D .2,27. [2019合肥质检]将函数f x2sin才 ------- 、\zWK'SC . n6n D .—181的图象上各点横坐标缩短到原来的 -(纵坐标不变)得到 2S=O, k=【2 211. [2019陕西联考]已知双曲线C:£ 召数为(C . 3、填空题:本大题共 4小题,每小题 5分,共20 分.13. [2019江门一模]已知a 、b 、c 是锐角△ ABC 内角A 、B 、C 的对边,S 是厶ABC 的面积,若 a 8 , b 5, S 10丽,则 c _____________ . 14. [2019景山中学]已知a , b 表示直线, , , 表示不重合平面①若1 a , b , a b ,贝U;②若a ,a 垂直于 内任意一条直线,则 ;③若 ,I a ,Ib ,则 a b ;④若a,b, a // b ,则// .上述命题中, 正确命题的序号是15. [2019林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音 主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同 学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学 不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的 课程是 (填影视配音、广播电视、公共演讲、播音主持)216. ____________________________________________________________________________________ [2019河南联考]若一直线与曲线 y elnx 和曲线y mx 相切于同一点P ,则实数m _____________________三、解答题:本大题共 6大题,共 70分,解答应写出文字说明、证明过程或演算步骤.17. (12分)[2019长郡中学]设正项数列 务 的前n 项和为S n ,且.盘 是a n 与a n 1的等比中项,其中 *n N .1 a 0,b 0的右焦点为F 2,若C 的左支上存在点M ,使得直线bx ay 0是线段MF 2的垂直平分线,则C 的离心率为( C . 512. [2019临川一中]若函数f x 在其图象上存在不同的两点A x i ,y i ,B X 2,y 2,其坐标满足条件: XX 2-22 %■ X 2忌的最大值为0,则称fx 为柯西函数 ”,则下列函数:①:②f Xln x 0 xe :③f xcosx ;2X 1•其中为柯西函数”的个(1)求数列a n的通项公式;18. ( 12分)[2019维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项 目,大桥建设需要许多桥梁构件•从某企业生产的桥梁构件中抽取 100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间 55,65 , 65,75 , 75,85内的频率之比为4: 2:1 .(1) 求这些桥梁构件质量指标值落在区间 75,85内的频率; (2) 若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取 3件,记这3件桥梁构件中质量指标值 位于区间45,75内的桥梁构件件数为 X ,求X 的分布列与数学期望.⑵设b nn 12a n 1,记数列b n 的前n 项和为T n ,求证:T 2n 1 .a n an 119. (12 分)[2019 淄博模拟]如图,在四棱锥P ABCD 中,AB// CD , AB 1 , CD 3 , AP 2 , DP 2.3 , PAD 60 , AB 平面PAD,点M 在棱PC 上.(1)求证:平面PAB 平面PCD ;(2)若直线PA//平面MBD,求此时直线BP与平面MBD所成角的正弦值.线被椭圆C i 截得的线段长为.2 .(1)求椭圆C i 的方程;在x 轴上方).且 AFM OFN .证明:直线I 过定点,并求出该定点的坐标.2 2X y20. ( 12分)[2019泰安期末]已知椭圆G : 22a b1 a b 0的离心率为 2,抛物线C 2: y 224x 的准(2)如图,点A 、F 分别是椭圆G 的左顶点、左焦点直线 I 与椭圆G 交于不同的两点 M 、N ( M 、N 都21. (12分)[2019衡水中学]已知函数f x x2 3ax lnx, a R .1(1) 当a 时,求函数f x的单调区间;33(2) 令函数x x2 f x,若函数x的最小值为,求实数a 的值.2请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22. (10分)【选修4-4:坐标系与参数方程】[2019揭阳一模]以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为2COS2 a2(a R , a为常数)),过点P 2,1、倾斜角为30的直线I的参数方程满足x 2 邑 ,(t2为参数).(1)求曲线C的普通方程和直线I的参数方程;(2)若直线I与曲线C相交于A、B两点(点P在A、B之间),且PA PB 2,求a和|| PA PB||的值.23. (10分)【选修4-5:不等式选讲】[2019汕尾质检]已知f x 2x 2 x 1的最小值为t .行::求t的值;1 '若实数a , b满足2a2 2b2 t,求J J 的最小值.a2 1 b222019届高三第三次模拟考试卷理科数学(二)答案12小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 【答案】C2. 【答案】A3. 【答案】A4. 【答案】B【解析】•/ z L2ii a i T~2i-a i 的实部等于虚部,•-2 2 2-,即a 1 .故选C . 2【解析】由题意, 集合A 3n 1,n N , B 6,8,10,12,14 • AI B 8,14•••集合 AI B 中元素的个数为2 .故选A .【解析】a mb 1,12m,3m2m,3m 结合向量垂直判定,建立方程, 可得 2m 3m0 ,解得m2-,故选A . 5【解析】根据题意,圆 P 的坐标为 3,0 ,2 2 则有3 1 0 2 8,则P 在圆C 上,此时K CP 1,则切线的斜率k 1,则切线的方程为y x3,即x y 3 0,故选B .5.【答案】B 【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的 10中任意选,二共有 C ; 20 , 若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的 10中任意选,•共有 C 3 C 10 30 , •共有20 30 50种.故选B . 6.【答案】A【解析】由三视图可知,该几何体是圆锥的一部分,正视图是底边长为3的等腰三角形,侧视图是直角边长为 1的等腰直角三角形,圆锥的高为 1,底面半径为俯视图是扇形,圆心角为2n,3、选择题:本大题共11.【答案】C几何体的体积为1 11 2n1 n.故选A .3 2397.【答案】C【解析】将函数f x 横坐标缩短到原来的—后,得到g x 2sin 2x —1,2 6 当x上时, f 上 1,即函数 g x 的图象关于点-,1对称,故选项A 错误;121212周期T 2 n 2n,故选项 B 错误;当x0, n 时, 2x nn n •, ,・・函数 g x 在 0,n上单调递增,故选项 C 正确;6 66 26.•函数g x 在 0,n上单调递增,• g xn dg 1,66即函数g x 在0,n上没有最大值,故选项 D 错误.故选C .6&【答案】A【解析】第一次循环,k 1 , S cosO 1 , k 1 1 2, k 4不成立; 第二次循环, k 2 , S 1n . cos 1 1 -,k 2 13 , k 4不成立;32 2第三次循环, k 3 , S 3 2 n cos — 3 11 , k 31 4 , k 4不成立;2 3 2 2第四次循环, k 4 , S 1 cos n 11 0 , k 4 15 , k 4成立,退出循环,输出S 0,故选A .9.【答案】C10.【答案】Ax 3 1 f 2 等价于 f X 3 f 2 ,.•函数f x 在0, 单调递减,••• x 32 , 2 x3 2 , 1 x 5,故选A .【解析】..2sin80 cos70 cos202sin 60 20 cos70cos202sin 60 cos20 2cos60 sin 20 cos702sin 60 cos20 sin 20 cos70cos20cos202sin 60 cos20cos202sin 60 3 .故选 C .【解析】.•函数f x 为偶函数,【解析】F2 C,0,直线bx ay 0是线段MF?的垂直平分线,可得F?到渐近线的距离为|F?Pbe b,即有|OP ■. e2b a ,由0P MF1F2的中位线,可得|MF i 2 OP 2a,MF2 2b,可得|MF^ |MF i 2a,即为2b 2a 2a,即b 2a,可得e eai :2 i 4 5 •故选C.12.【答案】B【解析】由柯西不等式得:对任意实数X i , y i , X2 , y2, XX2 2y i y220恒成立, (当且仅当X i y2 X2 y i取等号)若函数f x在其图象上存在不同的两点x i,y i ,冷,y2 ,其坐标满足条件:XX2 y i y2 * y i2X22y22的最大值为0,则函数f x在其图象上存在不同的两点 A x i, y i , 冷,y2uuu UUU,使得OA , OB共线,即存在过原点的直线y kx与y f x的图象有两个不同的交点:对于①,方程kx x ix 0,即k ix2X i,不可能有两个正根,故不存在;由图可知不存在;,由图可知存在;,由图可知存柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分.13. 【答案】7【解析】根据三角形面积公式得到1S abs inC si nC22•••三角形为锐角三角形,故得到角C为丄,31 2再由余弦疋理得到cos —---- -------- .2 2b cc 7 . 故答案为73 2 2ab14. 【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确,对于②,a , a垂直于内任意一条直线,满足线面垂直的定理,即可得到又a ,则,故正确,对于③,,I a , I b,则a b或a// b,或相交,故不正确,对于④,可以证明/ ,故正确.故答案为②④.15. 【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视;由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音,故答案为影视配音.116. 【答案】丄2e 2【解析】曲线y elnx的导数为y',曲线y mx2的导数为y 2mx ,x由2mx, x 0且m 0,得x ,即切点坐标应为玉,代入y e|n x得eln J e,解得m丄,故答案为—•V2m 2 2 2三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17. 【答案】(1) a n n ; (2)见解析.【解析】(1)^ . 2S?是a n 与a n 1的等比中项,••• 2S n a n a n 1 a n 2 a n , 当 n 1 时,2a i a i Q ,…a 1 .【解析】(1)设区间75,85内的频率为x ,则区间55,65 , 依题意得 0.004 0.0120.019 0.03 10 4x 2x x 1,解得 x•这些桥梁构件质量指标值落在区间75,85内的频率为0.05 .(2)从该企业生产的该种桥梁构件中随机抽取 3件,相当于进行了 3次独立重复实验,• X 服从二项分布B n, p ,其中n 3 . 由(1 )得,区间 45,75内的频率为0.3 0.2 0.1 0.6 ,将频率视为概率得 p 0.6 .v X 的所有可能取值为 0, 1 , 2, 3, 且 P X 0C 0 0.60 0.430.064 , P X 1 C ; 0.61 0.420.288 ,22133P X 2 C 3 0.6 0.4 0.432 , P X 3 C 3 0.6 0.4 0.216 .• X 的分布列为:X 服从二项分布B n, p , • X 的数学期望为EX 3 0.6 1.8 .19.【答案】(1)见解析;(2) —V195 .65 【解析】(1)v AB 平面PAD , • AB DP ,当n 2时,2a n a n 1,整理得 a n a n 1 a n a n 1 1又a n 0 anan 11 n2,即数列a n …a na 1n 1 d 1n 1 n .n 12n 1n 111(2) b n11n n 1n n 1 --T 2nb 1 b 2 b 3 Lb 2n1 1 1 122 3111 .2n 1是首项为1,公差为1的等差数列.1 1 L 4 1 1 1 1 3 2n 1 2n 2n 2n 165,75内的频率分别为4x 和2x .0.05 .2S n 2S n 1 2 ana n 2 an 118.【答案】(1) 0.05 ; (2)见解析.1,①2又••• DP 2.3 , AP 2 , PAD 60 ,由—PDsin PADPA sin PDA 可得 sin PDA2, PDA 30 , APD 90 DP AP ,••• AB I AP A ,二DP 平面PAB , ••• DP平面 PCD ,•••平面 PAB 平面 PCD ; (2)以点A 为坐标原点,AD 所在的直线为y 轴,AB 所在的直线为z 轴, 如图所示,建立空间直角坐标系, 其中 A 0,0,0 , B 0,0,1 , C 0,4,3 uur uuu从而BD 0,4, 1 , AP 3,1,0uuuu uuiu设PM PC ,从而得M .3 3 设平面MBD 的法向量为n x, y,z,3uu u PC 若直线 PA//平面MBD ,满足 nCBAvITD,D 0,4,0 , P 3,1,03,3,3 , 1,3uuu u ,BM,31,3uju u BMUJL TBDuuu AP uuuA得 —,取 n .3, 3, 12,且 BP 4 0,即 3,1, 直线BP 与平面MBD 所成角的正弦值等于 sin 4y 3x 2X 220.【答案】(1) — y 1 ; (2)直线l 过定点 【解析】(1)由题意可知,抛物线 又椭圆G 被准线截得弦长为 2 ,讨2 2,…e 2由①②联立,解得a 22 , b 2uuu BPj-tuu nBp2156 12,52195.65C 2的准线方程为x 1 •••点详在椭圆上, •椭圆2b 2,②, C 1的标准方程为1 2b 2y 2 1.1 ,21.【答案】(1)见解析;(2)(2)设直线 I : y kx m ,设M x, y ,N X 2,y 2 ,把直线1代入椭圆方程, 整理可得 2k 2 1 x 2 4 km 2m 2 2 0, 2 2 16k m 4 2k 2 1 2m 2 2 16k 28m 2 8 0 , 即 2k 2 m 24km 2m 2 2…X 1 X 2 2 , X 1X 2 22k 1 2k 1y 1 • K FM ,K FN y 2 -,M 、N 都在x 轴上方,且 AFMOFN1 0,x 1 1X 2 1kFN,y 1 X 1 1 ~^y-,即 x 2 1 kx i kx 2 m x i1 ,整理可得 2kx 1x 2 k m x 1 X 22m 2m 2 20 ,• 2k 厂 2 k 2 14km 2k 2 12m即 4 km 22 24k 4k m 4km 4k2m2k ,•直线I 为y kx 2k k x,•直线 l 过定点2,0 .令f ' 'x 0 ,解得X -或 x 1,而 X 0,故x1,2则当 x 0,1 时,f X 0, 即f X在区1 间内递减,当x 1, 时,f X0 , 即f X在区间 '可内递增.(2) 由f X2x 3axln x,f X 2x 13a —X则 2X Xf x 2x 33ax 2 X ,故 X 6x 2 6 ax 1 , 又26a4 61,故方程X0有2个不同的实根,不妨记 己为石, ,X 2,且儿 X2,又• X^-0 ,故 X 0 6X 2 ,当X 0,X 2 时, x 0 X 递减,当X X 2,时, x0,X 递增,故 Xminx 22x 23 3ax:22X 2 , ①又 X 20 ,• 6X226ax 2 1 0 , 即a1 6X 22 ,②xx 6x 222x x2x 11【解析】(1) a -时,f x3 lnx ,贝U f将a宜6x22代入—式,得2X2 321 6x2 2X26x2X2 31 32x2 x? 3x22X2由题意得 3 1X2 X22 专,即2x23X2即x21 2x222x23 0,解得X25将X2 1代入■式中,得a6X2请考生在22、23两题中任选一题作答, 如果多做, 则按所做的第一题记分2 2 22.【答案】(1)x y 3t2( t为参数);(2) t2【解析】(1)由2cos2 a2得2 2 . 2 2cos sin a ,又x cos , y sin ,得x2 y2a2,••• C的普通方程为•••过点P 2,1、倾斜角为30的直线I的普通方程为y——X3y12t「直线1的参数方程为32t2(t为参数).(2)将2代入x2£2a2,得t2 2 2.3 a20,依题意知a20,则上方程的根1、t2就是交点A、V t1 t2 a2,由参数t的几何意义知PA PB b| |t2| |t1 t2 ,得t1 对应的参数,2 ,•••点P在A、B之间,「•1t2 0 ,…t1t22,9即2 3a22,解得a 4 (满足0 ),二a 2 ,•- p A PB t1 t2 t1 t2,又t1 t24.323.【答案】(1)2;(2)3x 【解析】(1) f x2x 1,xx 3, 13x 1,x故当x 1时,函数f x有最小值2,.・.t 2 .(2)由( 1)可知 2 2 2 22a 2b 2,故a 1 b 24,22212 22b a11 1 1 a 1 b 2 2 a1b2 2 1a2 1b2 2 2 2a 1b 2 44 1?当且仅当a2 1 b2 2 2,即a2 1 , b20时等号成立,故1a2 12的最小值为1 .b 21 ,。
2019年河北省高考理科模拟试题及答案汇总目录理科数学----------------- 2~12语文-----------------13~24英语-----------------25~37物理-----------------38~45化学-----------------46~51生物-----------------52~592019年高考理科数学模拟试题及答案(试卷满分150分,考试时间120分钟)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}{}23,,40xA y y x RB x x ==∈=-≤,则 A.AB R = B.}2|{->=x x B AC.}22|{≤≤-=x x B AD.}20|{≤<=x x B A2.已知复数z 满足3(1)()2i z i i --= (i 为虚数单位),则z 的共轭复数为A .1i -B .12i +C .1i -D .12i - 3.已知1tan 2α=-,且(0,)απ∈,则sin 2α= A .45 B .45-C .35D .35-4. 已知,a b 为非零向量,则“0⋅>a b ”是“a 与b 夹角为锐角”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件5.直线40x y m ++=交椭圆2116x y +=于A ,B 两点,若线段AB 中点的横坐标为l ,则,m= A.-2B.-1C. 1D.26.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图A .2B .4C .6D .87.三棱锥P ABC PA -⊥中,面ABC,1,AC BC AC BC PA ⊥===,表面积为 AB .72πC .5πD .20π8.如果执行如右图所示的程序框图,输入正整数N (N ≥2) 和实数 a 1,a 2,…,a N ,输出A ,B ,则 A .A +B 为a 1,a 2,…,a N 的和B. 12(A +B )为a 1,a 2,…,a N 的算术平均数 C .A 和B 分别是a 1,a 2,…,a N 中的最小数和最大数 D .A 和B 分别是a 1,a 2,…,a N 中的最大数和最小数 9. 已知某8个数的期望为5,方差为3,现又加入一个新数据5, 此时这9个数的期望记为()E X ,方差记为()D X ,则A.()5,()3E X D X =>B. ()5,()3E X D X =<C.()5,()3E X D X <>D. ()5,()3E X D X <<10.已知双曲线()2222:10,0y x C a b a b-=>>的一条渐近线与直线210x y -+=垂直,则双曲线C的离心率为 A .2CD11.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是A.甲B.乙C.丙D.丁12. 设曲线y =sin x 上任一点(x ,y )处切线的斜率为g (x ),则函数y =x 2g (x )的部分图像可以为二、填空题(本题共4小题,每小题5分,共20分)13. 若向量,a b 满足||||2a b ==,且()2a a b ⋅-=,则向量a 与b 的夹角为14.设双曲线()2222100x y a ,b a b-=>>的左、右顶点分别为A ,B ,点P 在双曲线上且异于A ,B 两点,O 为坐标原点.若直线PA 与PB 的斜率之积为79,则双曲线的离心率为________.15. 若变量,x y 满足2,239,0,x y x y x +⎧⎪-⎨⎪⎩≤≤≥则22x y +的最大值是____________.16.函数f (x )=2sin 2(π4+x )-3cos2x (π4≤x ≤π2)的值域为 . 三、解答题:本题共6小题,共70分。
河北省高考数学模拟试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={0,1,2,3,4},集合A={1,2,3},集合B={3,4},则(C U A)∪B=()A.{4} B.{2,3,4} C.{0,3,4} D.{0,2,3,4}2.若复数z满足3﹣i(z+1)=i,则z=()A.﹣2+3i B.﹣2﹣3i C.2+3i D.2﹣3i3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=ln|x| B.y=cosx C.D.y=﹣x2+14.命题“∃x0∈R,x02+x0+1≤0”的否定是()A.∀x∈R,x2+x+1≤0 B.∀x∈R,x2+x+1>0C.∃x0∈R,x02+x0+1>0 D.∀x∈R,x2+x+1≥05.若直线y=2x与双曲线﹣=1没有公共点,则双曲线的离心率的取值范围是()A.[,+∞)B.[,+∞)C.(1,] D.(1,]6.已知A(2,1),O(0,0),点M(x,y)满足,则的最大值为()A.﹣5 B.﹣1 C.0 D.17.某程序框图如图所示,该程序运行后输出S的值是()A.2 B.C.﹣ D.﹣38.在等差数列{a n}中,S n为其前n项和,S7=35,a2+a3+a10=12,则S n的最大值为()A.28 B.36 C.45 D.559.现有4名选手参加演讲比赛活动,若每位选手可以从4个题目中任意1个,则恰有1个题目没有被这4为选手选中的情况有()A.36种B.72种C.144种D.288种10.已知M(x0,y0)是曲线C:﹣y=0上的一点,F是C的焦点,过M作x轴的垂线,垂足为N,若<0,则x0的取值范围是()A.(﹣1,0)∪(0,1) B.(﹣1,0)C.(0,1)D.(﹣1,1)11.如图,网格纸上小正方形的边长为1,粗线图是一个几何体的三视图,则此几何体外接球的表面积为()A.25πB.25πC.50πD.50π12.定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[0,1]时,f(x)=x+b,若函数y=f(x)﹣log a(x+1)在(0,+∞)上恰好有三个零点,则a 的取值范围是()A.(0,) B.(0,) C.(,)D.(,1)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.(x﹣)dx= .14.已知||=2,||=4,⊥(),则向量与的夹角的余弦值是.15.如图为某小区100为居民2015年月平均用水量(单位:t)的频率分布直方图的一部分,据此可求这100位居民月平均用水量的中位数为吨.16.关于函数f(x)=sin2x+sinx+cosx,以下说法:①周期为2π;②最小值为﹣;③在区间(0,)单调递增;④关于x=对称,其中正确的是(填上所有正确说法的序号).三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.S n为数列{a n}的前n项和,S n=2a n﹣2(n∈N+)(1)求{a n}的通项公式;(2)若b n=na n,求数列{b n}的前n项和T n.18.△ABC的内角A,B,C的对边a,b,c满足a2+ac=b2.(Ⅰ)求A的取值范围;(Ⅱ)若a=2,A=,求△ABC的面积.19.已知四棱锥P﹣ABCD,底面ABCD为菱形,△PAB是等边三角形,∠ABC=60°,AB=2,PC=(1)证明:平面PAB⊥平面ABCD;(2)求二面角B﹣PC﹣D的余弦值.20.甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,,,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(Ⅰ)求随机变量ξ的分布列及其数学期望E(ξ);(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.21.已知椭圆C:+=1(a>b>0)的焦点和一个顶点在圆x2+y2=4上.(1)求椭圆的方程;(2)已知点P(﹣3,2),若斜率为1的直线l与椭圆G相交于A、B两点,试探讨以AB为底边的等腰三角形ABP是否存在?若存在,求出直线l的方程,若不存在,说明理由.22.已知函数f(x)=•e﹣ax(a>0).(1)当a=2时,求曲线y=f(x)在x=处的切线方程;(2)讨论方程f(x)﹣1=0根的个数.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={0,1,2,3,4},集合A={1,2,3},集合B={3,4},则(C U A)∪B=()A.{4} B.{2,3,4} C.{0,3,4} D.{0,2,3,4}【考点】交、并、补集的混合运算.【分析】根据全集、补集与并集的定义,进行计算即可.【解答】解:全集U={0,1,2,3,4},集合A={1,2,3},集合B={3,4},∴C U A={0,4},∴(C U A)∪B={0,3,4}.故选:C.2.若复数z满足3﹣i(z+1)=i,则z=()A.﹣2+3i B.﹣2﹣3i C.2+3i D.2﹣3i【考点】复数代数形式的乘除运算.【分析】把已知等式变形,和利用复数代数形式的乘除运算化简得答案.【解答】解:由3﹣i(z+1)=i,得i(z+1)=3﹣i,∴z+1=,则z=﹣2﹣3i.故选:B.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=ln|x| B.y=cosx C.D.y=﹣x2+1【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性的性质分别进行判断即可.【解答】解:y=ln|x|是偶函数,则(0,+∞)上单调递增,不满足条件.y=cosx是偶函数,则(0,+∞)上不单调,不满足条件.是奇函数,则(0,+∞)上单调递减,不满足条件.y=﹣x2+1是偶函数,则(0,+∞)上单调递减,满足条件.故选:D4.命题“∃x0∈R,x02+x0+1≤0”的否定是()A.∀x∈R,x2+x+1≤0 B.∀x∈R,x2+x+1>0C.∃x0∈R,x02+x0+1>0 D.∀x∈R,x2+x+1≥0【考点】命题的否定.【分析】特称命题“∃x0∈R,x02+x0+1≤0”的否定是:把∃改为∀,其它条件不变,然后否定结论,变为一个全称命题.即“∀x∈R,x2+x+1>0”.【解答】解:特称命题“∃x0∈R,x02+x0+1≤0”的否定是全称命题:“∀x∈R,x2+x+1>0”.故选B.5.若直线y=2x与双曲线﹣=1没有公共点,则双曲线的离心率的取值范围是()A.[,+∞)B.[,+∞)C.(1,] D.(1,]【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,由题意可得渐近线的斜率的正值不大于2,由a,b,c的关系和离心率公式,可得范围.【解答】解:双曲线的渐近线方程为y=±x,由直线y=2x与双曲线﹣=1没有公共点,可得≤2,即b≤2a,又e==≤=,但e>1,可得1<e≤.故选:D.6.已知A(2,1),O(0,0),点M(x,y)满足,则的最大值为()A.﹣5 B.﹣1 C.0 D.1【考点】简单线性规划.【分析】先画出平面区域D,进行数量积的运算即得z=2x+y﹣5,所以y=﹣2x+5+z,所以根据线性规划的方法求出z的最大值即可.【解答】解:表示的平面区域D,如图中阴影部分所示,的=(2,1)•(x﹣2,y﹣1)=2x+y﹣5;∴y=﹣2x+5+z;∴5+z表示直线y=﹣2x+5+z在y轴上的截距,所以截距最大时z最大;如图所示,当该直线经过点A(2,2)时,截距最大,此时z最大;所以点(2,2)带人直线y=﹣2x+5+z即得z=1.故选:D.7.某程序框图如图所示,该程序运行后输出S的值是()A.2 B.C.﹣ D.﹣3【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的S,i的值,当i=2017时不满足条件i≤2016,退出循环,输出S的值,即可得解.【解答】解:模拟执行程序,可得S=2,i=1满足条件i≤2016,S=﹣3,i=2满足条件i≤2016,S=﹣,i=3满足条件i≤2016,S=,i=4满足条件i≤2016,S=2,i=5…观察规律可知S的取值周期为4,由2016=504×4可得满足条件i≤2016,S=,i=2016满足条件i≤2016,S=2,i=2017不满足条件i≤2016,退出循环,输出S的值为2.故选:A.8.在等差数列{a n}中,S n为其前n项和,S7=35,a2+a3+a10=12,则S n的最大值为()A.28 B.36 C.45 D.55【考点】等差数列的前n项和.【分析】由题意和等差数列的求和公式和性质可得a4=5,a5=4,进而可得通项公式,可得数列前8项为正数,第9项为0,从第10项开始为负数,可得结论.【解答】解:∵在等差数列{a n}中,S n为其前n项和,S7=35,a2+a3+a10=12,∴S7=7a4=35,a2+a3+a10=3a5=12,∴a4=5,a5=4,∴公差d=a5﹣a4=﹣1,故a n=5﹣(n﹣4)=9﹣n,故数列的前8项为正数,第9项为0,从第10项开始为负数,故数列的前8或9项和最大为S9=9a5=36,故选:B.9.现有4名选手参加演讲比赛活动,若每位选手可以从4个题目中任意1个,则恰有1个题目没有被这4为选手选中的情况有()A.36种B.72种C.144种D.288种【考点】计数原理的应用.【分析】利用间接法,先确定4个选手无遗漏的选择,再去掉恰好2、3、4道题目被选的情况,即可得出结论.【解答】解:由题意,每个选手都有4种选择,所以4个选手无遗漏的选择是44种,其中恰好2道题目被选的有C42(C43A22+C42)=84、恰好3道未被选(四人选了同一题目,有4种)、恰好0道题未被选的(4个题目都被选,有A44=24种).故共有256﹣84﹣4﹣24=144种.故选:C.10.已知M(x0,y0)是曲线C:﹣y=0上的一点,F是C的焦点,过M作x轴的垂线,垂足为N,若<0,则x0的取值范围是()A.(﹣1,0)∪(0,1) B.(﹣1,0)C.(0,1)D.(﹣1,1)【考点】双曲线的简单性质.【分析】由题意可设M(x0,),(x0≠0),求得N的坐标,求出抛物线的焦点坐标,运用向量的数量积的坐标表示,解不等式即可得到所求范围.【解答】解:由题意可设M(x0,),(x0≠0),由题意可得N(x0,0),又抛物线x2=2y的焦点F(0,),即有=(﹣x0,﹣),=(0,﹣),由<0,即为(﹣)•(﹣)<0,即有x02<1且x0≠0),解得﹣1<x0<0且0<x0<1.故选:A.11.如图,网格纸上小正方形的边长为1,粗线图是一个几何体的三视图,则此几何体外接球的表面积为()A.25πB.25πC.50πD.50π【考点】球内接多面体;简单空间图形的三视图.【分析】几何体是底面为直角三角形的直三棱柱,补充为长方体,长宽高分别为3,4,5,求出对角线长,可得外接球的半径,代入球的表面积公式计算.【解答】解:由三视图知:几何体是底面为直角三角形的直三棱柱,补充为长方体,长宽高分别为3,4,5,其对角线长为=5,∴此几何体外接球的半径为∴外接球的表面积S=4π×()2=50π.故选:C.12.定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[0,1]时,f(x)=x+b,若函数y=f(x)﹣log a(x+1)在(0,+∞)上恰好有三个零点,则a 的取值范围是()A.(0,) B.(0,) C.(,)D.(,1)【考点】函数零点的判定定理.【分析】根据条件先求出f(1)=0,即函数f(x)是周期为2的周期函数,然后根据奇偶性求出函数在一个周期内的图象,结合函数与方程之间的关系转化两个函数的交点个数问题,利用数形结合建立不等式关系进行求解即可.【解答】解:∵偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),∴令x=﹣1,得f(﹣1+2)=f(﹣1)﹣f(1),即f(1)=f(1)﹣f(1)=0,则f(1)=0,即对∀x∈R,有f(x+2)=f(x)﹣f(1)=f(x),则函数f(x)是周期为2的周期函数,∵当x∈[0,1]时,f(x)=x+b,∴f(1)=1+b=0,则b=﹣1,即当x∈[0,1]时,f(x)=x﹣1,若x∈[﹣1,0]时,﹣x∈[0,1]时,则f(﹣x)=﹣x﹣1=f(x),则当x∈[﹣1,0]时,f(x)=x+1,由函数y=f(x)﹣log a(x+1)=0,得f(x)=log a(x+1),作出f(x)和g(x)=log a(x+1)在(0,+∞)上的图象若函数y=f(x)﹣log a(x+1)在(0,+∞)上恰好有三个零点,则等价为两个函数f(x)和g(x)在(0,+∞)上恰好有三个交点,若a>1,两个函数只有一个交点,不满足条件.若0<a<1,要使两个函数有三个交点,则点A(2,﹣1)则g(x)的图象的下方,B(4,﹣1)在g(x)的上方,即,即,即<a<,即实数a的取值范围是(,),故选:C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.(x﹣)dx= 1﹣ln2 .【考点】定积分.【分析】根据:积分公式化简求解∫(x﹣)dx=(x﹣lnx)|,利用牛顿莱布尼兹定理得出答案即可.【解答】解:∫(x﹣)dx=(x﹣lnx)|=2﹣ln2﹣1+ln1=1﹣ln2,故答案为:1﹣ln214.已知||=2,||=4,⊥(),则向量与的夹角的余弦值是.【考点】平面向量数量积的运算.【分析】由便可得出,进行数量积的运算便可得到,从而便可得出向量与夹角的余弦值.【解答】解:∵;∴;即=;∴;即向量与夹角的余弦值是.故答案为:.15.如图为某小区100为居民2015年月平均用水量(单位:t)的频率分布直方图的一部分,据此可求这100位居民月平均用水量的中位数为 2.02 吨.【考点】频率分布直方图.【分析】根据频率分布直方图,求出使直方图中左右两边频率相等对应的横坐标的值.【解答】解:根据频率分布直方图,得;0.08×0.5+0.16×0.5+0.30×0.5+0.44×0.5=0.49<0.5,0.49+0.5×0.5=0.74>0.5,设中位数为a,则0.49+(a﹣2)×0.5=0.5,解得a=2.02,∴估计中位数是2.02.故答案为:2.02.16.关于函数f(x)=sin2x+sinx+cosx,以下说法:①周期为2π;②最小值为﹣;③在区间(0,)单调递增;④关于x=对称,其中正确的是①②④(填上所有正确说法的序号).【考点】三角函数的化简求值.【分析】①由f(x+2π)=f(x)即可得证;②换元法,设t=sinx+cosx,由三角函数知识可得t∈[﹣,],且sin2x=t2﹣1,可得y=t2+t ﹣1,由二次函数区间的最值可得.③由②利用二次函数的性质即可得解;④证明f(﹣x)=f(x),即可判断正误.【解答】解:①∵f(x+2π)=sin[2(x+2π)]+sin(x+2π)+cos(x+2π)=sin2x+sinx+cosx=f (x),∴函数周期为2π,故①正确;②设t=sinx+cosx=sin(x+)∈[﹣,],∴t2=(sinx+cosx)2=1+sin2x,∴sin2x=t2﹣1,∴y=sin2x+sinx+cosx=t2﹣1+t=t2+t﹣1=(t+)2﹣,t∈[﹣,],由二次函数可知,当t∈[﹣,﹣]时,函数y=t2+t﹣1单调递减,当t∈[﹣,]时,函数y=t2+t﹣1单调递增,∴当t=﹣时,函数取最小值y min=﹣,故②正确;③由②可知y=t2+t﹣1,t∈[﹣,],故③错误;④∵f(﹣x)=sin[2(﹣x)]+sin(﹣x)+cos(﹣x)=sin(π﹣2x)+sinx+cosx=sin2x+sinx+cosx=f(x),∴函数关于x=对称,故④正确.故答案为:①②④.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.S n为数列{a n}的前n项和,S n=2a n﹣2(n∈N+)(1)求{a n}的通项公式;(2)若b n=na n,求数列{b n}的前n项和T n.【考点】数列的求和;根的存在性及根的个数判断.【分析】(Ⅰ)通过S n=2a n﹣2与S n﹣1=2a n﹣1﹣2(n≥2)作差,进而可知数列{a n}是首项、公比均为2的等比数列,计算即得结论;(Ⅱ)通过(Ⅰ)得b n=3n×2n,进而利用错位相减法计算即得结论.【解答】解:(Ⅰ)依题意,S n=2a n﹣2,S n﹣1=2a n﹣1﹣2(n≥2),两式相减得:a n=2a n﹣1,又∵S1=2a1﹣2,即a1=2,∴数列{a n}是首项、公比均为2的等比数列,∴a n=2n;(Ⅱ)由(Ⅰ)得b n=3n×2n,∴T n=3×2+6×22+9×23+…+3n×2n,2T n=3×22+6×23+…+3(n﹣1)×2n+3n×2n+1,两式相减得:﹣T n=3(2+22+23+…+2n)﹣3n×2n+1=3•﹣3n×2n+1=﹣3(n﹣1)2n+1﹣6,∴T n=6+3(n﹣1)2n+1.18.△ABC的内角A,B,C的对边a,b,c满足a2+ac=b2.(Ⅰ)求A的取值范围;(Ⅱ)若a=2,A=,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】(1)由余弦定理得a2﹣b2=c2﹣2bccosA,由a2+ac=b2得a2﹣b2=﹣ac,故c2﹣2bccosA=﹣ac,即cosA=,因为a+c>b,所以cosA,得出A的范围;(2)将A=和a=2分别代入a2+ac=b2和b2+c2﹣a2=2bccosA,联立方程组解出b,c,使用S=bcsinA求出面积.【解答】解:(1)由余弦定理得a2=b2+c2﹣2bccosA,∴a2﹣b2=c2﹣2bccosA,又∵a2+ac=b2,∴a2﹣b2=﹣ac.∴c2﹣2bccosA=﹣ac,∴cosA=,∵a+c>b,∴cosA.∴0<A<.(2)∵a2+ac=b2,∴4+2c=b2,∵b2+c2﹣a2=2bccosA,∴b2+c2﹣4=bc,联立方程组,解得b=2,c=4.S△ABC=bcsinA==2.19.已知四棱锥P﹣ABCD,底面ABCD为菱形,△PAB是等边三角形,∠ABC=60°,AB=2,PC=(1)证明:平面PAB⊥平面ABCD;(2)求二面角B﹣PC﹣D的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)取AB中点O,连结OP,OC,AC,推导出OP⊥AB,OP⊥OC,从而OP⊥面ABC,由此能证明平面PAB⊥平面ABCD.(2)以O为原点,OB,OC,OP为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角B﹣PC﹣D的余弦值.【解答】证明:(1)取AB中点O,连结OP,OC,AC,∵△PAB是等边三角形,∴OP=,且OP⊥AB,由题意知△ABC为等边三角形,且OC=,在△POC中,∵OC2+OP2=CP2,∴OP⊥OC,∴OP⊥面ABC,∵OP⊂平面PAB,∴平面PAB⊥平面ABCD.解:(2)以O为原点,OB,OC,OP为x,y,z轴,建立空间直角坐标系,则O(0,0,0),B(1,0,0),C(0,,0),P(0,0,),A(﹣1,0,0),D(﹣2,,0),设=(x,y,z)是平面PBC的法向量,=(﹣1,,0),=(﹣1,0,),则,取x=,得=(),设平面PCD的法向量=(a,b,c),=(0,,﹣),=(﹣2,,﹣),则,取b=1,得=(0,1,1)<cos<>==,由图形得二面角B﹣PC﹣D的平面角为钝角,∴二面角B﹣PC﹣D的余弦值为﹣.20.甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,,,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(Ⅰ)求随机变量ξ的分布列及其数学期望E(ξ);(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.【考点】条件概率与独立事件;离散型随机变量的期望与方差.【分析】(Ⅰ)由题设知ξ的可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出随机变量ξ的分布列和数学期望E(ξ).(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,分别求出P(A),P(AB),再由P(B/A)=,能求出结果.【解答】解:(Ⅰ)由题设知ξ的可能取值为0,1,2,3,P(ξ=0)=(1﹣)(1﹣)(1﹣)=,P(ξ=1)=(1﹣)(1﹣)+(1﹣)××(1﹣)+(1﹣)(1﹣)×=,P(ξ=2)=++=,P(ξ=3)==,∴随机变量ξ的分布列为:数学期望E(ξ)=0×+1×+2×+3×=.(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,则P(A)=++=,P(AB)==,P(B|A)===.21.已知椭圆C:+=1(a>b>0)的焦点和一个顶点在圆x2+y2=4上.(1)求椭圆的方程;(2)已知点P(﹣3,2),若斜率为1的直线l与椭圆G相交于A、B两点,试探讨以AB为底边的等腰三角形ABP是否存在?若存在,求出直线l的方程,若不存在,说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆G的右焦点为F(c,0),由题意可得:b=c,且b2+c2=8,由此能求出椭圆G的方程.(Ⅱ)以AB为底的等腰三角形ABP存在.设斜率为1的直线l的方程为y=x+m,代入中,得:3x2+4mx+2m2﹣8=0,由此利用根的判别式、韦达定理,结合已知条件能求出直线l的方程.【解答】解:(Ⅰ)设椭圆G的右焦点为F(c,0),由题意可得:b=c,且b2+c2=8,∴b2=c2=4,故a2=b2+c2=8,∴椭圆G的方程为(Ⅱ)以AB为底的等腰三角形ABP存在.理由如下设斜率为1的直线l的方程为y=x+m,代入中,化简得:3x2+4mx+2m2﹣8=0,①因为直线l与椭圆G相交于A,B两点,∴△=16m2﹣12(2m2﹣8)>0,解得﹣2,②设A(x1,y1),B(x2,y2),则,.③于是AB的中点M(x0,y0)满足=﹣,.已知点P(﹣3,2),若以AB为底的等腰三角形ABP存在,则k PM=﹣1,即=﹣1,④,将M(﹣)代入④式,得m=3∈(﹣2,2)满足②此时直线l的方程为y=x+3.22.已知函数f(x)=•e﹣ax(a>0).(1)当a=2时,求曲线y=f(x)在x=处的切线方程;(2)讨论方程f(x)﹣1=0根的个数.【考点】利用导数研究曲线上某点切线方程.【分析】(1)当a=2时,求函数的导数,利用导数的几何意义进行求解即可.(2)由f(x)﹣1=0得f(x)=1,求函数的导数f′(x),判断函数的单调性,利用函数单调性和最值之间的关系进行判断即可.【解答】解:(Ⅰ)当a=2时,f(x)=•e﹣2x.f()=3e﹣1,又f′(x)=•e﹣2x,∴f′()=2e﹣1,故所求切线方程为y﹣3e﹣1=2e﹣1(x﹣),即y=x+.(Ⅱ)方程f(x)﹣1=0即f(x)=1.f(x)的定义域为(﹣∞,1)∪(1,+∞),当x<﹣1或x>1时,易知f(x)<0,故方程f(x)=1无解;故只需考虑﹣1≤x≤1的情况,f′(x)=•e﹣2x,当<a≤2时,f′(x)≥0,所以f(x)区间[﹣1,1)上是增函数,又易知f(0)=1,所以方程f(x)=1只有一个根0;当a>2时,由f′(x)=0可得x=±,且0<<1,由f′(x)>0可得﹣1≤x<﹣或<x<1,由f′(x)<0可得﹣<x<,所以f(x)单调增区间为[﹣1,﹣)和(,1)上是增函数,f(x)单调减区间为(﹣,),由上可知f()<f(0)<f(﹣),即f()<1<f(﹣),在区间(﹣,)上f(x)单调递减,且f(0)=1,所以方程f(x)=1有唯一的根x=0;在区间[﹣1,﹣)上f(x)单调递增,且f(﹣1)=0<1,f(﹣)>1,所以方程f(x)=1存在唯一的根0在区间(,1)上,由f()<1,x→1时,f(x)→+∞,所以方程f(x)=1有唯一的根;综上所述:当0<a≤2时,方程f(x)=1有1个根;当a>2时,方程f(x)=1有3个根.。
2019年4月2019年普通高等学校招生全国统一模拟考试
理科数学
一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,则()
A. B.
C. D.
【答案】B
【分析】
由补集的定义可得,求解指数不等式可得,据此进行集合的混合运算即可.
【详解】由补集的定义可得,
求解指数不等式可得,
据此可得.
本题选择B选项.
【点睛】本题主要考查集合的表示方法,集合的混合运算等知识,意在考查学生的转化能力和计算求解能力.
2.复数,则()
A. B. C. D.
【答案】A
【分析】
由复数模的运算法则可知,据此确定复数的模即可.
【详解】由复数模的运算法则可得:.
本题选择A选项.
【点睛】本题主要考查复数的模的运算法则及其应用,属于基础题.
3.随着时代的发展,移动通讯技术的进步,各种智能手机不断更新换代,给人们的生活带来
了巨大的便利,但与此同时,长时间低头看手机,对人的身体如颈椎、眼睛等会造成一定的
损害,“低头族”由此而来.为了了解某群体中“低头族”的比例,现从该群体包括老、中、青三个年龄段的人中采取分层抽样的方法抽取人进行调查,已知这人里老、中、
青三个年龄段的分配比例如图所示,则这个群体里老年人人数为()
A. B. C. D.
【答案】B
【分析】
由题意可知老年人所占的比例为,据此求解老年人的人数即可.
【详解】由题意结合分层抽样的定义可知,
这个群体里老年人人数为.
本题选择B选项.
【点睛】本题主要考查统计图表的识别与应用,属于基础题.
4.已知直线和平面,则是与异面的()
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
【答案】B
【分析】
由题意,若直线b不在平面内,则b与相交或,充分性不成立,反之,若与异面,一定有直线b不在平面内,据此即可得到正确的结论.
【详解】由题意,若直线b不在平面内,则b与相交或,不一定有与异面,
反之,若与异面,一定有直线b不在平面内,即是与异面的必要不充分条件.
本题选择B选项.
【点睛】本题主要考查线面关系有关命题及其应用,充分必要条件的判定等知识,意在考查学生的转化能力和计算求解能力.
5.若变量满足则使取得最小值的最优解为()
A. B. C. D.
【答案】C
【分析】
首先绘制不等式组表示的平面区域如图所示,然后结合目标函数的几何意义确定使
取得最小值的最优解即可
【详解】绘制不等式组表示的平面区域如图所示,
目标函数即:,其中z取得最小值时,其几何意义表示直线系在y轴上的截距最小,
据此结合目标函数的几何意义可知目标函数在点B处取得最小值,
联立直线方程:,可得点的坐标为:.
本题选择C选项.
【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
6.在中,为的重心.若,则()。