工程热力学(喷管)
- 格式:ppt
- 大小:2.95 MB
- 文档页数:40
工程热力学喷管的原理
工程热力学喷管是一种利用压力差和流体动能转化为喷射能量的装置。
其主要原理如下:
1. 流体连续受压:在喷管入口,高压流体通过收敛部分减小截面积,使流速增加,压力下降。
根据质量守恒定律,流体质量连续存在,因此在流体减速的同时,密度将增大。
这使得压力恢复到正常水平。
2. 流体加速:当流体通过喷管的收敛段和喉管时,流速进一步加快,同时压力进一步降低。
这是由于收敛段和喉管的几何形状决定的,这些形状能够使流体施加一些力并导致流体加速。
3. 流体喷射:当流体通过喷管的扩张段时,会发生速度增加和压力下降。
扩张段经过设计,使流体从高速流动转化为喷射流动。
在扩张段,流体的流速超过了声速(超声速流动),发生了激波。
这种激波会将流体的能量转化为喷射能量,形成高速喷流。
总之,工程热力学喷管利用喷管内部的几何形状和流体连续性原理,将压力能和动能转化为喷射能量。
这种喷管的原理可以应用于喷气发动机、火箭推进器、涡轮增压器等设备中,实现流体的高速喷射和推力产生。
工程热力学喷管特性实验实验报告评分实验题目:喷管特性实验实验目的:验证并进一步加深对喷管中气流基本规律的理解,建立临界压力、临界流速和最大流量等喷管临界参数的概念;比较熟练地掌握用热工仪表测量压力(负压)、压差及流量的方法;明确渐缩喷管出口处的压力不可能低于临界压力,流速不可能高于音速,流量不可能大于最大流量;明确缩放喷管中的压力可以低于临界压力,流速可高于当地音速,而流量不可能大于最大流量;对喷管中气流的实际复杂过程有所了解,能定性解释激波产生的原因。
实验原理:1(喷管中气流的基本原理a,KPV由连续方程、能量方程和状态方程结合声速公式得:dAdc2,,,M,1,,,,Ac 马赫数M=c/a显然,要使喷管中气流加速,当M<1时,喷管应为渐缩型(dA<0);当气流M>1时,喷管应为渐扩型(dA>0)。
2(气体流动的临界概念喷管中气流的特征是dp<0,dc>0,dv>0,三者之间互相制约。
当某一截面的速度达到当地音速时,气流处于从亚音速变为超音速的转折点,通常称为临界状态。
K2,,K,1,,,,K,1,, 临界压力比,对于空气,,=0.528当渐缩喷管出口处气流速度达到音速或缩放喷管喉部达到音速时,通过喷管的气体流量便达到了最大值,或成临界流量。
可由下式确定:2P2K2,,K,11,m,A,,,maxminK,1K,1V,,1 式中: A—最小截面积(对于渐缩喷管即为出口处的流通截面积;对于缩放喷管即为喉部的面min积。
本实验台的两种喷管最小截面积均为11.44)。
3(气体在喷管中的流动(1)渐缩喷管渐缩喷管因受几何条件(dA<0)的限制。
有式(4)可知:气体流速只能等于或低于音P,P2cC,a速();出口截面的压力只能高于或等于临界压力();通过喷管的流量只能等,,m,mmax于或小于最大流量()。
(2)缩放喷管缩放喷管的喉部dA=0,因而气流可达到音速(c=a);扩大段dA>0,出口截面处的流速可超音速(c>a),其压力可低于临界压力(P2<Pc),但因喉部几何尺寸的限制,其流量的,mmax最大值仍为最大流量()。
《工程热力学》喷管特性实验实验指导书编制:朱天宇肖洪河海大学机电工程学院2006年5月喷管特性实验一、 实验目的1. 验证并进一步对喷管中气流基本规律的理解。
牢固树立临界压力、临界流速和最大流量等喷管临界参数的概念。
2. 掌握喷管实验装置的实验原理、实验方法和操作步骤,比较熟练地用热工仪表测量压力(负压)、压差及流量。
3.测量并绘制喷管内的压力分布曲线及流量曲线,做出定性的解释。
二、 实验原理喷管是一些热工设备的重要部件,这些设备的工作过程和喷管中气体的流动过程有密切的关系。
实验观察气流完全膨胀时沿喷管各界面的压力变化,测定流量曲线和临界压力比,可以帮助了解喷管中气体流动现象的基本特性,并且通过观察渐缩渐扩喷管中膨胀不足和膨胀过度的现象,还可进一步了解工作条件对喷管中流动过程的影响。
(一)收缩喷管出口的流速和流量假设喷管进口的气流参数都用它们对应的滞止参数表示,喷管出口处的气流参数用下标1表示,则喷管中绝能流的能量方程为211012f h c h +=对于比热为常数的理想气体,上式成为211012p f p c T c c T +=引用等熵过程关系式和状态方程(理想气体的γκ=),于是喷管出口的气流速度1f c ==(1-1)可见对于给定的气体,在收缩喷管出口气流未达到临界状态之前,进口的总焓越高,或者出口气流的压强对滞止压强比越小,则出口气流的速度越高。
收缩喷管出口气流速度最高可达当地声速,即出口气流处于临界状态。
通过喷管的质量流量为:1111111()f f m A c A c p q v v p γ==将式(1-1)式代入上式得出m q A = (1-2)m q 是1p 的连续函数,而且当1p =0和10p p =时,m q 都等于零。
由此推论。
在100p p <<的范围内必有m q 的极限值。
为了推求流量的最大值max m q ,取上式对1p 的导数,并令1/0m dq dp =,即1102()1cr p p p γγλ-==+意即1p 等于临界压强cr p 时,收缩喷管的流量达到最大值max m q ,这时喷管出口气流达临界状态11M a =。
第一章 工程热力学§1-1 空气绝热指数的测定实验一、实验目的通过测量绝热膨胀和定容加热过程中空气的压力变化,计算空气绝热指数。
理解绝热膨胀过程和定容加热过程以及平衡态的概念。
二、实验原理气体的绝热指数定义为气体的定压比热容与定容比热容之比,以K 表示,即p vc k c =。
本实验利用定量空气在绝热膨胀过程和定容加热过程中的变化规律来测定空气的绝热指数K 。
实验过程的P-V 图如图1所示。
图中AB 为绝热膨胀过程;BC 为定容加热过程。
图1 等容和绝热过程AB 为绝热过程,1122k kp v p v = (1) BC 为定容过程,23v v = (2)假设状态A 和C 温度相同,则23T T =。
根据理想气体的状态方程,对于状态A 、C 可得:1133p v p v = (3)将(3)式两边K 次方得:()()1133kkp v p v = (4)由(1)、(4)两式得,1132kp p p p ⎛⎫=⎪⎝⎭,再两边取对数,得: 1213ln ln p p k p p ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭(5)因此,只要测出A 、B 、C 三状态下的压力123,,p p p 且将其代入(5)式,即可求得空气的绝热指数k 。
三、实验装置空气绝热指数测定仪由刚性容器,充气阀、排气阀和U 型差压计组成,如图2所示。
空气绝热指数测定仪以绝热膨胀和定容加热两个基本热力过程为工作原理,测出空气绝热指数。
整个仪器简单明了,操作简便,有利于培养学生运用热力学基本和公式从事实验设计和数据处理的工作能力,从而起到巩固和深化课堂教学内容的实际效果。
图2 空气绝热指数测定装置示意图1-有机玻璃容器;2-进气及测压三通;3 U 型压力计;4 -气囊;5-放气阀门。
四、实验步骤实验对装置的气密性要求较高。
因此,在实验开始时,应检查其气密性。
通过充气阀对刚性容器充气,使U 型压差计的水柱h ∆达到2200mmH O 左右,记下h ∆值,5分钟后再观察h ∆值,看是否发生变化。
喷管压力流量变化规律实验一、实验目的1、巩固和验证气流在喷管中流动的基本原理,熟悉不同形式喷管的机理。
2、了解气流在喷管中流速、压力、流量的变化规律及测试方法。
3、加深对临界状态基本概念的理解。
二、实验原理1、喷管中气体流动的基本规律在亚音速等熵流动中,气体在渐缩管里,速度增加,而压力、密度降低;在渐扩管里,速度减小而压力、密度增大。
在超音速等熵流动中,情况正好与亚音速流动的特点相反,气体在渐缩管中速度减小而压力、密度增大,在渐扩管中速度增加,压力、密度减小。
因此要想获得超音速气流,就必要使亚音速气流首先在渐缩管中加速,当气流被加速到音速,即达到临界状态时,就要改用渐扩管,以使气流继续加速到超音速。
2、喷管中流量的计算根据气体一元稳定等熵流动的连续方程、能量方程、绝热气体状态方程、等熵过程方程,得到气流在喷管中流量m 的表达式为:由式(1)可以看出:当P 2=P 0时,m=0;因此,只有在0<P 2≤P c ,渐缩喷管的出口压力或缩放喷管的喉部压力达到临界压力时,喷管中的流量m 将存在最大值m max ,计算如下:很显然,满足式(2)的P 2即为临界值P c 。
对应于该截面上的气流速度W 2将达到音速a 。
将k=1.4代入(2)式得:P 2=P c =0.528P 0 (3) 将式(2)代入(1)式得m max 的表达式为:)(1/12102202002222s kg p p p p v p k k f v w f m k k k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅-==+)(,得令21201022-⎪⎭⎫⎝⎛+==k kk p p dp dm喷管中的实际流量前面(1)(4)式给出理想流动的流量表达式,实际上,由于气流与管壁的摩擦所产生的边界层,减少了流动截面积。
因此,实际流量是小于理论流量的。
二者之比称为流量系数。
本实验台是采用锥形入口孔板流量计来测量喷管的实际流量。
根据孔板流量计上所测量的压差△P (在U 形管压差计上读出),求得流量m 与压差△P 的关系表达式:)(510373.14εβγ⨯∆⨯=-P m 式中:γ几何修正系数(标定值,本实验条件下可取为1)△P 为U 形压差计读数(mmH 2O ),Pa 为大气压,ta 为大气温度。
工程热力学讲义第9章[1].doc第9章气体和蒸汽的流动基本要求:1.深入理解喷管和扩压管流动中的基本关系式和滞止参数的物理意义,熟练运用热力学理论分析亚音速、超音速和临界流动的特点。
2.对于工质无论是理想气体或蒸汽,都要熟练掌握渐缩、渐缩渐扩喷管的选型和出口参数、流量等的计算。
理解扩压管的流动特点,会进行热力参数的计算。
3.能应用有摩擦流动计算公式,进行喷管的热力计算。
4.熟练掌握绝热节流的特性,参数的变化规律。
基本知识点:9.1 绝热流动的基本方程一、稳态稳流工质以恒定的流量连续不断地进出系统,系统内部及界面上各点工质的状态参数和宏观运动参数都保持一定,不随时间变化。
二、连续性方程由稳态稳流特点, ====m m m .......21const而 vfc m =得:0=-+vdv fdf cdc 该式适用于任何工质可逆与不可逆过程三、绝热稳定流动能量方程sw gdz dcq dh δδ---=221对绝热、不作功、忽略位能的稳定流动过程得:dh cd-=22说明:增速以降低本身储能为代价。
四、定熵过程方程由可逆绝热过程方程 k pv =const得:0=+vdv kpdp五、音速与马赫数音速:微小扰动在流体中的传播速度。
定义式: sp a )(ρ=注意:压力波的传播过程作定熵过程处理。
特别的,对理想气体:kRTa = 只随绝对温度而变马赫数(无因次量):流速与当地音速的比值ac M =M>1,超音速M=1 临界音速 M<1 亚音速9.2 定熵流动的基本特性一、气体流速变化与状态参数间的关系对定熵过程,由dh=vdp ,得到:vdpcdc -= 适用于定熵流动过程。
分析:1。
气流速度增加(dc>0),必导致气体的压力下降(dp<0)。
2。
气体速度下降(dc<0),则将导致气体压力的升高(dp>0)。
二、管道截面变化的规律联立vdp cdc -=、连续性方程、可逆绝热过程方程得到:cdc Mfdf )1(2-=分析:对喷管:当M<1,因为dc>0,则喷管截面缩小df<0,称渐缩喷管。