2019-2020浙江东阳七年级上数学期末试题(图片版)
- 格式:doc
- 大小:322.50 KB
- 文档页数:7
2019-2020学年金华市东阳市七年级(上)期末数学试卷一、选择题(共10小题).1.在数3,3-,13,13-中,最小的数为( )A .3-B .13C .13-D .32.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .80.6510⨯B .76.510⨯C .86.510⨯D .66510⨯3.购买单价为a 元的物品10个,付出b 元(10)b a >,应找回( ) A .()b a -元B .(10)b -元C .(10)a b -元D .(10)b a -元4.如图,实数3-、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q5.如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间线段最短D .经过两点有且仅有一条直线6.如果一个角的补角是130︒,那么这个角的余角的度数是( ) A .30︒B .40︒C .50︒D .90︒7.下列判断正确的是( ) A .23a bc 与2bca 不是同类项 B .225m n 的系数是2C .单项式3x yz -的次数是5D .2535x y xy -+是二次三项式8.如图,已知线段AB 长度为a ,CD 长度为b ,则图中所有线段的长度和为( )A .3a b +B .3a b -C .3a b +D .22a b +9.已知2{,,}max x x x 表示取三个数中最大的那个数,例如:当9x =时,22{,,}{9,9,9}81max x x x max ==.当21{,,}2max x x x =时,则x 的值为( ) A .14-B .116C .14D .1210.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .二、用心填一填(本题共24分,每小题3分)11.甲、乙两地海拔高度分别为20米和9-米,那么甲地比乙地高 米. 12.把5330︒'用度表示为 .13.将0.09493用四舍五入法取近似值精确到百分位,其结果是 .14.如图,在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠= .15.根据下列图示的对话,则代数式2232a b c m +-+的值是 .16.如图,点C 在线段AB 的延长线上,2BC AB =,点D 是线段AC 的中点,4AB =,则BD 长度是 .17.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为2020x =,那么方程②的解为 . 18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为 .三.细心答一答(本题共66分) 19.计算(1)3(8)(5)6--+-+;(2)20202231124273()3-+-⨯-.20.(1)化简:2227362x x x -+; (2)先化简,再求值:222( 3.5)(49)a ab a ab -----,其中5a =-,32b =. 21.解方程(1)43(20)3x x --=; (2)23211510x x -+-=. 22.阅读下面解题过程: 计算:13(15)(3)632-÷--⨯解:原式25(15)()66=-÷-⨯(第一步) 25(15)(6)6=-÷-⨯(第二步) (15)(25)=-÷-(第三步) 35=-(第四步)回答:(1)上面解题过程中有两个错误,第一处是第 步,错误的原因是 ,第二处是第 步,错误的原因是 ;(2)正确的结果是.23.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次人数二三四五六下车(人)3610719上车(人)1210940(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?24.教材中的探究:如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为,;(2)请你参照上面的方法,把长为5,宽为1的长方形进行裁剪,拼成一个正方形.①在图3中画出裁剪线,并在图4位置画出所拼正方形的示意图.②553-的点,(图中标出必要线段长)25.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x天可追上弩马.(1)当良马追上驽马时,驽马行了里(用x的代数式表示).(2)求x的值.(3)若两匹马先在A站,再从A站出发行往B站,并停留在B站,且A、B两站之间的路程为7500里,请问驽马出发几天后与良马相距450里?26.已知直线AB与CD相交于点O,且90AOD∠=︒,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分AOE∠.(1)如图1所示,当20∠的度数是.∠=︒时,FOHDOE(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断FOH∠之间的数量∠和BOE关系,并说明理由.(3)若再作射线OG平分BOF∠的度数.∠,试求GOH参考答案一.精心选一选(本题共30分,每小题3分)1.在数3,3-,13,13-中,最小的数为()A.3-B.13C.13-D.3解:1133 33 >>->-Q,∴在数3,3-,13,13-中,最小的数为3-.故选:A.2.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.80.6510⨯B.76.510⨯C.86.510⨯D.66510⨯解:65 000 7000 6.510=⨯.故选:B.3.购买单价为a元的物品10个,付出b元(10)b a>,应找回()A.()b a-元B.(10)b-元C.(10)a b-元D.(10)b a-元解:购买单价为a元的物品10个,付出b元(10)b a>,应找回(10)b a-元,故选:D.4.如图,实数3-、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q解:Q实数3-,x,3,y在数轴上的对应点分别为M、N、P、Q,∴点N在3和原点之间,∴这四个数中绝对值最小的数对应的点是点N,故选:B.5.如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A .垂线段最短B .经过一点有无数条直线C .两点之间线段最短D .经过两点有且仅有一条直线解:小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短. 故选:C .6.如果一个角的补角是130︒,那么这个角的余角的度数是( ) A .30︒B .40︒C .50︒D .90︒解:Q 一个角的补角是130︒, ∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B .7.下列判断正确的是( ) A .23a bc 与2bca 不是同类项 B .225m n的系数是2C .单项式3x yz -的次数是5D .2535x y xy -+是二次三项式解:A 、23d bc 与2bca 所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B 、225m n 的系数是25,故本选项错误. C 、单项式3x yz -的次数是5,故本选项正确.D 、2535x y xy -+是六次三项式,故本选项错误.故选:C .8.如图,已知线段AB 长度为a ,CD 长度为b ,则图中所有线段的长度和为( )A .3a b +B .3a b -C .3a b +D .22a b +解:Q 线段AB 长度为a , AB AC CD DB a ∴=++=,又CD Q 长度为b ,AD CB a b ∴+=+,∴图中所有线段的长度和为:3AB AC CD DB AD CB a a a b a b +++++=+++=+,故选:A .9.已知2{,,}max x x x 表示取三个数中最大的那个数,例如:当9x =时,22{,,}{9,9,9}81max x x x max ==.当21{,,}2max x x x =时,则x 的值为( ) A .14-B .116C .14D .12解:当21{,,}2max x x x =时, ①12x =,解得:14x =,此时2x x x >>,符合题意; ②212x =,解得:22x =;此时2x x x >>,不合题意;③12x =,2x x x >>,不合题意;故只有14x =时,21{,,}2max x x x =. 故选:C .10.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .解:A 、53616659+⨯+⨯⨯=(颗),故本选项错误; B 、13626691+⨯+⨯⨯=(颗),故本选项正确; C 、23616656+⨯+⨯⨯=(颗),故本选项错误;D 、126366121+⨯+⨯⨯=(颗),故本选项错误;故选:B .二、用心填一填(本题共24分,每小题3分)11.甲、乙两地海拔高度分别为20米和9-米,那么甲地比乙地高 29 米.解:20(9)20929--=+=, 故答案为:29.12.把5330︒'用度表示为 53.5︒ . 解:5330︒'用度表示为53.5︒, 故答案为:53.5︒.13.将0.09493用四舍五入法取近似值精确到百分位,其结果是 0.09 . 解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09. 故答案为0.09.14.如图,在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠= 141︒ .解:由题意得:154∠=︒,215∠=︒, 3905436∠=︒-︒=︒,369015141AOB ∠=︒+︒+︒=︒.故答案为:141︒.15.根据下列图示的对话,则代数式2232a b c m +-+的值是 3-或5 .解:根据题意得:0a b +=,13c =-,2m =或2-,当2m =时,原式2()32145a b c m =+-+=+=; 当2m =-时,原式2()32143a b c m =+-+=-=-,综上,代数式的值为3-或5, 故答案为:3-或5.16.如图,点C 在线段AB 的延长线上,2BC AB =,点D 是线段AC 的中点,4AB =,则BD 长度是 2 .解:4AB =Q ,2BC AB =, 8BC ∴=.12AC AB BC ∴=+=.D Q 是AC 的中点, 162AD AC ∴==. 642BD AD AB ∴=-=-=.故答案为:2.17.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为2020x =,那么方程②的解为 20183y =-. 解:Q 关于x 的一元一次方程320202020xx n +=+①的解为2020x =, ∴关于y 的一元一次方程3232020(32)2020y y n --=--②中(32)2020y --=, 解得:20183y =-. 故答案为:20183y =-. 18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为 12 .解:设小长方形卡片的长为2m ,则宽为m ,依题意,得:224m m +=,解得:1m =,22m ∴=.再设盒子底部长方形的另一边长为x ,依题意,得:2(42):22(22)5:6x x +-⨯+-=,整理,得:10126x x =+,解得:3x =,∴盒子底部长方形的面积4312=⨯=.故答案为:12.三.细心答一答(本题共66分)19.计算(1)3(8)(5)6--+-+;(2)20202211243()3-+-⨯-. 解:(1)原式385612=+-+=;(2)原式1124399=-+÷-⨯ 181=-+-6=.20.(1)化简:2227362x x x -+; (2)先化简,再求值:222( 3.5)(49)a ab a ab -----,其中5a =-,32b =. 解:(1)原式22711(36)22x x =-+=; (2)原式2222749a ab a ab =---++222a ab =++,当5a =-,32b =时,原式23(5)2(5)2122=-+⨯-⨯+=. 21.解方程 (1)43(20)3x x --=;(2)23211 510x x-+-=.解:(1)去括号得:46033x x-+=,移项合并得:763x=,解得:9x=;(2)去分母得:462110x x---=,移项合并得:217x=,解得:8.5x=.22.阅读下面解题过程:计算:13 (15)(3)632-÷--⨯解:原式25(15)()66=-÷-⨯(第一步)25(15)(6)6=-÷-⨯(第二步)(15)(25)=-÷-(第三步)35=-(第四步)回答:(1)上面解题过程中有两个错误,第一处是第二步,错误的原因是,第二处是第步,错误的原因是;(2)正确的结果是.解:(1)上面解题过程中有两个错误,第一处是第二步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第四步,错误的原因是两数相除,同号得正,符号应该是正的;(2)13 (15)(3)632-÷--⨯25(15)()66=-÷-⨯1865=⨯1085=.故正确的结果是1085.故答案为:二,在同级运算中,没有按从左到右的顺序进行,四,两数相除,同号得正,符号应该是正的;1085.23.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次人数二三四五六下车(人)3610719上车(人)1210940(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?解:(1)19[(123)(106)(910)(47)]--+-+-+-19[9413]=-+--199=-10=答:本趟公交车在起点站上车的人数是10人.(2)由(1)知起点上车10人(10121094)2++++⨯452=⨯90=(元)答:此趟公交车从起点到终点的总收入是90元.24.教材中的探究:如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为12,;(2)请你参照上面的方法,把长为5,宽为1的长方形进行裁剪,拼成一个正方形.①在图3中画出裁剪线,并在图4位置画出所拼正方形的示意图.②在数轴上分别标出表示数5以及53-的点,(图中标出必要线段长)解:(1)由图可得,点A到原点的距离为:21-,点A在原点左侧,-,∴点A表示的实数为12由图可得,点B到原点的距离为:12+,点B在原点右侧,+,∴点A表示的实数为12故答案为:12-,12+;(2)如图所示:(3)表示数5以及53-的点如图所示:25.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x天可追上弩马.(1)当良马追上驽马时,驽马行了(1501800)x+里(用x的代数式表示).(2)求x的值.(3)若两匹马先在A站,再从A站出发行往B站,并停留在B站,且A、B两站之间的路程为7500里,请问驽马出发几天后与良马相距450里?解:(1)150121800Q(里),⨯=x+里.∴当良马追上驽马时,驽马行了(1501800)故答案为:(1501800)x+.(2)依题意,得:2401501800=+,x x解得:20x=.答:x的值为20.(3)设驽马出发y天后与良马相距450里.①当良马未出发时,150450y=,解得:3y=;②当良马未追上驽马时,150240(12)450--=,y y解得:27y=;③当良马追上驽马时,240(12)150450--=,y y解得:37y=;④当良马到达B站时,7500150450-=,y解得:47y=.答:驽马出发3或27或37或47天后与良马相距450里.26.已知直线AB与CD相交于点O,且90∠=︒,现将一个直角三角尺的直角顶点放在AOD点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分AOE∠.(1)如图1所示,当20∠的度数是35︒.DOE∠=︒时,FOH(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断FOH∠之间的数量∠和BOE关系,并说明理由.(3)若再作射线OG平分BOF∠的度数.∠,试求GOH解:(1)因为90∠=︒DOE∠=︒,20AOD所以110∠=∠+∠=︒AOE AOD DOE因为OH平分AOE∠所以1552HOE AOE ∠=∠=︒ 所以9035FOH HOE ∠=︒-∠=︒; 故答案为35︒;(2)2BOE FOH ∠=∠,理由如下: 设AOH x ∠=,因为OH 平分AOE ∠所以HOE AOH x ∠=∠=所以9090FOH HOE x ∠=︒-∠=︒- 1801802BOE AOE x ∠=︒-∠=︒- 所以2BOE FOH ∠=∠;(3)如图3,当OE 落在BOD ∠内时,OF 落在AOD ∠内因为OH 平分AOE ∠所以12HOE AOH AOE ∠=∠=∠ 因为OG 平分BOF ∠12FOG GOB BOF ∠=∠=∠ 所以GOH GOF FOH ∠=∠-∠ 1()2BOF AOH AOF =∠-∠-∠ 11(180)22AOF AOE AOF =︒-∠-∠+∠ 1190(90)22AOF AOF AOF =︒-∠-︒+∠+∠ 11904522AOF AOF AOF =︒-∠-︒-∠+∠ 45=︒;所以GOH ∠的度数为45︒;如图4,当OE 落在其他位置时因为OH 平分AOE ∠ 所以12HOE AOH AOE ∠=∠=∠ 因为OG 平分BOF ∠12FOG GOB BOF ∠=∠=∠ 所以GOH GOF FOH ∠=∠+∠ 12BOF AOH AOF =∠+∠+∠ 11(180)22AOF AOE AOF =︒-∠+∠+∠ 1190(90)22AOF AOF AOF =︒-∠+︒-∠+∠ 11904522AOF AOF AOF =︒-∠+︒-∠+∠ 135=︒;所以GOH ∠的度数为135︒; 综上所述:GOH ∠的度数为45︒或135︒.。
2019-2020学年度初一数学上册期末测试卷一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.33.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=26.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.17.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.210.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数.12.单项式﹣3x n y2是5次单项式,则n=.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于.15.要把一根木条在墙上钉牢,至少需要枚钉子.其中的道理是.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=°.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为5厘米.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.23.解方程:(1)5x﹣3=4x+15(2).24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}黄金集合,集合{﹣1,2017}黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.【考点】绝对值.【专题】计算题.【分析】根据负数的绝对值等于它的相反数求解.【解答】解:因为|﹣2|=2,故选C.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.3【考点】单项式.【分析】利用单项式系数的定义求解即可.【解答】解:单项式﹣xy2的系数是﹣1,故选:B.【点评】本题主要考查了单项式,解题的关键是熟记单项式系数的定义.3.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个长方形,第二层右边一个长方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′【考点】余角和补角;度分秒的换算.【分析】根据邻补角得出∠1=180°﹣∠2﹣90°,代入求出即可.【解答】解:∵∠2=30°10′,∴∠1=180°﹣∠2﹣90°=180°﹣30°10′﹣90°=59°50′,故选C.【点评】本题考查了余角和补角,度、分、秒之间的换算的应用,能根据图形得出∠1=180°﹣∠2﹣90°是解此题的关键.5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=2【考点】合并同类项.【分析】根据同类项和合并同类项的法则逐个判断即可.【解答】解:A、结果是x2y,故本选项正确;B、x和﹣y不能合并,故本选项错误;C、x2和3x3不能合并,故本选项错误;D、结果是3x3,故本选项错误;故选A.【点评】本题考查了合并同类项和同类项定义的应用,能熟记知识点是解此题的关键.6.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.1【考点】一元一次方程的解.【分析】把x=1代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.【解答】解:把x=1代入方程ax=3x﹣2得:a=3﹣2,解得:a=1,故选D.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.7.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°【考点】方向角.【分析】根据方向角的定义以及角度的和差即可求解.【解答】解:∠AOB=180°﹣40°﹣45°=95°.故选C.【点评】本题考查了方向角的定义,正确理解方向角的定义是本题的关键.8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.【考点】数轴.【专题】探究型.【分析】根据有理数m在数轴上对应的点为M,且满足m<1<﹣m,可以判断m的正负和m的绝对值与1的大小,从而可以选出正确选项.【解答】解:∵有理数m在数轴上对应的点为M,且满足m<1<﹣m,∴m<0且|m|>1.故选A.【点评】本题考查数轴,解题的关键是明确题意,可以判断m的正负和m的绝对值与1的大小.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.2【考点】有理数大小比较.【专题】推理填空题;新定义.【分析】首先根据[x]表示不大于x的整数中最大的整数,分别求出[5.5]、[﹣4]的值各是多少;然后把它们相加,求出[5.5]+[﹣4]的值是多少即可.【解答】解:∵[x]表示不大于x的整数中最大的整数,∴[5.5]=5,[﹣4]=﹣5,∴[5.5]+[﹣4]=5+(﹣5)=0.故选:B.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)解答此题的关键是分别求出[5.5]、[﹣4]的值各是多少.10.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π【考点】规律型:图形的变化类.【分析】观察动点M从O点出发到A4点,得到点M在直线AB上运动了4个单位长度,在以O 为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,然后可得到动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10),然后除以速度即可得到动点M到达A10点处所需时间.【解答】解:动点M从O点出发到A4点,在直线AB上运动了4个单位长度,在以O为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,∵10=4×2.5,∴动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10)=10+55π;∴动点M到达A10点处运动所需时间=(10+55π)÷1=(10+55π)秒.故选:A.【点评】此题主要考查了图形的变化类:通过特殊图象找到图象变化,归纳总结出运动规律,再利用规律解决问题.也考查了圆的周长公式.二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数﹣1,0,1(选其一).【考点】有理数大小比较.【专题】开放型.【分析】根据整数的定义得出在﹣1和1之间的整数是﹣1,0,1即可.【解答】解:一个在﹣1和1之间的整数﹣1,0,1(选其一).故答案为:﹣1,0,1(选其一).【点评】本题考查了有理数的大小比较,根据整数的定义以及所给的范围进行求解是解题的关键.12.单项式﹣3x n y2是5次单项式,则n=3.【考点】单项式.【分析】根据单项式的次数的定义求解.【解答】解:∵单项式﹣3x n y2是5次单项式,∴n+2=5,∴n=3,故答案为:3.【点评】本题考查了单项式的概念,熟记单项式的次数的定义是解题的关键.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为9.12×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将91200000000用科学记数法表示为9.12×1010.故答案为:9.12×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于6cm.【考点】两点间的距离.【分析】根据线段的和差,可得DC的长,根据线段中点的性质,可得答案.【解答】解:由线段的和差,得DC=DB﹣CB=7﹣4=3cm,由且D是AC中点,得AC=2DC=6cm,故答案为:6cm.【点评】本题考查了两点间的距离,利用线段的和差得出DC的长是解题关键.15.要把一根木条在墙上钉牢,至少需要两枚钉子.其中的道理是两点确定一条直线.【考点】直线的性质:两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:把一根木条钉牢在墙上,至少需要两枚钉子,其中的道理是:两点确定一条直线.故答案为:两,两点确定一条直线.【点评】本题主要考查了直线的性质,熟记两点确定一条直线是解题的关键.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=110°.【考点】垂线;对顶角、邻补角.【分析】首先根据余角定义可得∠BOC=90°﹣20°=70°,再根据邻补角互补可得答案.【解答】解:∵∠1=20°,∠AOC=90°,∴∠BOC=90°﹣20°=70°,∵∠2+∠COB=180°,∴∠2=110°,故答案为:110.【点评】此题主要考查了邻补角、余角,关键是掌握邻补角互补.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为17.【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取2变形后,将已知多项式的值代入计算即可求出值.【解答】解:∵x2+2x=5,∴原式=2(x2+2x)+7=10+7=17,故答案为:17【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是0.【考点】有理数的混合运算.【专题】图表型.【分析】把x=3代入数值转化器中计算,判断得出结果即可.【解答】解:把x=3代入得:3×2=6<8,则输出结果为6﹣6=0.故答案为:0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.【考点】由实际问题抽象出一元一次方程.【分析】本题中的相等关系是:步行从甲地到乙地所用时间﹣乘车从甲地到乙地的时间=3.6小时.即:,根据此等式列方程即可.【解答】解:设甲乙两地相距x千米,先利用路程公式分别求得步行和乘公交车所用的时间,再根据等量关系列方程得:.【点评】列方程解应用题的关键是找出题目中的相等关系.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过或1或3或9秒时线段PQ的长为5厘米.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】由于BC=4厘米,点P、Q分别从点C、点B同时出发在直线上运动,当线段PQ的长为5厘米时,可分三种情况进行讨论:①点P向左、点Q向右运动;②点P、Q都向右运动;③点P、Q都向左运动;④点P向右、点Q向左运动;都可以根据线段PQ的长为5厘米列出方程,解方程即可.【解答】解:设运动时间为t秒.①如果点P向左、点Q向右运动,由题意,得:t+2t=5﹣4,解得t=;②点P、Q都向右运动,由题意,得:2t﹣t=5﹣4,解得t=1;③点P、Q都向左运动,由题意,得:2t﹣t=5+4,解得t=9.④点P向右、点Q向左运动,由题意,得:2t﹣4+t=5,解得t=3.综上所述,经过或1或3秒时线段PQ的长为5厘米.故答案为或1或3或9.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣10﹣3+5=﹣13+5=﹣8;(2)原式=﹣4÷(﹣4)﹣3﹣2=1﹣3﹣2=﹣4.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.【考点】整式的加减—化简求值.【专题】计算题;实数.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值,【解答】解:原式=4a2+2a﹣4a2+6a﹣8=8a﹣8,把a=2代入,得:原式=8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程:(1)5x﹣3=4x+15(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:x=18;(2)去分母得:3(x﹣1)=30﹣2(2x﹣1),去括号得:3x﹣3=30﹣4x+2,移项得:3x+4x=30+2+3,合并得:7x=35,解得:x=5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)【考点】直线、射线、线段.【专题】作图题.【分析】(1)作射线AD,点A为端点;(2)画直线BC,可以向两方无限延伸,画射线AD,以A为端点,两线交点为E;(3)画线段AC,再沿AC方向画延长线,以C为圆心,AC长为半径画弧交AC延长线于点P.【解答】解:如图所示:.【点评】此题主要考查了直线、射线和线段,关键是掌握三线的性质:直线没有端点,可以向两方无限延伸;射线有1个端点,可以向一方无限延伸;线段有2个端点,本身不能向两方无限延伸.(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?【考点】一元一次方程的应用.【分析】(1)按照两种收费方式分别列式计算即可;(2)设出通话时间,表示出两种收费建立方程解答即可.【解答】解:(1)方式一:30+0.2×100=50(元)方式二:0.4×100=40(元)答:按方式一需交费50元,按方式二需交费40元.(2)设通话时间为x分钟,由题意得:30+0.2x=0.4x解得:x=150答:当通话时间为150分钟时,两种计费方式的收费一样多.【点评】此题考查一元一次方程的实际运用,理解两种方式的计算方法是解决问题的关键.26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}不是黄金集合,集合{﹣1,2017}是黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.【考点】有理数.【专题】新定义.【分析】(1)根据有理数a是集合的元素时,2016﹣a也必是这个集合的元素,这样的集合我们称为黄金集合,从而可以可解答本题;(2)根据2016﹣a,如果a的值越大,则2016﹣a的值越小,从而可以解答本题;(3)根据题意可知黄金集合都是成对出现的,并且这对对应元素的和为2016,然后通过估算即可解答本题.【解答】解:(1)根据题意可得,2016﹣2016=0,而集合{2016}中没有元素0,故{2016}不是黄金集合;∵2016﹣2017=﹣1,∴集合{﹣1,2016}是好的集合.故答案为:不是,是.(2)一个黄金集合中最大的一个元素为4016,则该集合存在最小的元素,该集合最小的元素是﹣2000.∵2016﹣a中a的值越大,则2016﹣a的值越小,∴一个黄金集合中最大的一个元素为4016,则最小的元素为:2016﹣4016=﹣2000.(3)该集合共有24个元素.理由:∵在黄金集合中,如果一个元素为a,则另一个元素为2016﹣a,∴黄金集合中的元素一定是偶数个.∵黄金集合中的每一对对应元素的和为:a+2016﹣a=2016,2016×12=24192,2016×13=26208,又∵一个黄金集合所有元素之和为整数M,且24190<M<24200,∴这个黄金集合中的元素个数为:12×2=24(个).【点评】本题考查了有理数以及探究性问题,关键是明确什么是黄金集合,集合中的各个数都是元素,明确黄金集合中的元素个数都是偶数个,在此还要应用到估算的知识.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t= 2.25秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=45°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=3秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【考点】角的计算;角平分线的定义.(1)根据角平分线的定义得到∠AOM==22.5°,于是得到t=2.25秒,由于∠MON=90°,【分析】∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM=AOC,列方程即可得到结论;②根据角的和差即可得到结论.【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM==22.5°,∴t=2.25秒,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;故答案为:2.25,45;(2)∠NOC﹣∠AOM=45°,∵∠AON=90°+10t,∴∠NOC=90°+10t﹣45°=45°+10t,∵∠AOM=10t,∴∠NOC﹣∠AOM=45°;(3)①∵∠AOB=5t,∠AOM=10t,∴∠AOC=45°+5t,∵OM平分∠AOC,∴∠AOM=AOC,∴10t=45°+5t,∴t=3秒,故答案为:3.②∠NOC﹣∠AOM=45°.∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,∴∠NOC﹣∠AOM=45°.【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。
浙教版2019-2020学年度七年级上册期末考试数学试卷(含解析)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.0没有绝对值B.绝对值为3的数是﹣3C.﹣2的绝对值是2D.正数的绝对值是它的相反数2.(3分)据报告,70周年国庆正式受阅人数约12000人,这个数据用科学记数表示()A.12×104人B.1.2×104人C.1.2×103人D.12×103人3.(3分)的平方根是()A.B.C.D.4.(3分)某超市一商品的进价为m元,将其价格提高50%作为零售价,半年后又以6折的价格促销,则此时这一商品的价格为()A.m元B.0.9m元C.0.92m元D.1.04m元5.(3分)若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.16.(3分)若代数式2x2+3x+7的值为8,则代数式2x2+3x﹣9的值()A.﹣7B.﹣8C.2D.﹣27.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB 一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°8.(3分)设x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则D.若,则3x=2y9.(3分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm10.(3分)如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB二.填空题(共6小题,满分24分,每小题4分)11.(4分)数轴上点A表示的数为5,则距离A点4个单位长度的点表示的数为.12.(4分)若a,b为连续整数,且a<+1<b,则a+b=13.(4分)单项式的系数为.14.(4分)已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=.15.(4分)如图,以图中的A、B、C、D为端点的线段共有条.16.(4分)已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过秒两人相距100米.三.解答题(共8小题,满分66分)17.(6分)计算|﹣2|﹣(1﹣0.5)×18.(6分)计算:19.(8分)先化简,再求值:3(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣,y=1.20.(8分)已知∠AOB=80°,过点O引条射线OC,使得∠AOC的度数是∠BOC度数的2倍小10度,求∠BOC的度数.21.(8分)足球训练中,为了训练球员快速抢断转身,教练在东西方向的足球场上画了一条直线,要求球员在这条直线上进行折返跑训练.如果约定向西为正,向东为负,将某球员的一组折返跑练习记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点米?(3)球员在这一组练习过程中,共跑了多少米?22.(10分)为全力推进农村公路快速发展,解决农村“出行难”问题,现将A、B、C三村连通的公路进行硬化改造(如图所示),铺设成水泥路面.已知B村在A村的北偏东65°方向上,∠ABC =100°.(1)C村在B村的什么方向上?(2)甲、乙两个施工队分别从A村、C村向B村施工,两队的施工进度相同,A村到B村的距离比C到B村的距离多600米,甲队用了9天完成铺设任务,乙队用了6天完成铺设任务,求两段公路的总长.23.(10分)今年元旦期间,小华的爸爸去买新家具,家具店促销活动规定:①一次性购物不超过3000元,不享受优惠;②一次性购物超过3000元但不超过5000元,一律九折;③一次性购物超过5000元,一律八折;元旦期间小华的爸爸先后两次到该家具店买家具分别付款2600元和3906元.(1)第一次购买了标价多少元的家具?(直接写出结果)(2)如果小华爸爸一次性购买这些家具,应付多少元?(3)在(2)的条件下,能比原来节约几分之几?24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.浙教版2019-2020学年度七年级上册期末考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法正确的是()A.0没有绝对值B.绝对值为3的数是﹣3C.﹣2的绝对值是2D.正数的绝对值是它的相反数解:A、0的绝对值是0,故选项错误;B、绝对值为3的数是3或﹣3,故选项错误;C、﹣2的绝对值是2,故选项正确;D、正数的绝对值是它本身,故选项错误.故选:C.2.(3分)据报告,70周年国庆正式受阅人数约12000人,这个数据用科学记数表示()A.12×104人B.1.2×104人C.1.2×103人D.12×103人解:12000用科学记数法表示为1.2×104.故选:B.3.(3分)的平方根是()A.B.C.D.解:∵(±)2=,∴的平方根是±,故选:C.4.(3分)某超市一商品的进价为m元,将其价格提高50%作为零售价,半年后又以6折的价格促销,则此时这一商品的价格为()A.m元B.0.9m元C.0.92m元D.1.04m元解:由题意可得,这一商品的价格为:m(1+50%)×0.6=0.9m(元),故选:B.5.(3分)若|a+3|+(b﹣4)2=0,则a+b的值是()A.﹣1B.7C.﹣7D.1解:根据题意得:a+3=0,b﹣4=0,解得:a=﹣3,b=4,则a+b=﹣3+4=1.故选:D.6.(3分)若代数式2x2+3x+7的值为8,则代数式2x2+3x﹣9的值()A.﹣7B.﹣8C.2D.﹣2解:∵2x2+3x+7=8,∴2x2+3x=1,∴2x2+3x﹣9=1﹣9=﹣8.故选:B.7.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°,则∠AOD与∠COB 一定满足的关系为()A.∠AOD=∠COB B.∠AOD+∠COB=180°C.∠AOD=∠COB D.∠AOD+∠COB=120°解:∵∠AOD=∠AOC+∠COD,∠COB=∠COD+∠DOB,∴∠AOD+∠COB=∠AOC+∠COD+∠COD+∠DOB,=∠AOC+∠COD+∠DOB+∠COD=∠AOB+∠COD∵∠AOB=120°,∠COD=60°,∴∠AOD+∠COB=120°+60°=180°.故选:B.8.(3分)设x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则D.若,则3x=2y解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,故A选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,故B选项不符合题意;C、根据等式的性质2得出,c=0,不成立,故C选项符合题意;D、根据等式的性质2可得出,若=,则3x=2y,故D选项不符合题意;故选:C.9.(3分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.10.(3分)如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB解:设乙行走tmin后第一次追上甲,根据题意,可得:甲的行走路程为65tm,乙的行走路程75tm,当乙第一次追上甲时,270+65t=75t,∴t=27min,此时乙所在位置为:75×27=2025m,2025÷(90×4)=5…225,∴乙在距离B点225m处,即在AD上,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.(4分)数轴上点A表示的数为5,则距离A点4个单位长度的点表示的数为9或1.解:由题意得:5+4=9或5﹣4=1,则距离A点4个单位长度的点表示的数为9或1;故答案为:9或1.12.(4分)若a,b为连续整数,且a<+1<b,则a+b=7解:∵,∴3<<4,∴a=3,b=4,∴a+b=7.故答案为:713.(4分)单项式的系数为﹣.解:单项式的系数为:﹣.故答案为:﹣.14.(4分)已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=10.解:2x+4=x+1,2x﹣x=1﹣4,x=﹣3,把x=﹣3代入2x+a=x﹣1中得:﹣6+a=﹣3﹣1,解得:a=10,故答案为:10.15.(4分)如图,以图中的A、B、C、D为端点的线段共有6条.解:图中的线段有:线段AB,线段AC,线段AD,线段BC,线段BD,线段CD,共6条.故答案为:6.16.(4分)已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过90或110秒两人相距100米.解:设经过x秒两人相距100米,当两人未相遇前,7x+3x+100=1000,解得:x=90;当两人相遇后,7x+3x﹣100=1000,解得:x=110.故答案为:90或110.三.解答题(共8小题,满分66分)17.(6分)计算|﹣2|﹣(1﹣0.5)×解:原式=2﹣××(﹣3)=2+=2.18.(6分)计算:解:=﹣1+4﹣3+2=219.(8分)先化简,再求值:3(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣,y=1.解:原式=6x2y﹣12xy2+3xy2﹣x2y=5x2y﹣9xy2,当x=﹣,y=1时,原式=+=.20.(8分)已知∠AOB=80°,过点O引条射线OC,使得∠AOC的度数是∠BOC度数的2倍小10度,求∠BOC的度数.解:如图1,设∠BOC=α,∴∠AOC=2α﹣10°,∵∠AOB=80°,∴∠AOC+∠BOC=2α﹣10°+α=80°,∴α=30°,∴∠BOC=30°;如图2,设∠BOC=α,∴∠AOC=2α﹣10°,∵∠AOB=80°,21.(8分)足球训练中,为了训练球员快速抢断转身,教练在东西方向的足球场上画了一条直线,要求球员在这条直线上进行折返跑训练.如果约定向西为正,向东为负,将某球员的一组折返跑练习记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点60米?(3)球员在这一组练习过程中,共跑了多少米?解:(1)+40﹣30+50﹣25+25﹣30+15﹣28+16﹣18=15(米)∴球员最后到达的地方在出发点的东方,距出发点15米远;(2)+40﹣30+50=60(米)故答案为:60;(3)|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=40+30+50+25+25+30+15+28+16+18=277(米)∴球员在这一组练习过程中,共跑了277米.22.(10分)为全力推进农村公路快速发展,解决农村“出行难”问题,现将A、B、C三村连通的公路进行硬化改造(如图所示),铺设成水泥路面.已知B村在A村的北偏东65°方向上,∠ABC =100°.(1)C村在B村的什么方向上?(2)甲、乙两个施工队分别从A村、C村向B村施工,两队的施工进度相同,A村到B村的距离比C到B村的距离多600米,甲队用了9天完成铺设任务,乙队用了6天完成铺设任务,求两段公路的总长.解:(1)由题意,得∠P AB=65°,∵表示同一方向的射线是平行的,即AP∥BQ,∴∠P AB+∠QBA=180°,∴∠QBA=180°﹣∠P AB=180°﹣65°=115°,∵∠ABC=100°,∴∠CBQ=∠QBA﹣∠ABC=115°﹣100°=15°,∴C村在B村的北偏西15°方向上;(2)设每个施工队每天铺设x米,由题意,得9x﹣6x=600,解得x=200,∴9x+6x=9×200+6×200=3000,答:两段公路的总长3000米.23.(10分)今年元旦期间,小华的爸爸去买新家具,家具店促销活动规定:①一次性购物不超过3000元,不享受优惠;②一次性购物超过3000元但不超过5000元,一律九折;③一次性购物超过5000元,一律八折;元旦期间小华的爸爸先后两次到该家具店买家具分别付款2600元和3906元.(1)第一次购买了标价多少元的家具?(直接写出结果)(2)如果小华爸爸一次性购买这些家具,应付多少元?(3)在(2)的条件下,能比原来节约几分之几?解:(1)由于3000×0.9=2700>2600所以,应该是按照活动①付款.即按照标价2600元付款.答:第一次购买了标价2600元的家具;(2)因为5000×0.8=4000,3906<4000所以,不可能打八折.设付款39602元的家具的标价是x元,由题意,得0.9x=3906解得x=4340则(4340+2600)×0.8=5552(元)答:如果小华爸爸一次性购买这些家具,应付5552元;(3)2600+3906=6506(元),则能比原来节约:=.24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.。
2019-2020学年浙教版七年级数学上学期期末考试试卷一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. 2 C. D.【答案】B【解析】解:的相反数是2.故选:B.根据只有符号不同的两个数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.宁波市江北区慈城的年糕闻名遐迩若每包标准质量定为300g,实际质量与标准质量相比,超出部分记作正数,不足部分记作负数则下面4个包装中,实际质量最接近标准质量的是A. B. C. D.【答案】D【解析】解:根据题意得:,则实际质量最接近标准质量的是,故选:D.求出各数绝对值,比较大小即可.此题考查了正数与负分数,正确理解正负数的意义是解题关键.3.下列运算正确的是A. B.C. D.【答案】C【解析】解:原式,故A错误;原式,故B错误;原式,故D错误;故选:C.根据合并同类项的定义即可求出答案.本题考查合并同类项,解题的关键是熟练运用合并同类项法则,本题属于基础题型.4.《语文课程标准》规定:年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著那么260万用科学记数法可表示为A. B. C. D.【答案】C【解析】解:260万用科学记数法可表示为.故选:C.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.5.如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】解:经过两点有且只有一条直线,经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选:B.根据“经过两点有且只有一条直线”即可得出结论.本题考查了直线的性质,牢记“经过两点有且只有一条直线”是解题的关键.6.下列一组数:,0,,,,,其中负数的个数有A. 2个B. 3个C. 4个D. 5个【答案】B【解析】解:因为,,,,所以负数有,,,故选:B.各式计算得到结果,利用负数定义判断即可.此题考查了有理数的乘方,算术平方根、正数与负数,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.7.如图,已知线段,点N在AB上,,M是AB中点,那么线段MN的长为A. 6cmB. 5cmC. 4cmD. 3cm【答案】D【解析】解:,M是AB中点,,又,.故选:D.根据M是AB中点,先求出BM的长度,则.本题考查了线段的长短比较,根据点M是AB中点先求出BM的长度是解本题的关键.8.甲、乙两人从同一个地点出发,沿着同一条线路进行赛跑练习,甲每秒跑7米,乙每秒跑米,甲让乙先跑5米,设x秒后甲可以追上乙,则下面列出的方程不正确的是A. B. C. D.【答案】B【解析】解:设x秒后甲可以追上乙,根据题意得:,,.故选:B.设x秒后甲可以追上乙,由路程速度时间结合甲比乙多跑5米,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.与50的算术平方根最接近的整数是A. 7B. 8C. 10D. 25【答案】A【解析】解:,,则与50的算术平方根最接近的整数是7,故选:A.利用算术平方根定义,以及估算的方法判断即可.此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.10.长方形ABCD在数轴上的位置如图所示,点D和点A对应的数分别为0和1,,若长方形ABCD绕着顶点A顺时针方向在数轴上旋转,记作1次翻转翻转1次后,点B所对应的数为3,再按上述方法绕着顶点B翻转1次,点C所对应的数是4,按照上述方法连续翻转循序渐进下列对于A、B、C、D落点所对应数的描述中:点A所对应的数可能为73;点B所对应的数可能为123;点C所对应的数可能为520;点D所对应的数可能为其中正确的有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:每4次翻转为一个循环组依次循环,且矩形周长为6,点D和点A对应的数分别为0和1,,点A所对应的数可能为73;故正确,,点D所对应的数可能为10086,故正确,翻转1次后,点B所对应的数为3,,点B所对应的数可能为123,故正确;再按上述方法绕着顶点B翻转1次,点C所对应的数是4,,点C所对应的数可能为520,故错误,故选:C.根据每4次翻转为一个循环组依次循环,且矩形周长为6,计算出下列,10086,,能不能被6整除,据此判断即可.本题考查了旋转的性质,实数与数轴,矩形的性质,找到题中的规律是解决本题的关键.二、填空题(本大题共8小题,共24.0分)11.计算______.【答案】5【解析】解:的立方等于125,的立方根等于5.故填5.直接根据立方根的定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方由开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符号相同.12.单项式的系数是______,次数是______.【答案】3【解析】解:单项式的系数是,次数是3.利用单项式的系数与单项式的次数定义求解.本题主要考查了单项式,解题的关键是熟记单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.13.若关于x的方程的解为,则______.【答案】7【解析】解:把代入方程,得:,解得:.故答案为:7.根据方程的解的意义,把代入原方程得关于a的方程,解方程即可.本题考查了一元一次方程的解,本题关键是理解方程解的意义:使方程左右两边相等的未知数的值.14.若,则______.【答案】【解析】解:,,,解得,,.故答案为:.先根据非负数的性质求出a、b的值,再代入求出的值即可.本题考查的是非负数的性质,熟知任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0是解答此题的关键.15.如图,两个正方形的边长分别为4,3,两阴影部分的面积分别为a,,则等于______.【答案】7【解析】解:设空白出图形的面积为x,根据题意得:,,则.故答案为:7.设空白出的面积为x,根据题意列出关系式,相减即可求出的值.此题考查了二元一次方程组,根据题意列出关系式是解本题的关键.16.在数轴上,若点A表示,则到点A距离等于2的点所表示的数为______.【答案】0或【解析】解:数轴上有一点A表示的数是,则在数轴上到点A距离为2的点所表示的数有两个:;.故答案为:0或.此题借助数轴用数形结合的方法求解,还要注意该点可以在数轴的左边或右边.此题综合考查了数轴、绝对值的有关内容用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点注意此类题要考虑两种情况.17.如果,那么代数式的值是______.【答案】【解析】解:当时,原式,故答案为:.将代入原式计算可得.此题考查了代数式求值,利用了整体代入的思想,将所求式子适当的变形是解本题的关键.18.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图的小长方形后得图和图,已知大长方形的长为a,两个大长方形未被覆盖部分,分别用阴影表示,则图阴影部分周长与图阴影部分周长的差是______用含a 的代数式表示【答案】【解析】解:设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:,,即,图中阴影部分的周长,图中阴影部分的周长为,则图阴影部分周长与图阴影部分周长之差为:,故答案为:设小长方形的长为x,宽为y,大长方形宽为b,表示出x、y、a、b之间的关系,然后求出阴影部分周长之差即可.此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.三、计算题(本大题共4小题,共31.0分)19.计算:;【答案】解:原式;原式.【解析】将减法转化为加法,再计算加法可得;先计算乘方、减法转化为加法、计算算术平方根,再计算加减可得.本题主要考查实数的运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则.20.先化简,再求值:,其中,.【答案】解:原式,当,时,原式,【解析】根据整式的运算即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.解方程:【答案】解:,,,;,,,,.【解析】依次去括号、移项、合并同类项、系数化为1求解可得;依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.22.某商场在黄金周促销期间规定:商场内所有商品按标价的打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:表示在范围~中,可以取到a,不能取到b.根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:元,实际付款420元.购买商品得到的优惠率购买商品获得的总优惠额商品的标价请问:购买一件标价为500元的商品,顾客的实际付款是多少元?购买一件商品,实际付款375元,那么它的标价为多少元?请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.【答案】400【解析】解:由题意可得:顾客的实际付款故购买一件标价为500元的商品,顾客的实际付款是230元.设商品标价为x元.与两种情况都成立,于是分类讨论抵扣金额为20元时,,则抵扣金额为30元时,,则故当实际付款375元,那么它的标价为790元或者810元.设商品标价为x元,抵扣金额为b元,则优惠率为了得到最高优惠率,则在每一范围内x均取最小值,可以得到当商品标价为400元时,享受到最高的优惠率故答案为400,可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;实际付款375元时,应考虑到与这两种情况的存在,所以分这两种情况讨论;根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.四、解答题(本大题共2小题,共15.0分)23.“环保”是当今世界关注的重要议题通常,距离越近,噪音越大若一辆汽车P在笔直的公路上由点B驶向点C,A是位于公路BC一侧的学校,请完成:画直线BC,画射线AB,画线段AC;汽车P在直线BC上行驶到何处时,学校A受噪音影响最严重?请在图中标出适当标记,并从数学的角度说明理由作图工具不限,保留作图痕迹【答案】解:如图所示:如图所示,过点A作于D,则汽车P在直线BC上行驶到点D处时,学校A 受噪音影响最严重依据为:垂线段最短.【解析】依据直线,射线和线段的概念,即可画出图形;依据垂线段最短,过点A作于D即可.此题主要考查了应用与设计作图,以及垂线段的性质,关键是要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.24.如图,直线AB,CD相交于点平分,于点O.请直接写出图中所有与相等的角:______.若,求的度数.【答案】,【解析】解:直线AB,CD相交于点O,,平分,,,,,与相等的角有,;故答案为:,;,,,,平分,.根据邻补角的定义确定出和,再根据角平分线的定义可得,根据垂直的定义可得,然后根据等角的余角相等求出,从而最后得解;根据垂直的定义得到,根据角平分线的定义求出即可得到结论.本题考查了垂线,余角和补角,对顶角相等的性质,角平分线的定义.。
2019-2020学年七年级数学第一学期期末测试卷满分120分,考试时间100分钟班级__________ 姓名__________ 学号__________一、选择题(本大题有1 0小题,每小题3分,共30分) 1.下列各式中结果为负数的是( ).A .(3)--B .2(3)-C .3--D2. 571亿元用科学记数法表示为( ). A .25.7110⨯元B .65.7110⨯元C .85.7110⨯D .105.7110⨯3.在实数:4,2,π,,2270.1010010001(每2个1之间依次多一个0)中,无理数的个数是( ). A .1个B .2个C .3个D .4个4.把方程20.3120.30.7x x +--=的分母化为整数,结果应为( ). A .231237x x +--= B .1020310237x x +--= C .10103102037x x +--= D .2312037x x +--= 5.下列说法正确的有( ).①23xy -的系数是2-;②1x 不是单项式;③6x y +多项式;④232mn 次数是3次;⑤2x 21--的次数是3次;⑥1x是代数式但不是整式.A .2个B .3个C .4个D .5个6.实验幼儿园给小朋友分苹果,若每个小朋友分3个,则剩1个;若每个小朋友分4个,则少2个,问苹果共有多少个?若设共有x 个苹果,则列出的方程正确的是( ). A .3142x x +=-B .3142x x +=+C .1234x x -+= D .1234x x +-= 7.下列说法正确的有( ).①过两点有且只有一条直线;②连结两点的线段叫做两点间的距离;③两点之间,线段最短;④射线AC 和射线CA 是同一条封线;⑤过一点有一条而且仅有一条直线垂直于已知直线. A .1个B .2个C .3个D .4个8.如图是一组有规律的图案,第1个图案中由4个基础图形组成,第2个图案是由7个基础图形组成……接此规律,则第10个图形中基础图形的个数是( ).123……A .27B .30C .31D .609.如图,在直线上有A ,B ,C ,D 四个点,且23BC AB CD ==,若11AD =,那么CD =( ).A .2B .3C .6D .910.已知2(1)0n -+=,则:1111(1)(1)(2)(2)(2015)(2015)ab a b a b a b ++++++++++值是( ).A .1B .2C .20152016D .20162017二、填空题(本大题有6小题,每小题4分,共24分)11.比较大小:①15-___________0;②12-___________13-.12已知5245α'=︒∠,则它的余角等___________度.13.如果1x =-是关于x 的方理231x m -=-的解,则m 的值是___________.14.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为___________. 15.甲、乙、丙三位同学进行报数游戏,游戏规则为甲报1,乙报2,内报3,再甲报4,乙报5,丙报6依次循环反复下去,与报出的数为2015时游戏结束,若报出的数是偶数,则该同学得1分,当报数结束时甲同学的得分是___________. 16.在“元旦”期间,某超市推出如下购物优惠方案: (1)一性购物在100元(不含100元)以内的,不享受优惠.(2)一性购物在100元(含100元)以上,300元(不含300元)以内的,一律享受九折的优惠. (3)一性购物在300元(含300元)以上时,一律享受八折的优惠,李明在本超市两次购物分别付款80元、252元如果改成在本超市一次性购买与上两次完全相同的商品,则应付款___________元. 三、解答题(本大题有7小题,共66分) 17.(6分)计算:(1)377(60)4126⎛⎫+-⨯- ⎪⎝⎭.(2)201521(3)(4)----18.(8分)解下列方程: (1)35(1)1x x --=.(2)323136x x +-=-. 19.(8分)(1)先化简,再求值:2112423123a a a ⎛⎫⎛⎫-+-+- ⎪ ⎪⎝⎭⎝⎭,其中2a =-;(2)已知1a b +=,求代数式201522a b --的值.20.(10分)某班有学生45人,参加文学社剧的人数比参加书画社团的人数多6人,两个社团都参加的有12人,两个社团都没参加的有15人,问只参加书画社团的有多少人?21.(10分)如图所示,80AOB =︒∠,ON 是AOC ∠的平分线,OM 是BOC ∠的平分数. (1)当30AOC =︒∠时,求MON ∠的度数.(2)当锐角AOC ∠的大小发生改变时,MON ∠的大小是否发生改变?请说明理由.MNCBA O22.(12分)已知数轴上点A ,B ,C 所表示的数分别是x , 6.4-.(1)线段BC 的比为__________,线段BC 的中点D 所表示的数是__________. (2)若8AC =.求x 的值.(3)在数轴上有两个功点P ,Q ,P 的速度为1个单位长度/秒,Q 的速度为2个单位/秒,点P ,Q分别从点B ,C 同时出发,在数轴上运动,则经过多少时间后P ,Q 两点相距4个单位? 23.(12分)某市积极推行农村医疗保险制度,制定了参加医疗保险的农民医疗费用报销规定,享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表:医疗费为12000元,则按标准报销金额为__________元.(2)设某农民一年的实际医疗费为x 元5001000()x <≤,按标准报销的金额为多少元?(3)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费-按标准报销的金额),则该农民医疗费为多少元?2019-2020学年七年级数学第一学期期末测试卷满分120分,考试时间100分钟班级__________ 姓名__________ 学号__________一、选择题(本大题有1 0小题,每小题3分,共30分) 1.下列各式中结果为负数的是( ).A .(3)--B .2(3)-C .3--D 【答案】C【解析】(2)3--=,2(3)9-=3.2. 571亿元用科学记数法表示为( ). A .25.7110⨯元B .65.7110⨯元C .85.7110⨯D .105.7110⨯【答案】D【解析】1057100000000 5.7110=⨯.3.在实数:4,2,π,,2270.1010010001(每2个1之间依次多一个0)中,无理数的个数是( ). A .1个B .2个C .3个D .4个【答案】C【解析】无理数有π,0.1010010001.4.把方程20.3120.30.7x x +--=的分母化为整数,结果应为( ). A .231237x x +--= B .1020310237x x +--= C .10103102037x x +--= D .2312037x x +--= 【答案】B【解析】分子分母同时乘以10,则可化为1020310237x x +--=.5.下列说法正确的有( ).①23xy -的系数是2-;②1x 不是单项式;③6x y +多项式;④232mn 次数是3次;⑤2x 21--的次数是3次;⑥1x是代数式但不是整式.A .2个B .3个C .4个D .5个【答案】B【解析】①系数为23-,②1π是单项式,常数项,⑤21x x --的次系是2次.6.实验幼儿园给小朋友分苹果,若每个小朋友分3个,则剩1个;若每个小朋友分4个,则少2个,问苹果共有多少个?若设共有x 个苹果,则列出的方程正确的是( ). A .3142x x +=- B .3142x x +=+C .1234x x -+= D .1234x x +-= 【答案】C 【解析】由解得1234x x -+=.7.下列说法正确的有( ).①过两点有且只有一条直线;②连结两点的线段叫做两点间的距离;③两点之间,线段最短;④射线AC 和射线CA 是同一条封线;⑤过一点有一条而且仅有一条直线垂直于已知直线. A .1个B .2个C .3个D .4个【答案】B【解析】①③正确,②线段的长度叫距离,⑤若在立体空间内则有无数条.8.如图是一组有规律的图案,第1个图案中由4个基础图形组成,第2个图案是由7个基础图形组成……接此规律,则第10个图形中基础图形的个数是( ).123……A .27B .30C .31D .60【答案】C【解析】由图规律可知第n 个图开中包含了31n +个基础图形,则第10个图形中有31个基础图形.9.如图,在直线上有A ,B ,C ,D 四个点,且23BC AB CD ==,若11AD =,那么CD =( ).A .2B .3C .6D .9【答案】A【解析】设CD x =,则32AB x =,3BC x =,33112AD x x x =++=,2x =.10.已知2(1)0n -+=,则:1111(1)(1)(2)(2)(2015)(2015)ab a b a b a b ++++++++++值是( ). A .1B .2C .20152016D .20162017【答案】D【解析】由2(1)0a -可得10a -=,20b -=,1a =,2b =,则1111()()(2)(1)12a nb n n n n n ==-++++++,则原式11111111201611223342016201720172017=-+-+-++-=-=.二、填空题(本大题有6小题,每小题4分,共24分)11.比较大小:①15-___________0;②12-___________13-.【答案】<,<【解析】12已知5245α'=︒∠,则它的余角等___________度. 【答案】37.25【解析】余角为905245371537.25''︒-︒=︒=︒.13.如果1x =-是关于x 的方理231x m -=-的解,则m 的值是___________.【答案】13-【解析】将1x =-代入得231m --=-,13m =-.14.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为___________.【答案】12(10)1260x x +-=【解析】计划生产总件数1312(10)60x x =+-.15.甲、乙、丙三位同学进行报数游戏,游戏规则为甲报1,乙报2,内报3,再甲报4,乙报5,丙报6依次循环反复下去,与报出的数为2015时游戏结束,若报出的数是偶数,则该同学得1分,当报数结束时甲同学的得分是___________. 【答案】336【解析】由题得甲报的数为31n +,当报到2015时,201536712÷=,则甲共报了672次,由上得当n 为奇数时,所报数为偶数,则共有336次奇数次,则共记336分.16.在“元旦”期间,某超市推出如下购物优惠方案: (1)一性购物在100元(不含100元)以内的,不享受优惠.(2)一性购物在100元(含100元)以上,300元(不含300元)以内的,一律享受九折的优惠. (3)一性购物在300元(含300元)以上时,一律享受八折的优惠,李明在本超市两次购物分别付款80元、252元如果改成在本超市一次性购买与上两次完全相同的商品,则应付款___________元. 【答案】288或316【解析】由题知80100<元未打折,若252为八折优惠时,小时的购物价为280元,若252为九折优惠时,原价应为315元,则小明购物原价为360元或395元.应付288元或316元.三、解答题(本大题有7小题,共66分) 17.(6分)计算:(1)377(60)4126⎛⎫+-⨯- ⎪⎝⎭.(2)201521(3)(4)----【答案】见解析【解析】解:(1)原式45357010=--+=-.(2)原式129215=-+⨯-=. 18.(8分)解下列方程: (1)35(1)1x x --=.(2)323136x x +-=-. 【答案】见解析【解析】解:(1)3551x x -+=,24x -=-,∴2x =.(2)2(32)6(3)x x +=--,6463x x +=-+,75x =,∴57x =. 19.(8分)(1)先化简,再求值:2112423123a a a ⎛⎫⎛⎫-+-+- ⎪ ⎪⎝⎭⎝⎭,其中2a =-;(2)已知1a b +=,求代数式201522a b --的值. 【答案】见解析【解析】解:(1)原式224397a a a a a β=--++-=--+,当2a =-时,原式418721=-++=.(2)原式20152()2013a b =-+=.20.(10分)某班有学生45人,参加文学社剧的人数比参加书画社团的人数多6人,两个社团都参加的有12人,两个社团都没参加的有15人,问只参加书画社团的有多少人? 【答案】见解析【解析】解:设参加书画社团的有x 人,由题意得(6)121545x x ++-+=,解得:18x =,则只参加书画社团的人数18126=-=(人).答:只参加书画社团的人数为6人.21.(10分)如图所示,80AOB =︒∠,ON 是AOC ∠的平分线,OM 是BOC ∠的平分数. (1)当30AOC =︒∠时,求MON ∠的度数.(2)当锐角AOC ∠的大小发生改变时,MON ∠的大小是否发生改变?请说明理由.MNCBA O【答案】见解析【解析】解:(1)∵80AOB =︒∠,30AOC =︒∠,∴8030110AOB AOC +=︒+︒=︒∠∠, ∵OM 是BOC ∠ 的平分线,ON 是AOC ∠的平分线,∴111105522COM BOC ==⨯︒=︒∠∠,11230152CON AOC ==-︒=︒∠∠,∴1110552BOC =⨯︒=︒∠,551540CON =︒-︒=︒∠(或用MOA NOA +∠∠).(2)不改变∵80AOB =︒∠,ON 是AOC ∠的平分线,OM 是BOC ∠的平分线,∴12CON BOC =∠∠,12CON AOC =∠∠∴11()4022MON COM CON BOC AOC AOB =-=-==︒∠∠∠∠∠∠(或用MOA NOA +∠∠或设AOC x =︒∠) . 22.(12分)已知数轴上点A ,B ,C 所表示的数分别是x , 6.4-.(1)线段BC 的比为__________,线段BC 的中点D 所表示的数是__________. (2)若8AC =.求x 的值.(3)在数轴上有两个功点P ,Q ,P 的速度为1个单位长度/秒,Q 的速度为2个单位/秒,点P ,Q分别从点B ,C 同时出发,在数轴上运动,则经过多少时间后P ,Q 两点相距4个单位? 【答案】见解析【解析】解:(1)10,1-.(2)48x -=,解得12x =或4-.(3)设运动时间为t 秒.①若P ,Q同向左运动,则相遇前,2104t t +=-,得2(s)t =,相遇后,2104t t +=+,得143t =;②若P ,Q 同向左运动,则追到前,2104t t -=-,得6t =;追到后,2104t t -=+,得14t =.答:当相向运动2秒或143秒,或者同向左运动6秒或14秒时,P ,Q 两点相距4个单位. 23.(12分)某市积极推行农村医疗保险制度,制定了参加医疗保险的农民医疗费用报销规定,享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表:医疗费为12000元,则按标准报销金额为__________元.(2)设某农民一年的实际医疗费为x 元5001000()x <≤,按标准报销的金额为多少元?(3)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费-按标准报销的金额),则该农民医疗费为多少元? 【答案】见解析【解析】解:(1)1750,8250.(2)由题意得:某农民一年的实际医疗费为x 元5001000()x <≤,按标准销的金额为(500)70%(0.7350)x x -⨯=-元.(3)当该农民当年实际医疗费为10000元时,该农民自付费用为:10000.7(10000500)3350--=元,因26003350<,所以该农民当年实际医疗费为超过500元且不超过10000元.设该农民当年实际医疗费为y 元,由题意得:即0.7(500)2600y y --=,解得,7500y =元,所以,该农民当年实际医疗费为7500元.。
2019-2020学年度初一数学上册期末测试卷一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.33.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=26.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.17.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.210.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数.12.单项式﹣3x n y2是5次单项式,则n=.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于.15.要把一根木条在墙上钉牢,至少需要枚钉子.其中的道理是.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=°.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为5厘米.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.23.解方程:(1)5x﹣3=4x+15(2).24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)25.春节将至,某移动公司计划推出两种新的计费方式,如下表所示:方式1 方式2月租费30元/月0本地通话费0.20元/分钟0.40元/分钟请解决以下两个问题:(通话时间为正整数)(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}黄金集合,集合{﹣1,2017}黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.【考点】绝对值.【专题】计算题.【分析】根据负数的绝对值等于它的相反数求解.【解答】解:因为|﹣2|=2,故选C.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.单项式﹣xy2的系数是()A.1 B.﹣1 C.2 D.3【考点】单项式.【分析】利用单项式系数的定义求解即可.【解答】解:单项式﹣xy2的系数是﹣1,故选:B.【点评】本题主要考查了单项式,解题的关键是熟记单项式系数的定义.3.如图,这是由大小相同的长方体木块搭成的立体图形,则从正面看这个立体图形,得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个长方形,第二层右边一个长方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于()A.30°10′B.60°10′C.59°50′D.60°50′【考点】余角和补角;度分秒的换算.【分析】根据邻补角得出∠1=180°﹣∠2﹣90°,代入求出即可.【解答】解:∵∠2=30°10′,∴∠1=180°﹣∠2﹣90°=180°﹣30°10′﹣90°=59°50′,故选C.【点评】本题考查了余角和补角,度、分、秒之间的换算的应用,能根据图形得出∠1=180°﹣∠2﹣90°是解此题的关键.5.下列运算正确的是()A.5x2y﹣4x2y=x2y B.x﹣y=xyC.x2+3x3=4x5D.5x3﹣2x3=2【考点】合并同类项.【分析】根据同类项和合并同类项的法则逐个判断即可.【解答】解:A、结果是x2y,故本选项正确;B、x和﹣y不能合并,故本选项错误;C、x2和3x3不能合并,故本选项错误;D、结果是3x3,故本选项错误;故选A.【点评】本题考查了合并同类项和同类项定义的应用,能熟记知识点是解此题的关键.6.若关于x的方程ax=3x﹣2的解是x=1,则a的值是()A.﹣1 B.﹣5 C.5 D.1【考点】一元一次方程的解.【分析】把x=1代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.【解答】解:把x=1代入方程ax=3x﹣2得:a=3﹣2,解得:a=1,故选D.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.7.如图,某轮船在O处,测得灯塔A在它北偏东40°的方向上,渔船B在它的东南方向上,则∠AOB 的度数是()A.85°B.90°C.95°D.100°【考点】方向角.【分析】根据方向角的定义以及角度的和差即可求解.【解答】解:∠AOB=180°﹣40°﹣45°=95°.故选C.【点评】本题考查了方向角的定义,正确理解方向角的定义是本题的关键.8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C.D.【考点】数轴.【专题】探究型.【分析】根据有理数m在数轴上对应的点为M,且满足m<1<﹣m,可以判断m的正负和m的绝对值与1的大小,从而可以选出正确选项.【解答】解:∵有理数m在数轴上对应的点为M,且满足m<1<﹣m,∴m<0且|m|>1.故选A.【点评】本题考查数轴,解题的关键是明确题意,可以判断m的正负和m的绝对值与1的大小.9.用[x]表示不大于x的整数中最大的整数,如[2.4]=2,[﹣3.1]=﹣4,请计算[5.5]+[﹣4]=()A.﹣1 B.0 C.1 D.2【考点】有理数大小比较.【专题】推理填空题;新定义.【分析】首先根据[x]表示不大于x的整数中最大的整数,分别求出[5.5]、[﹣4]的值各是多少;然后把它们相加,求出[5.5]+[﹣4]的值是多少即可.【解答】解:∵[x]表示不大于x的整数中最大的整数,∴[5.5]=5,[﹣4]=﹣5,∴[5.5]+[﹣4]=5+(﹣5)=0.故选:B.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)解答此题的关键是分别求出[5.5]、[﹣4]的值各是多少.10.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,以每秒1个单位长度的速度按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,即从OA1B1B2→A2…按此规律,则动点M到达A10点处所需时间为()秒.A.10+55πB.20+55πC.10+110πD.20+110π【考点】规律型:图形的变化类.【分析】观察动点M从O点出发到A4点,得到点M在直线AB上运动了4个单位长度,在以O 为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,然后可得到动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10),然后除以速度即可得到动点M到达A10点处所需时间.【解答】解:动点M从O点出发到A4点,在直线AB上运动了4个单位长度,在以O为圆心的半圆运动了(π•1+π•2+π•3+π•4)单位长度,∵10=4×2.5,∴动点M到达A10点处运动的单位长度=4×2.5+(π•1+π•2+…+π•10)=10+55π;∴动点M到达A10点处运动所需时间=(10+55π)÷1=(10+55π)秒.故选:A.【点评】此题主要考查了图形的变化类:通过特殊图象找到图象变化,归纳总结出运动规律,再利用规律解决问题.也考查了圆的周长公式.二、填空题(本题共10小题,每小题2分,共20分)11.写出一个在﹣1和1之间的整数﹣1,0,1(选其一).【考点】有理数大小比较.【专题】开放型.【分析】根据整数的定义得出在﹣1和1之间的整数是﹣1,0,1即可.【解答】解:一个在﹣1和1之间的整数﹣1,0,1(选其一).故答案为:﹣1,0,1(选其一).【点评】本题考查了有理数的大小比较,根据整数的定义以及所给的范围进行求解是解题的关键.12.单项式﹣3x n y2是5次单项式,则n=3.【考点】单项式.【分析】根据单项式的次数的定义求解.【解答】解:∵单项式﹣3x n y2是5次单项式,∴n+2=5,∴n=3,故答案为:3.【点评】本题考查了单项式的概念,熟记单项式的次数的定义是解题的关键.13.2015年,天猫双十一全球狂欢节销售实际成交值超过912亿,将91200000000用科学记数法表示为9.12×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将91200000000用科学记数法表示为9.12×1010.故答案为:9.12×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于6cm.【考点】两点间的距离.【分析】根据线段的和差,可得DC的长,根据线段中点的性质,可得答案.【解答】解:由线段的和差,得DC=DB﹣CB=7﹣4=3cm,由且D是AC中点,得AC=2DC=6cm,故答案为:6cm.【点评】本题考查了两点间的距离,利用线段的和差得出DC的长是解题关键.15.要把一根木条在墙上钉牢,至少需要两枚钉子.其中的道理是两点确定一条直线.【考点】直线的性质:两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:把一根木条钉牢在墙上,至少需要两枚钉子,其中的道理是:两点确定一条直线.故答案为:两,两点确定一条直线.【点评】本题主要考查了直线的性质,熟记两点确定一条直线是解题的关键.16.如图,∠1=20°,∠AOC=90°,点B,O,D在同一直线上,则∠2=110°.【考点】垂线;对顶角、邻补角.【分析】首先根据余角定义可得∠BOC=90°﹣20°=70°,再根据邻补角互补可得答案.【解答】解:∵∠1=20°,∠AOC=90°,∴∠BOC=90°﹣20°=70°,∵∠2+∠COB=180°,∴∠2=110°,故答案为:110.【点评】此题主要考查了邻补角、余角,关键是掌握邻补角互补.17.若多项式x2+2x的值为5,则多项式2x2+4x+7的值为17.【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取2变形后,将已知多项式的值代入计算即可求出值.【解答】解:∵x2+2x=5,∴原式=2(x2+2x)+7=10+7=17,故答案为:17【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是0.【考点】有理数的混合运算.【专题】图表型.【分析】把x=3代入数值转化器中计算,判断得出结果即可.【解答】解:把x=3代入得:3×2=6<8,则输出结果为6﹣6=0.故答案为:0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为.【考点】由实际问题抽象出一元一次方程.【分析】本题中的相等关系是:步行从甲地到乙地所用时间﹣乘车从甲地到乙地的时间=3.6小时.即:,根据此等式列方程即可.【解答】解:设甲乙两地相距x千米,先利用路程公式分别求得步行和乘公交车所用的时间,再根据等量关系列方程得:.【点评】列方程解应用题的关键是找出题目中的相等关系.20.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过或1或3或9秒时线段PQ的长为5厘米.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】由于BC=4厘米,点P、Q分别从点C、点B同时出发在直线上运动,当线段PQ的长为5厘米时,可分三种情况进行讨论:①点P向左、点Q向右运动;②点P、Q都向右运动;③点P、Q都向左运动;④点P向右、点Q向左运动;都可以根据线段PQ的长为5厘米列出方程,解方程即可.【解答】解:设运动时间为t秒.①如果点P向左、点Q向右运动,由题意,得:t+2t=5﹣4,解得t=;②点P、Q都向右运动,由题意,得:2t﹣t=5﹣4,解得t=1;③点P、Q都向左运动,由题意,得:2t﹣t=5+4,解得t=9.④点P向右、点Q向左运动,由题意,得:2t﹣4+t=5,解得t=3.综上所述,经过或1或3秒时线段PQ的长为5厘米.故答案为或1或3或9.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本题共7小题,第21题8分,第22题6分,第23题8分,第24题6分,第25题6分,第26题6分,第27题10分,共50分)21.计算:(1)﹣10+5﹣3(2)﹣22÷(﹣4)﹣6×(+).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣10﹣3+5=﹣13+5=﹣8;(2)原式=﹣4÷(﹣4)﹣3﹣2=1﹣3﹣2=﹣4.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.先化简,再求值:4a2+2a﹣2(2a2﹣3a+4),其中a=2.【考点】整式的加减—化简求值.【专题】计算题;实数.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值,【解答】解:原式=4a2+2a﹣4a2+6a﹣8=8a﹣8,把a=2代入,得:原式=8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程:(1)5x﹣3=4x+15(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:x=18;(2)去分母得:3(x﹣1)=30﹣2(2x﹣1),去括号得:3x﹣3=30﹣4x+2,移项得:3x+4x=30+2+3,合并得:7x=35,解得:x=5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)如图,已知平面上有四个点A,B,C,D.(1)作射线AD;(2)作直线BC与射线AD交于点E;(3)连接AC,再在AC的延长线上作线段CP=AC.(要求尺规作图,保留作图痕迹,不写作图步骤)【考点】直线、射线、线段.【专题】作图题.【分析】(1)作射线AD,点A为端点;(2)画直线BC,可以向两方无限延伸,画射线AD,以A为端点,两线交点为E;(3)画线段AC,再沿AC方向画延长线,以C为圆心,AC长为半径画弧交AC延长线于点P.【解答】解:如图所示:.【点评】此题主要考查了直线、射线和线段,关键是掌握三线的性质:直线没有端点,可以向两方无限延伸;射线有1个端点,可以向一方无限延伸;线段有2个端点,本身不能向两方无限延伸.25.春节将至,某移动公司计划推出两种新的计费方式,如下表所示:方式1 方式2月租费30元/月0本地通话费0.20元/分钟0.40元/分钟请解决以下两个问题:(通话时间为正整数)(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?【考点】一元一次方程的应用.【分析】(1)按照两种收费方式分别列式计算即可;(2)设出通话时间,表示出两种收费建立方程解答即可.【解答】解:(1)方式一:30+0.2×100=50(元)方式二:0.4×100=40(元)答:按方式一需交费50元,按方式二需交费40元.(2)设通话时间为x分钟,由题意得:30+0.2x=0.4x解得:x=150答:当通话时间为150分钟时,两种计费方式的收费一样多.【点评】此题考查一元一次方程的实际运用,理解两种方式的计算方法是解决问题的关键.26.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)集合{2016}不是黄金集合,集合{﹣1,2017}是黄金集合;(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.【考点】有理数.【专题】新定义.【分析】(1)根据有理数a是集合的元素时,2016﹣a也必是这个集合的元素,这样的集合我们称为黄金集合,从而可以可解答本题;(2)根据2016﹣a,如果a的值越大,则2016﹣a的值越小,从而可以解答本题;(3)根据题意可知黄金集合都是成对出现的,并且这对对应元素的和为2016,然后通过估算即可解答本题.【解答】解:(1)根据题意可得,2016﹣2016=0,而集合{2016}中没有元素0,故{2016}不是黄金集合;∵2016﹣2017=﹣1,∴集合{﹣1,2016}是好的集合.故答案为:不是,是.(2)一个黄金集合中最大的一个元素为4016,则该集合存在最小的元素,该集合最小的元素是﹣2000.∵2016﹣a中a的值越大,则2016﹣a的值越小,∴一个黄金集合中最大的一个元素为4016,则最小的元素为:2016﹣4016=﹣2000.(3)该集合共有24个元素.理由:∵在黄金集合中,如果一个元素为a,则另一个元素为2016﹣a,∴黄金集合中的元素一定是偶数个.∵黄金集合中的每一对对应元素的和为:a+2016﹣a=2016,2016×12=24192,2016×13=26208,又∵一个黄金集合所有元素之和为整数M,且24190<M<24200,∴这个黄金集合中的元素个数为:12×2=24(个).【点评】本题考查了有理数以及探究性问题,关键是明确什么是黄金集合,集合中的各个数都是元素,明确黄金集合中的元素个数都是偶数个,在此还要应用到估算的知识.27.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t= 2.25秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=45°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=3秒时,OM平分∠AOC?②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【考点】角的计算;角平分线的定义.(1)根据角平分线的定义得到∠AOM==22.5°,于是得到t=2.25秒,由于∠MON=90°,【分析】∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM=AOC,列方程即可得到结论;②根据角的和差即可得到结论.【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM==22.5°,∴t=2.25秒,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;故答案为:2.25,45;(2)∠NOC﹣∠AOM=45°,∵∠AON=90°+10t,∴∠NOC=90°+10t﹣45°=45°+10t,∵∠AOM=10t,∴∠NOC﹣∠AOM=45°;(3)①∵∠AOB=5t,∠AOM=10t,∴∠AOC=45°+5t,∵OM平分∠AOC,∴∠AOM=AOC,∴10t=45°+5t,∴t=3秒,故答案为:3.②∠NOC﹣∠AOM=45°.∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,∴∠NOC﹣∠AOM=45°.【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。
2019-2020学年浙教版七年级第一学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.-2的相反数是()A. 2B.C.D.2.下列实数中是无理数的是()A. B. C. D. 03.图中的几何体有()条棱.A. 3B. 4C. 5D. 64.港珠澳大桥总投资1100亿,那么1100亿用科学记数法表示为()A. B. C. D.5.下列代数式中:①3x2-1;②xyz;③;④,单项式的是()A. ①B. ②C. ③D. ④6.计算+的结果是()A. B. 0 C. 4 D. 87.一个代数式减去-2x得-2x2-2x+1,则这个代数式为()A. B. C. D.8.已知x=1是关于x的方程2-ax=x+a的解,则a的值是()A. B. C. D. 19.下列各式的值一定是正数的是()A. B. C. D.10.α与β的度数分别是2m-19和77-m,且α与β都是γ的补角,那么α与β的关系是()A. 不互余且不相等B. 不互余但相等C. 互为余角但不相等D. 互为余角且相等二、填空题(本大题共6小题,共24.0分)11.在-,0,-2,1这四个数中,最小的数是______.12.单项式-x2y的系数是______.13.用代数式表示:“x的一半与y的3倍的差”______.14.23.8°=______(化成度、分、秒的形式)15.一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为______元.16.已知线段AB,点C、点D在直线AB上,并且CD=8,AC:CB=1:2,BD:AB=2:3,则AB=______.三、计算题(本大题共4小题,共36.0分)17.计算:(1)(-)×2+3.(2)22+(-3)2÷.18.先化简,再求值:(2x2+x)-[4x2-(3x2-x)],其中x=-.19.某公司的年销售额为a元,成本为销售额的60%,税额和其他费用合计为销售额的P%.(1)用关于a、P的代数式表示该公司的年利润;(2)若a=8000万,P=7,则该公司的年利润为多少万元?20.如图,已知数轴上点A表示的数为-3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为______;点P表示的数为______(用含t的代数式表示).(2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,P、Q停止运动.设运动时间为t秒.①当点P与点Q重合时,求t的值,并求出此时点P表示的数.②当点P是线段AQ的三等分点时,求t的值.四、解答题(本大题共3小题,共30.0分)21.解方程:(1)2x+3=4x-5(2)-1=.22.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?23.如图,E是直线AC上一点,EF是∠AEB的平分线.(1)如图1,若EG是∠BEC的平分线,求∠GEF的度数;(2)如图2,若GE在∠BEC内,且∠CEG=3∠BEG,∠GEF=75°,求∠BEG的度数.(3)如图3,若GE在∠BEC内,且∠CEG=n∠BEG,∠GEF=α,求∠BEG(用含n、α的代数式表示).答案和解析1.【答案】A【解析】解:根据相反数的定义,-2的相反数是2.故选:A.根据相反数的意义,只有符号不同的数为相反数.本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.【答案】C【解析】解:π为无理数,-1,,0为有理数.故选:C.根据无理数的三种形式求解.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.【答案】D【解析】解:此几何体有6条棱,故选:D.计算出几何体的棱数即可.此题主要考查了认识立体图形,关键是掌握几何体的形状.4.【答案】A【解析】解:1100亿用科学记数法表示为1.1×1011.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】B【解析】解:单项式有②xyz,故选:B.根据单项式的定义对各选项进行逐一分析即可.本题考查的是单项式的定义,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.6.【答案】B【解析】解:原式=-4+4=0,故选:B.原式利用平方根、立方根定义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.【答案】B【解析】解:设这个代数式为A,∴A-(-2x)=-2x2-2x+1,∴A=-2x2-2x+1-2x=-2x2-4x+1,故选:B.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.8.【答案】A【解析】解:把x=1代入方程2-ax=x+a得:2-a=1+a,解得:a=,故选:A.把x=1代入方程2-ax=x+a得到关于a的一元一次方程,解之即可.本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.9.【答案】C【解析】解:A、当a≤0时,≤0,故A错误;B、当a=0时,=0,故B错误;C、∵a≠0,∴a2>0,∴>0,故C正确;D、当a=0时,|a|=0,故D错误;故选:C.根据实数、绝对值以及算术平方根的性质进行选择即可.本题考查了实数,非负数:绝对值和算术平方根,掌握非负数的性质是解题的关键.10.【答案】D【解析】解:∠α与∠β都是∠γ的补角,得∠α=∠β,即2m-19=77-m,解得m=32,2m-19=77-m=45.故选:D.根据补角的性质,可得∠α=∠β,根据解方程,可得答案.本题考查了余角和补角,关键是熟悉补角的性质:等角的补角相等.11.【答案】-2【解析】解:在-,0,-2,1这四个数中,最小的数是-2,故答案为:-2.根据有理数的大小比较法则,即可得出答案.本题考查了有理数的大小比较,属于基础题,解答本题的关键是掌握有理数的大小比较法则.12.【答案】-【解析】解:单项式-x2y的系数是-.故答案为:-.直接利用单项式系数的定义得出答案.此题主要考查了单项式,正确把握单项式系数的确定方法是解题关键.13.【答案】【解析】解:由题意可得:x-3y.故答案为:x-3y.直接利用x的一半为:x,y的3倍为3y,进而得出答案.此题主要考查了列代数式,正确理解题意是解题关键.14.【答案】23°48'【解析】解:23.8°=23°48',故答案为:23°48'.根据度分秒间的进率的进率是60,不到一度的化成分,不到一分的化成秒,可得答案.本题考查了度分秒的换算,大的单位化小的单位乘以进率,不到一度的化成分,不到一分的化成秒.15.【答案】200【解析】解:设这种商品的成本价是x元,则商品的标价为x(1+20%),由题意可得:x×(1+20%)×90%=x+16,解得x=200,即这种商品的成本价是200元.故答案为:200.设这种商品的成本价是x元,则商品的标价为x(1+20%),等量关系为:标价×90%=成本+利润,把相关数值代入求解即可.此题考查一元一次方程的应用,得到售价的等量关系是解决本题的关键,难度一般,注意细心审题.16.【答案】6【解析】解:分两种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=AB,∵BD:AB=2:3,∴BD=,∴CD=BC+BD=,∴AB=6;②当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;③点C、D在线段AB上时,C、D两点重合,不成立.故AB=6.要分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上;②当点C在线段AB的反向延长线时,点D在AB上时;③点C、D在线段AB上时,C、D两点重合,不成立.本题主要考查线段的和差,注意分类讨论.17.【答案】解:(1)原式=-1+3=2;(2)原式=4+6=10.【解析】(1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算除法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:(2x2+x)-[4x2-(3x2-x)]=2x2+x-[4x2-3x2+x]=2x2+x-4x2+3x2-x=x2,当x=-时,原式=(-)2=.【解析】原式去括号合并后,将x的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)根据题意列得:a(1-60%-p%)=a(40%-p%);(2)将a=8000万,P=7代入得:8000×(40%-7%)=8000×33%=2640(万元),答:该公司的年利润为2640万元.【解析】(1)由销售额-成本-税额和其他费用,即可表示出该公司的年利润;(2)将a与P的值代入(1)表示出的式子中,即可求出该公司的年利润.此题考查了整式的加减,以及化简求值,属于一道应用题.弄清题意列出相应的式子是解本题的关键.20.【答案】9 -3+2t【解析】解:(1)由题意知,点B表示的数是-3+12=9,点P表示的数是-3+2t,故答案为:9,-3+2t;(2)①根据题意,得:(1+2)t=12,解得:t=4,∴-3+2t=-3+2×4=5,答:当t=4时,点P与点Q重合,此时点P表示的数为5;②P与Q重合前:当2AP=PQ时,有2t+4t+t=12,解得t=;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后:当AP=2PQ时,有2(8-t)=2(t-4),解得t=6;当2AP=PQ时,有4(8-t)=t-4,解得t=;综上所述,当t=秒或3秒或6秒或秒时,点P是线段AQ的三等分点.(1)根据两点间的距离求解可得;(2)①根据重合前两者的路程和等于AB的长度列方程求解可得;②分点P与点Q重合前和重合后,依据点P是线段AQ的三等分点线段间的数量关系,并据此列出方程求解可得.此题考查了实数与数轴,以及一元一次方程的应用,熟练掌握各自的性质是解本题的关键.21.【答案】解:(1)移项得:2x-4x=-5-3,合并同类项得:-2x=-8,系数化为1得:x=4,(2)方程两边同时乘以21得:3(1-2x)-21=7(x+3),去括号得:3-6x-21=7x+21,移项得:-6x-7x=21+21-3,合并同类项得:-13x=39,系数化为1得:x=-3.【解析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.22.【答案】解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.【解析】设城中有x户人家,根据鹿的总数是100列出方程并解答.考查了一元一次方程的应用.解题的关键是找准等量关系,列出方程.23.【答案】解:(1)∵EF是∠AEB的平分线,∴∠BEF=∠AEB,∵EG是∠BEC的平分线,∴∠BEG=∠BEC,∴∠GEF=∠BEF+∠BEG=(∠AEB+∠BEC)=90°;(2)∵∠GEF=75°,∴∠BEF=75°-∠BEG,∵EF是∠AEB的平分线,∴∠AEB=2∠BEF=150°-2∠BEG,∵∠CEG=3∠BEG,∴∠BEG+3∠BEG+150°-2∠BEG=180°,∴∠BEG=15°;(3)∵∠GEF=α,∴∠BEF=α-∠BEG,∵EF是∠AEB的平分线,∴∠AEB=2∠BEF=2α-2∠BEG,∵∠CEG=n∠BEG,∴∠BEG+n∠BEG+2α-2∠BEG=180°,∴∠BEG=.【解析】(1)根据角平分线的定义得到∠BEF=∠AEB,∠BEG=∠BEC,根据角的和差即可得到结论;(2)根据角平分线的定义和角的和差即可得到结论;(3)由已知条件得到∠BEF=α-∠BEG,由角平分线的定义得到∠AEB=2∠BEF=2α-2∠BEG,于是得到结论.本题考查了角平分线的定义,角的计算,正确的理解题意是解题的关键.。
浙江省金华市东阳市2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.在数−5,1,−3,0中,最小的数是()A. −5B. 1C. −3D. 02.习近平总书记提出了五年“精准扶贫”的战略构想,意味着每年要减贫约11700000人.将11700000用科学记数法表示为()A. 0.117×108B. 1.17×107C. 11.7×106D. 117×1053.一家三人(父亲、母亲、孩子)准备参加旅行团外出旅游,甲旅行社的优惠方案是:父母买全票,收孩子按半价优惠;乙旅行社的优惠方案是:家庭旅游可按团体票计价,即每人均按全价的45费.若这两家旅行社每人的原票价相同,则这两家旅行社的优惠条件().A. 甲更优惠B. 乙更优惠C. 相同D. 与原票价有关4.如图,数轴上点M所表示的数的绝对值是()A. 3B. −3C. ±3D. −135.下列四个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小;④沿桌子的一边看,可将桌子排整齐.其中,可以用“两点之间,线段最短”来解释的现象()A. ①③B. ②③C. ①④D. ②④6.如图所示,已知∠AOC=∠BOC=90°,∠BOE=∠COD,则图中互为余角的角共有()A. 2对B. 3对C. 4对D. 5对7.下列判断中正确的是()A. 6a2bc与bca2不是同类项B. a2bn不是整式2C. 25xyz是三次单项式D. 3x2−y+5xy2是二次三项式8.如图,在线段AB上有C、D两点,CD长度为1cm,AB长为整数,则以A,B,C,D为端点的所有线段长度和不可能为()A. 21cmB. 22cmC. 25cmD. 31cm9.若√18x+2√1x+√2x=20,则x的值等于()2C. √2D. 2√2A. 2B. √2210.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为()个.A. 1835B. 1836C. 1838D. 1842二、填空题(本大题共8小题,共24.0分)11.A、B两地海拔高度分别为100米、−20米,B地比A地低______ 米.12.把53°24′用度表示为______.13. 1.5949精确到百分位的近似值是_____________.14.如图,已知∠AOB=30°,∠BOC=24°,∠AOD=15°,则锐角∠COD的度数____.15.如果a=1,b=−3,那么代数式2a+b的值为______ .2AB,点D为线段BC的中点,则16.如图,若线段AB=6cm,延长BA至点C,使AC=12AD=_______cm.17.已知关于x的一元一次方程x2019+5=2019x+m的解为x=2018,那么关于y的一元一次方程5−y2019−5=2019(5−y)−m的解为______.18.如图,长方形ABCD中有6个形状、大小相同的小长方形,且EF=3,CD=12,则大长方形ABCD的面积为________.三、计算题(本大题共2小题,共14.0分)19.(12−13)÷(−16)+(−2)2×(−7)20.计算:5×(−4)−(−2)0+3÷(−12)四、解答题(本大题共6小题,共52.0分)21.计算题(1)−5−(−19)(2)−14×(−7)+6÷(−2) (3)(−36)×(112+59−718) (4)√1.44+√−83−√(−65)222. 先化简,再求值:2x 2−2(−x 2+2x −1),其中x =−12.23. 解下列方程:(1)5x −3=3x −9(2)x +13=1−2x +1424.如图甲,把一个边长为2的大正方形分成四个同样大小的小正方形,再连结大正方形的四边中点,得到了一个新的正方形(图中阴影部分),求:(1)图甲中阴影部分的面积是多少?边长是多少?(2)如图乙,在数轴上以1个单位长度的线段为边作一个正方形,以表示数1的点为圆心,以正方形对角线长为半径画弧,交数轴负半轴于点A,求点A所表示的数是多少?25.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价100元,乒乓球每盒定价25元.现两家商店搞促销活动,甲商店:每买1副球拍赠1盒乒乓球;乙商店:按定价的9折优惠.某班级需购球拍4副、乒乓球若干盒(不少于4盒).(1)设购买乒乓球的盒数为x(盒),用x的代数式分别表示在两家商店购买的应付款;(2)就乒乓球盒数讨论去哪家商店购买较合算.26.把一副三角尺的直角顶点O重叠在一起.(1)问题发现:如图1所示,当OB平分∠COD时,∠AOD+∠BOC的度数是_________.(2)拓展探究:如图2所示,当OB不平分∠COD时,∠AOD+∠BOC的度数是多少?(3)问题解决:当∠BOC的余角的4倍等于∠AOD时,求∠BOC的度数.-------- 答案与解析 --------1.答案:A解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出在数−5,1,−3,0中,最小的数是哪个即可.解:∵1>0>−3>−5,∴在数−5,1,−3,0中,最小的数是−5.故选:A.2.答案:B解析:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:11700000用科学记数法表示为1.17×107,故选B.3.答案:B解析:本题考查列代数式,关键是分别求出甲、乙旅行社收费费用,相互比较即可得出结果.解:设每人的全票价为x元(x>0),则甲旅行社收费为:2x+0.5x=2.5x元,乙旅行社收费为:3x×45=2.4x元,∵2.5x>2.4x.∴乙比甲更优惠.故选B.4.答案:A解析:本题考查了数轴以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.确定出点M表示的数,求出绝对值即可.【解答】解:点M表示的数为−3,|−3|=3.故选A.5.答案:B解析:此题主要考查了线段的性质,关键是掌握两点之间,线段最短.根据线段的性质进行解答即可.解:①用两根钉子就可以把一根木条固定在墙上;④沿桌子的一边看,可将桌子排整齐用两点确定一条直线来解释;②把弯曲的公路改直,就能够缩短路程;③用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小用“两点之间,线段最短”来解释,故选B.6.答案:C解析:解:∵∠AOC=∠BOC=90°,∠BOE=∠COD,∴∠DOE=∠COE+∠DOC=∠COE+∠BOE=∠BOC=90°,∴∠AOD+∠BOE=90°,∴图中互为余角的角有∠BOE和∠COE,∠DOC和∠COE,∠DOC和∠AOD,∠BOE和∠AOD,共4对,故选C.求出∠DOE=90°,∠AOD+∠BOE=90°,再根据互余的定义判断即可.本题考查了邻补角和互余的应用,解此题的关键是能理解互余的定义,注意:如果∠A+∠B=90°,那么∠A和∠B互余.7.答案:C解析:解:A、6a2bc与bca2是同类项,故本选项错误;B、a2bn2是整式,故本选项错误;C、25xyz是三次单项式,故本选项正确;D、3x2−y+5xy2是三次三项式,故本选项错误;故选C.根据同类项、整式、单项式和多项式的定义分别进行解答即可得出答案.此题考查了多项式,用到的知识点是同类项、整式、单项式和多项式的定义,数与字母的乘积叫单项式,几个单项式的和叫做多项式;同类项是具有相同的字母,相同字母的指数要相等.8.答案:A解析:解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+ AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∴以A、B、C、D为端点的所有线段长度和为3的倍数多1,∴以A、B、C、D为端点的所有线段长度和不可能为21.故选:A.根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB,然后根据CD=1,线段AB的长度是一个正整数,可以解答本题.本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.9.答案:D解析:此题结合二次根式考查一元一次方程,解决的关键是掌握二次根式的应用.解:√18x+2√12x+√2x=20,整理可得(3√2+2×√22+√2)x=20即5√2x=20,解得x=2√2,故选D.10.答案:C解析:解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838,故选:C.由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为2、0×6、3×6×6、2×6×6×6、1×6×6×6×6,然后把它们相加即可.本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.11.答案:120解析:解:100−(−20),=100+20,=120米.故B地比A地低120米.故答案为:120.用最高的高度减去最低的高度,然后根据减去一个是等于加上这个数的相反数计算即可得解.本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.12.答案:53.4°解析:此题考查度分秒的换算,基础题根据度分秒之间60进制的关系计算.【详解】解:∵24′=(24÷60)°=0.4°,∴53∘24′用度表示为53.4∘,故答案为53.4∘.13.答案:1.59解析:本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.把千分位上的数字4进行四舍五入即可.解:1.5949≈1.59(精确到百分位).故答案为1.59.14.答案:9°解析:本题主要考查了角的计算,找出各角之间的关系是解题关键.根据图形可知∠COD=∠BOC−∠BOD=∠BOC−(∠AOB−∠AOD),然后代入各角度数求解即可.解:∠COD=∠BOC−∠BOD=∠BOC−(∠AOB−∠AOD),∵∠AOB=30°,∠BOC=24°,∠AOD=15°,∴∠COD=24°−(30°−15°)=9°.故答案为9°.15.答案:−2解析:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.把a与b的值代入原式计算即可得到结果.,b=−3时,2a+b=1−3=−2,解:当a=12故答案为:−2.16.答案:32解析:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.先根据线段AB=6cm,AC=12AB,求出AC及BC的长,由D为线段BC的中点得出CD的长,根据AD=CD−AC即可得出结论.解:因为线段AB=6cm,AC=12AB,所以AC=12×6=3cm,所以BC=AC+AB=3+6=9cm,因为D为线段BC的中点,所以AD=CD−AC=92−3=32cm,故答案为32.17.答案:2023解析:解:根据题意得:方程x2019+5=2019x+m可整理得:x2019−2019x=m−5,则该方程的解为x=2018,方程5−y2019−5=2019(5−y)−m可整理得:5−y2019−2019(5−y)=5−m,令n=5−y,则原方程可整理得:n2019−2019n=5−m,则n=−2018,即5−y=−2018,解得:y=2023,故答案为:2023.方程x2019+5=2019x+m可整理得:x2019−2019x=m−5,则该方程的解为x=2018,方程5−y2019−5=2019(5−y)−m可整理得:5−y2019−2019(5−y)=5−m,令n=5−y,则原方程可整理得:n2019−2019n=5−m,则n=−2018,得到关于y的一元一次方程,解之即可.本题考查了一元一次方程的解,正确掌握转化思想是解题的关键.18.答案:108解析:此题考查了一元一次方程的应用,关键是根据所给出的图形,找出相等关系,列出方程,求出小长方形的宽和长.设每个小长方形的宽为x,则每个小长方形的长为(x+3),根据一个小长方形的宽+2个小长方形的长=CD,列出方程,求出x的值,再根据长方形的面积公式求解即可.解:设每个小长方形的宽为x,则每个小长方形的长为(x+3),根据题意得:2(x+3)+x=12,解得:x=2,则每小长方形的长为2+3=5,则AD=2+2+5=9,且CD=12,则大长方形的面积是12×9=108.故答案为108.19.答案:解:(12−13)÷(−16)+(−2)2×(−7)=16÷(−16)+4×(−7)=16×(−6)+4×(−7),=−1−28=−29.解析:本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.答案:解:原式=−20−1+3×(−2)=−20−1−6=−27解析:此题考查有理数的混合运算,按照先算乘方,再算乘除,最后算加减的运算顺序计算即可.21.答案:解:(1)原式=−5+19=14;(2)原式=7−3=4;(3)原式=−3−20+14=−9;(4)原式=1.2−2−65=−2.解析:(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式利用平方根、立方根定义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.答案:解:原式=2x 2+2x 2−4x +2=4x 2−4x +2,当x =−12时.原式=4×(−12)2−4×(−12)+2=1+2+2=5.解析:根据去括号法则、合并同类项法则把原式化简,代入计算即可.本题考查的是整式的化简求值,掌握整式的混合运算法则是解题的关键.23.答案:解:(1)2x =−6,x =−3;(2)4(x +1)=12−3(2x +1)4x +4=12−6x −34x +6x =12−3−410x =5x =0.5解析:(1)移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.24.答案:解:(1)S 阴影=12×22=2;设图甲中阴影部分正方形的边长是a ,则a 2=2,∴a=√2,即图甲中阴影部分正方形的边长是√2;(2)由(1)知图乙正方形其对角线长为√2,∴OA=√2−1,∴点A表示的数为−(√2−1)=1−√2.解析:(1)由大正方形分成四个同样大小的小正方形,阴影部分为大正方形的四边中点的连线形成,所以阴影部分为大正方形面积的一半,根据正方形面积公式计算即可;再根据正方形的面积公式易得到阴影部分正方形的边长;(2)由(1)得正方形的对角线的长度为√2,则OA=√2−1,而A点在原点左侧,利用数轴上数的表示方法即可得到点A表示的数;本题考查了正方形的性质:正方形的四边相等,四个角都等于90°,其面积等于边长的平方.也考查了实数与数轴的关系.25.答案:解:(1)在甲商店购买所需费用为100×4+25×(x−4)=25x+300(元),在乙商店购买所需费用为(100×4+25x)×0.9=22.5x+360(元).(2)当甲=乙时,即60+5x=4.5x+72,解得x=24,到两店价格一样;当甲>乙时,即60+5x>4.5x+72,解得x>24,到乙店合算;当甲<乙时,即60+5x<4.5x+72,解得4≤x<24,到甲店合算.解析:本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出分别在甲、乙两店购买所需费用;(2)找准等量关系,正确列出一元一次方程.(1)根据总价=单价×数量结合两家商店的优惠政策,即可用含x的代数式表示出分别在甲、乙两店购买所需费用;(2)令两店购买所需费用相同,即可得出关于x的一元一次方程及不等式,解之即可得出x的值或取值范围,进而可得出省钱的购买方法.26.答案:解:(1)180°;(2)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°.∴∠AOD和∠BOC的和是180°;(3)由上得∠AOD+∠BOC=180°,∴∠AOD=180°−∠BOC,∴180°−∠BOC=4(90°−∠BOC),解得:∠BOC=60°.解析:本题考查角的计算、角平分线的定义、补角、余角的定义.(1)当OB平分∠COD时,∠AOC、∠BOC、∠BOD的度数都是45°,把相关的角的度数相加,即可得∠AOD+∠BOC的度数;(2)当OB不平分∠COD时,把∠AOD表示成∠AOC、∠BOC、∠BOD三个角的和,再加上∠BOC,则∠AOC+∠BOC=90°,∠BOC+∠BOD=90°,即可求∠AOD和∠BOC的和;(3)利用(2)中求得的等量关系,把∠AOD表示成180°−∠BOC,根据题意可得关于∠BOC的方程,解这个方程,可得∠BOC的度数.解:(1)∵OB平分∠COD,∴∠COB=∠BOD=45°,∴∠COA=90°−45°=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°,∴∠AOD和∠BOC的和是180°.故答案为180°;(2)(3)见答案.。
浙教版初中数学试卷2019-2020年七年级数学上册期末复习测试卷学校:__________一、选择题1.(2分)227,π中,有理数有( ) A . 1个B .2个C .3个D .4个2.(2分)若一个数的相反数是5,则这个数是( ) A .5B . -5C .5或-5D .不存在3.(2分)下列判断正确的是 ( )①在数轴上,原点两旁的两个点所表示的数都是互为相反数; ②任何正数必定大于它的倒数;③5ab ,12x +,4a都是整式;④x 2-xy+y 2是二次多项式 A .①②B .②③C .③④D .①④4.(2分)下列各图中,射线OA 表示北偏东42º方向的是 ( ) A BCD5.(2分)用四舍五入法得到的近似数0.002030的有效数字有 ( ) A .6个B .4个C .3个D .2个6.(2分)下列说法正确的是( ) A .倒数等于它本身的数只有1 B .平方等于它本身的数只有1 C .立方等于它本身的数只有1D .正数的绝对值是它本身7.(2分)小明自从学了有理数的运算法则后, 非常得意,编了一个计算程序, 当他输入任何一个有理数时, 显示屏上出现的结果总等于所输入的有理数的平方与1的差, 他第一次输入2-,然后又将所得的结果再次输入,你猜此时显示屏上出现的结果为 ( ) A .6 B .4 C .19 D . 88.(2分)已知a 、b 两数在数轴上的对应点如图所示,则下列结论正确的是( ) A . a b <B . 0ab <C . 0b a -<D . 0a b +>9.(2分)12-的绝对值是( )A .2-B .12-C .2D .1210.(2分) 某个体商贩在一次买卖中同时卖出两件上衣,售价都是 135 元,若按成本计算,其中一件盈利 25%,另一件亏损 25%,则在这次买卖中他( ) A . 赚 18 元B .赚 36 元C . 赔 18 元D . 不赚不赔11.(2分)若一个长方形的周长为 40cm ,一边长为l cm ,则这个长方形的面积是( ) A .(40)l l - cm 2B .1(40)2l l - cm 2C .(402)l l - cm 2D . (20)l l - cm 212.(2分)下列各组中的两项为同类项的是( ) A . 23a b 与223abB .2x y 与2x zC .2mnp 与2mnD .12pq 与qp 13.(2分)某商场为促销将一种商品 A 按标价的九析出售,仍可获利润 10%. 若商品A 的标价是33元,那么该商品的进价为( ) A .31元B .30.2元C .29.7元D .27元14.(2分)国家统计局统计资料显示,2008年第一季度我国国内生产总值为 61491亿元. 用科学记数法表示为(保留 3个有效数字) ( ) A .126.1410⨯B .126.1510⨯C .136.1410⨯D .86149110⨯15.(2分)如果两个有理的和是0,那么这两个有理数一定是( ) A .都为0 B .有一个加数为 0 C .一正一负 D .互为相反数二、填空题16.(2分)某天宁波的最低气温是零下3℃,最高气温是零上8℃,则这一天的最大温差是 ℃.17.(2分)164的立方根是 ,()29-的平方根是 ,是 的平方根.18.(2分)222(2)-+-= , -8÷2×21=______ ,= .19.(2分)用“☆”定义新运算:对于任意实数a 、b ,都有a ☆b=2b +1.例如7☆4=42+1=17,那么5☆3=_________;当m 为实数时,m ☆(m ☆2)=_________. 20.(2分)计算:2591-= ,22158+±= . 21.(2分) 联系生活实际,给出一个能用方程(110%)1050x +=解决的实际问题的背景 .22.(2分)某城市自来水收费实行阶梯水价,收费标准如下表所示,用户 5 月份交水费 45元, 则所用水为 度.月用水量 不超过12度的部分 超过 12度不超过 18度的部分 超过 18度的部分 收费标准(元/度)2.002.503. 0023.(2分)把3+(-8)-(-7)+(-15)写成省略括号的形式是 ,计算结果是 . 评卷人 得分三、解答题24.(7分)已知:A =x 21,B =231y x -,C =23123y x +,求2A B C -+.25.(7分)如图AB =2,AC =5,延长BC 到D,使BD =3BC,求AD 的长.26.(7分) 如图,已知O 是直线MN 上的一点,∠AOB =90°,OC 平分∠BON ,∠3 =24°,求 ∠1 和∠MOC 的度数.27.(7分)在如图所示的数轴上表示数-3、0、52-、1,并比较它们的大小,将它们按从小到大的顺序用“<”连接.ABCD28.(7分)某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利l5%,并可用本和利再投资其它商品,到月底又可获利l0%;如果月末出售可获利30%,但要付仓储费700元,请问根据商场的资金状况,如何购销才能获利最多?29.(7分)在社会实践活动中,某校甲、乙、丙三位同学共同调查了高峰时段宁波二环路十三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下.甲同学说:“二环路的车流量为每小时10000辆.”乙同学:“四环路比三环路每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流晕各是多少.30.(7分)2007年4月,国民体质监测中心等机构开展了青少年形体测评,专家组随机抽查了某市若干名初中学生的坐姿、站姿、走姿情况. 专家将测评数据做了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并根据统计结果绘制了如下两幅不完整的统计图. 请你根据,图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)在这次形体测评中,一共抽查了名学生,如果全市有 10万名初中生,那么全市初中生中,三姿良好的学生约有名;(3)根据统计结果,请你简单谈谈自己的看法.【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.B3.C4.D5.B6.D7.D8.C9.D10.C11.D12.D13.D14.B15.D二、填空题16.1117.14,9±,518.0,-2,2 5 -19. 10,2620.45,±1721.略22.2023.3-8+7-15,-13 评卷人 得分三、解答题24.2A B C -+ =x 21-2(231y x -)+(23123y x +) =x 21-2232y x ++23123y x +=2y . 25.解 ∵BC=AC-AB=5-2=3,∴BD=3BC=3×3=9 ,∴AD=AB+BD=2+9=11 26.∠l=33°,∠MOC=147° 27.在数轴上表示如图 所示.各数的大小关系为53012-<-<< 28.设投入资金为a 元,月初售出可获利:a(1+15%)(1+10%)-a=0.265a 月末售出可获利:[a(1+30%)-700]-a=0.3a-700∴当a=20000元时,获利一样多;当a>20000元时,月末售出获利多;当a<20000元时,月初售出获利29.设高峰时段三环路,的车流量为每小时x 辆,则高峰时段四环路的车流量为每小时(2000x +)辆.根据题意,得3(2000)210000x x -+=⨯,解得11000x =, ∴200013000x +=辆.答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13 000辆. 30.(1)扇形图中填:三姿良好12%. 条形统计图如图所示:(2) 500, 12000;(3)答案不唯一,如:中学生应该坚持锻炼身体,努力纠正坐、立、走中的不良习惯,促进身心健康发育。