解几离心率求解的基本方法
- 格式:doc
- 大小:369.00 KB
- 文档页数:12
离心率根据不同的条件有五种求法:
一、已知圆锥曲线的标准方程或a、c易求时,可2113利用率心率公式e=c/a 来解决。
二、构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于a、c的一元方程,从而5261解得离心率e。
三、采用离心率的定义以及椭圆的定义求解。
四、根据圆4102锥曲线的统一定义求解。
五、构建关于e的不等式,求e的取值范围。
扩展资料:
由于要验证3组数据的可靠性,1653因而也很难严格地评价w值的可靠性。
当提出更新更可靠的值内或蒸气压数据时,在原则上应该重新计算w值。
但过去的一系列方程(其中许多是状态方程)已经使用当时的w值建立了相应的经验关系,对于这些方程仍以使用当时的tO值为宜。
被广泛使用的w值主要来自专用手册,如Reid的专著容或文献,但是Reid的专著提供的数据并非全是实验值,因为蒸气压数据多于临界数据,所以w的数据基本决定于临界数据;当缺乏临界数据时,w的数据一定是估算的。
参考资料来源:百度百科-离心率。
离心率的五种求法椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ace =来解决。
例1:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A.23 B. 23 C. 26 D. 332解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( )A.43 B. 32 C. 21 D. 41 解:由()0,11F 、()0,32F 知 132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A.23 B. 26 C. 23 D 2 解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=a 的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c c a 解得3=a ,1=c ,则33==a c e ,故选A二、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
关于高中数学离心率题型解法的有效解决技巧数学中,离心率是椭圆、双曲线和抛物线的一个重要参数,它决定了曲线的形状。
在高中数学中,离心率题型是一个经典的题型之一,掌握了离心率题型的解法技巧,对于高中数学的学习和考试都是非常有帮助的。
下面我们就来讨论一下关于高中数学离心率题型的有效解决技巧。
我们需要了解什么是离心率。
离心率是一个无量纲的数,它是椭圆、双曲线和抛物线的一个重要参数,用e表示。
对于椭圆和双曲线,离心率的取值范围是0<e<1,对于抛物线,离心率的取值范围是e=1。
离心率反映了轨道形状的“圆形程度”,离心率越接近于0,轨道越圆形;离心率越接近于1,轨道越扁平。
在考试中,离心率题型通常涉及到求解椭圆、双曲线和抛物线的离心率,或者根据已知的离心率求解曲线的性质或参数。
下面我们讨论一下这些题型的解法技巧。
首先是求解椭圆、双曲线和抛物线的离心率。
在求解离心率的过程中,一般需要已知曲线的方程式或参数方程式。
对于椭圆的标准方程x^2/a^2+y^2/b^2=1,离心率的计算公式是e=sqrt(1-b^2/a^2);对于双曲线的标准方程x^2/a^2-y^2/b^2=1,离心率的计算公式是e=sqrt(1+a^2/b^2);对于抛物线的标准方程y^2=4ax,离心率的计算公式是e=1。
其次是根据已知的离心率求解曲线的性质或参数。
在这种题型中,一般需要利用离心率的定义和离心率与曲线性质之间的关系进行推导和证明。
根据椭圆的离心率e,可以推导出椭圆的长轴、短轴、焦点等参数;根据双曲线的离心率e,可以推导出双曲线的渐近线、离心角、离心率等参数;根据抛物线的离心率e,可以推导出抛物线的焦点、准线、对称轴等参数。
对于这些题型,解题的关键在于掌握离心率的定义和离心率与曲线性质之间的关系,灵活运用相关知识进行推导和证明。
在做题时,可以根据已知条件列出方程,然后利用离心率的计算公式或离心率与曲线性质之间的关系进行推导和求解,最终得出结论。
目录题型一:椭圆离心率的求值 2方法一:定义法求离心率 2方法二:运用通径求离心率 3方法三:运用e=e=1+k2λ-1λ+1求离心率 4方法四:运用e=c a=sin(α+β)sinα+sinβ求离心率 4方法五:运用k OM⋅k AB=-b2a2求离心率 5方法六:运用正弦定理、余弦定理、三角函数求离心率 6方法七:运用相似比求离心率 6方法八:求出点的坐标带入椭圆方程建立等式 7方法九:运用几何关系求离心率 7题型二:双曲线离心率的求解 9方法一:定义法关系求离心率 10方法二:运用渐近线求离心率 10方法三:运用e=1+k2λ-1λ+1求离心率 11方法四:运用e=c a=sin(α+β)sinα-sinβ求离心率 11方法五:运用结论k OM•k AB=b2a2求离心率 12方法六:运用几何关系求离心率 13题型三:椭圆、双曲线离心率综合运用 15题型四:根据已知不等式求离心率的取值范围 17题型五:根据顶角建立不等式求离心率范围 18题型六:根据焦半径范围求离心率范围 19题型七:题型七根据渐近线求离心率的取值范围 21离心率问题的7种题型15种方法1离心率问题的7种题型15种方法求离心率常用公式椭圆公式1:e =ca 公式2:e =1-b 2a2证明:e =c a=c 2a 2=a 2−b 2a 2=1-b 2a 2公式3:已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =sin (α+β)sin α+sin β证明:∠PF 1F 2=α,∠PF 2F 1=β,由正弦定理得:F 1F 2 sin (180o −α−β)=PF 2 sin α=PF 1sin β由等比定理得:F 1F 2 sin (α+β)=PF 1 +PF 2 sin α+sin β,即2c sin (α+β)=2a sin α+sin β∴e =c a =sin (α+β)sin α+sin β。
解几求解离心率的基本方法设椭圆x a y ba b 222210+=>>()的左、右焦点分别为F F 12、,如果椭圆上存在点P ,使∠=︒F PF 1290,求离心率e 的取值范围。
解法1:利用曲线范围设P (x ,y ),又知F c F c 1200(,),(,)-,则F P x c y F P x c y F PF F P F P F P F P x c x c y x y c 1212121222229000→→→→→→=+=-∠=︒⊥⋅=+-+=+=()()()(),,,由,知,则,即得将这个方程与椭圆方程联立,消去y ,可解得x a c a b a b F PF x aa c ab a b a2222222122222222229000=--∠=︒≤<≤--<但由椭圆范围及知即可得,即,且从而得,且所以,)c b c a c c a e c a e c a e 2222222221221≥≥-<=≥=<∈[解法2:利用二次方程有实根由椭圆定义知||||||||||||PF PF a PF PF PF PF a 121222122224+=⇒++=又由,知则可得这样,与是方程的两个实根,因此∠=︒+===--+-=F PF PF PF F F c PF PF a c PF PF u au a c 12122212221222122229042220||||||||||()||||()∆=--≥⇒=≥⇒≥4801222222222a a c e c a e ()因此,e ∈[)221 解法3:利用三角函数有界性记∠=∠=PF F PF F 1221αβ,,由正弦定理有||sin ||sin ||sin ||||sin sin ||||||||sin sin sincoscosPF PF F F PF PF F F PF PF a F F c e c a 121212121212902211222122βααβαβαβαβαβ==︒⇒++=+====+=+-=-又,,则有而知从而可得09002452221221≤-<︒≤-<︒<-≤≤<||||cos αβαβαβe解法4:利用焦半径 由焦半径公式得||||||||||PF a ex PF a ex PF PF F F a cx e x a cx e x ca e x c x c a e P x y x a x a 12122212222222222222222222224220=+=-+=+++-+=+==-≠±≤<,又由,所以有即,又点(,)在椭圆上,且,则知,即022212222≤-<∈c a e ae 得,)[解法5:利用基本不等式由椭圆定义,有212a PF PF =+|||| 平方后得42228212221212221222a PF PF PF PF PF PF F F c =++⋅≤+==||||||||(||||)||得c a2212≥ 所以有,)e ∈[221 解法6:巧用图形的几何特性由∠=︒F PF 1290,知点P 在以||F F c 122=为直径的圆上。
求解离心率的范围问题离心率的范围问题是高考的热点问题,各种题型均有涉及,因联系的知识点较多,且处理的思路和方法比较灵活,关键在于如何找到不等关系式,从而得到关于离心率的不等式,进而求其范围.很多同学掌握起来比较困难,本文就解决本类问题常用的处理方法和技巧加以归纳.一、【知识储备】求离心率的方法离心率是刻画圆锥曲线几何特点的一个重要尺度.常用的方法:(1)直接求出a 、c ,求解e :已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解; (2)变用公式,整体求出e :以椭圆为例,如利用e ===e == (3)构造a 、c 的齐次式,解出e :根据题设条件,借助a 、b 、c 之间的关系,构造出a 、c 的齐次式,进而得到关于e 的方程,通过解方程得出离心率e 的值. 二、求解离心率的范围的方法1 借助平面几何图形中的不等关系根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值 等得到不等关系,然后将这些量结合曲线的几何性质用,,a b c 进行表示,进而得到不等式,从而确定离心率 的范围.【例1】 已知椭圆的中心在O ,右焦点为F ,右准线为l ,若在l 上存在点M ,使线段OM 的垂直平分线经过点F ,则椭圆的离心率的取值范围是_____________.【答案】:⎪⎪⎭⎫⎢⎣⎡1,22 x【点评】离心率的范围实质为一个不等式关系,如何构建这种不等关系可以利用方程和垂直平分线性质构建.利用题设和平面几何知识的最值构建不等式往往使问题简单化.【牛刀小试】已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是______________.【答案】2[,1)2【解析】椭圆上长轴端点向圆外两条切线PA,PB ,则两切线形成的角APB ∠最小,若椭圆1C 上存在点P 令切线互相垂直,则只需090APB ∠≤,即045APO α=∠≤, ∴02sin sin 452b a α=≤=,解得222a c ≤,∴212e ≥,即22e ≥,而01e <<, ∴212e ≤<,即2[2e ∈. 2借助题目中给出的不等信息根据试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等,进一步得到离心率的不等关系式,从而求解.Bo F 1FAxy【例2】 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若,AF BF ⊥设,ABF α∠=且,,124ππα⎡⎤∈⎢⎥⎣⎦则椭圆离心率的取值范围是 . 【答案】26[,]23【点评】本题的关键是利用椭圆的定义建立等量关系式2sin 2cos 2c c a αα+=,然后借助已知条件,,124ππα⎡⎤∈⎢⎥⎣⎦利用三角函数的图象求解离心率的范围. 【牛刀小试】过椭圆C :)0(12222>>=+b a b y a x 的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B在x 轴上的射影恰好为右焦点F ,若31<k <21, 则椭圆的离心率的取值范围是.【答案】(32,21)【解析】如图所示:2AF a c =+|,222a c BF a-=,()2222222tan a c BF a c a k BAF AF a c a a c --=∠===++, 又∵31<k <21,∴()221132a c a a c -<<+,∴2111312e e -<<+,解得1223e <<.3 借助函数的值域求解范围根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式,通过确定函数的定义域后,利用函数求值域的方法求解离心率的范围.【例3】已知椭圆221:12x y C m n -=+与双曲线222:1x y C m n+=有相同的焦点,则椭圆1C 的离心率e 的取值范围为_________________. 【答案】2(,1)2【点评】本题根据题设“相同的焦点”建立等量关系,得到函数关系式21112e m =-+,进而根据m 的范围,借助反比例函数求解离心率的范围.【牛刀小试】已知两定点(2,0)A -和(2,0)B ,动点(,)P x y 在直线:3l y x =+上移动,椭圆C 以,A B 为焦点且经过点P ,则椭圆C 的离心率的最大值为______________.【答案】26【解析】由题意可知,2c =,由2c e a a==可知e 最大时需a 最小,由椭圆的定义||||2PA PB a +=,即使得||||PA PB +最小,如图,设(2,0)A -关于直线3y x =+的对称点(,)D x y ,由11202322y x y x -⎧⋅=-⎪⎪+⎨+-+⎪=+⎪⎩,可知(3,1)D -. 所以22||||||||||1526PA PB PD PB DB +=+≥=+=,即226a ≥,所以262a ≥,则2626c e a=≤=. 4 根据椭圆或双曲线自身的性质求范围在求离心率的范围时有时常用椭圆或双曲线自身的性质,如椭圆()2222100x y a b a b+=>>,中,a x a -≤≤,P 是椭圆上任意一点,则1a c PF a c -≤≤+等。
求解离心率范围的四种策略江苏省苏州高新区第一中学 朱亿华圆锥曲线离心率范围的求解问题是高考数学的热点和重点,它除拥有求参数取值范围的一般方法外,还有着其独特的一面,构造含a 、b 、c 的不等式是求离心率e 范围的关键,围绕构造含a 、b 、c 的不等式,寻求适当的求解策略正是本文要着力探讨的重点。
一. 变量分离策略圆锥曲线中变量的变化范围直接影响到离心率e 的大小,通过变量分离来构造关于e 的不等式,结合圆锥曲线中变量的有界性来求离心率e 的范围。
例1.已知椭圆C :12222=+by a x (a>b>0),F 1、F 2是左、右焦点,如果C 上存在一点Q ,使∠F 1QF 2=600,求离心率e 的范围。
解:由余弦定理得: ο60cos 2212221221QF QF QF QF F F -+= 即 2122344QF QF a c -= 设F 1、F 2分别是左、右焦点, Q(x 1,y 1) 则1QF =a+ex 1,2QF =a-ex 1代入上式得))((3441122ex a ex a a c -+-=(注意此等式中变量x 1的有界性,将变量x 1分离出来) 222134e a c x -= 2210a x <≤ 2222340a e a c <-≤∴ 即2222222240443c a a c a c a c⎧-≥⎪≤<⎨-<⎪⎩解之得 易得 121<≤e 二.根的判别式策略由题设构造关于a 、b 、c 的方程,根据该方程根的情况,利用根的判别式列出含a 、b 、c 的不等式,然后向“e ”转化例2.已知椭圆C :12222=+by a x (a>b>0),F 1、F 2是左、右焦点,如果C 上存在一点Q ,使∠F 1QF 2=900,求离心率e 的范围。
解:方法一:同例1 方法二:由椭圆定义得:1QF +2QF =2a 又∠F 1QF 2=900 则 222122214c F F QF QF ==+ 又()221222122142a QF QF QF QF QF QF =++=+ 故12QF QF ⋅=()222c a - 则 1QF 、2QF 是方程的两实根0)(22222=-+-c a at t (利用根的判别式不等式)则 ()()0242222≥-⨯--=∆c a a 即212≥e 又0<e<1 所以]1,22[∈e 三.韦达定理策略题设若涉及直线与曲线的交点位置问题,视情形可根据韦达定理来构造关于a 、b 、c 的不等式,然后向“e ”转化。
离心率的五种求法离心率的五种求法一、直接求出a、c,求解e当已知圆锥曲线的标准方程或a、c易求时,可利用离心率公式e=c/a来解决。
例如,已知双曲线2-x^2/y^2=1(a>c)的一条准线与抛物线y^2=-6x的准线重合,则该双曲线的离心率为(3a^2c^2-13c^2)/(2a^2c)。
解法为:抛物线y=-6x的准线是x=2c^2/3,即双曲线的右准线x=c^2/(a-c)=2c^2/3-1/3.由此得到c=2,a=3,e=c/a=2/3.因此,选D。
变式练1:若椭圆经过原点,且焦点为F1(1,0)、F2(-1,0),则其离心率为√(2/3)。
解法为:由F1(1,0)、F2(-1,0)知2c=2,∴c=1,又∵椭圆过原点,∴a-c=1,a+c=2,解得a=3/2,e=c/a=√(2/3)。
因此,选C。
变式练2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为√13/2.解法为:由题设a=2,2c=6,则c=3,e=c/a=√13/2.因此,选C。
变式练3:点P(-3,1)在椭圆4x^2/a^2+2y^2/b^2=1(a>b)的左准线上,过点P且方向为(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为√113/5.解法为:由题意知,入射光线为y-1=-x/2,关于y=-2的反射光线(对称关系)为y+5=-2(x+3),解得a=3,c=√5,则e=c/a=√113/5.因此,选A。
二、构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于e的一元方程,从而解得离心率e。
1到l1的距离,又AB的长为2a,∴XXX的长为a。
设AB的中点为M,则MF1为椭圆的半长轴,由于F1在x轴右侧,∴F1的横坐标为c,且c>a。
设F1为(c,0),则根据椭圆的统一定义,可得c2x2y2a2c2。
其中c为椭圆的半焦距,由题意可得AD的长为a,即MF1的长为a,又MF1为椭圆的半长轴,∴a=c,代入上式得x2y2122c离心率为e=cacc1故选D。
解几求解离心率的基本方法设椭圆x a y ba b 222210+=>>()的左、右焦点分别为F F 12、,如果椭圆上存在点P ,使∠=︒F PF 1290,求离心率e 的取值范围。
解法1:利用曲线范围设P (x ,y ),又知F c F c 1200(,),(,)-,则F P x c y F P x c y F PF F P F P F P F P x c x c y x y c 1212121222229000→→→→→→=+=-∠=︒⊥⋅=+-+=+=()()()(),,,由,知,则,即得将这个方程与椭圆方程联立,消去y ,可解得x a c a b a b F PF x aa c ab a b a2222222122222222229000=--∠=︒≤<≤--<但由椭圆范围及知即可得,即,且从而得,且所以,)c b c a c c a e c a e c a e 2222222221221≥≥-<=≥=<∈[解法2:利用二次方程有实根由椭圆定义知||||||||||||PF PF a PF PF PF PF a 121222122224+=⇒++=又由,知则可得这样,与是方程的两个实根,因此∠=︒+===--+-=F PF PF PF F F c PF PF a c PF PF u au a c 12122212221222122229042220||||||||||()||||()∆=--≥⇒=≥⇒≥4801222222222a a c e c a e ()因此,e ∈[)221 解法3:利用三角函数有界性记∠=∠=PF F PF F 1221αβ,,由正弦定理有||sin ||sin ||sin ||||sin sin ||||||||sin sin sin cos cosPF PF F F PF PF F F PF PF a F F c e c a 121212121212902211222122βααβαβαβαβαβ==︒⇒++=+====+=+-=-又,,则有而知从而可得09002452221221≤-<︒≤-<︒<-≤≤<||||cos αβαβαβe解法4:利用焦半径 由焦半径公式得||||||||||PF a ex PF a ex PF PF F F a cx e x a cx e x ca e x c x c a e P x y x a x a 12122212222222222222222222224220=+=-+=+++-+=+==-≠±≤<,又由,所以有即,又点(,)在椭圆上,且,则知,即022212222≤-<∈c a e ae 得,)[解法5:利用基本不等式由椭圆定义,有212a PF PF =+|||| 平方后得42228212221212221222a PF PF PF PF PF PF F F c =++⋅≤+==||||||||(||||)||得c a2212≥ 所以有,)e ∈[221 解法6:巧用图形的几何特性由∠=︒F PF 1290,知点P 在以||F F c 122=为直径的圆上。
又点P 在椭圆上,因此该圆与椭圆有公共点P 故有c b c b a c ≥⇒≥=-2222由此可得,)e ∈[221水深火热的演练一、直接求出a c ,或求出a 与b 的比值,以求解e 。
在椭圆中,a c e =,22222221ab a b a ac a c e -=-===1.已知椭圆的长轴长是短轴长的22.已知椭圆两条准线间的距离是焦距的2倍,则其离心率为22 3.若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则椭圆的离心率为21 4.已知矩形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为12。
5.若椭圆)0(,12222>>=+b a by a x 短轴端点为P 满足21PF PF ⊥,则椭圆的离心率为=e 22。
6..已知)0.0(121>>=+n m nm 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为237.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是12⎫⎪⎪⎣⎭8.已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为=e 22。
9.P 是椭圆22a x +22by =1(a >b >0)上一点,21F F 、是椭圆的左右焦点,已知,2,1221αα=∠=∠F PF F PF ,321α=∠PF F 椭圆的离心率为=e 13-10.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若75,151221=∠=∠F PF F PF , 则椭圆的离心率为36 13.椭圆12222=+by a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F到直线AB 的距离等于21∣AF∣,则椭圆的离心率是36。
14.椭圆12222=+by a x (a>b>0)的四个顶点为A 、B 、C 、D ,若四边形ABCD的内切圆恰好过焦点,则椭圆的离心率是215- 15.已知直线L 过椭圆12222=+by a x (a>b>0)的顶点A (a,0)、B(0,b),如果坐标原点到直线L 的距离为2a,则椭圆的离心率是3616.在平面直角坐标系中,椭圆2222x y a b +=1( a b >>0)的焦距为2,以O为圆心,a 为半径作圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e 17.设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-= 的两个实根分别为1x 和2x ,则点12()P x x ,( A )A.必在圆222x y +=内B.必在圆222x y +=上 C.必在圆222x y +=外D.以上三种情形都有可能二、构造a c ,的齐次式,解出e1.已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是53 2.以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是13-3.以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两点,如果∣MF∣=∣MO∣,则椭圆的离心率是13- 4.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 21 5.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是336.设12F F 、分别是椭圆()222210x y a b a b+=>>的左、右焦点,P 是其右(c 为半焦距)的点,且122F F F P =,则椭圆的离心率是2三、寻找特殊图形中的不等关系或解三角形。
1.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是(0,22.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且9021=∠PF F ,椭圆离心率e 的取值范围为⎪⎪⎭⎫⎢⎣⎡1,22 3.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且6021=∠PF F ,椭圆离心率e 的取值范围为⎪⎭⎫⎢⎣⎡1,214.设椭圆12222=+by a x (a>b>0)的两焦点为F 1、F 2,若椭圆上存在一点Q ,使∠F 1QF 2=120º,椭圆离心率e 的取值范围为136<≤e5.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e =38. 6.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是1⎫⎪⎪⎣⎭7.如图,正六边形ABCDEF 的顶点A 、D 为一椭圆的两个焦点,其余四个顶点B 、C 、E 、F关于双曲线离心率一、利用双曲线性质例1 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的左支上,双曲线两焦点为21F F 、,已知|PF |1是点P 到左准线l 的距离d 和|PF |2的比例中项,求双曲线离心率的取值范围。
解析:由题设|PF |d |PF |221=得:|PF ||PF |d |PF |121=。
由双曲线第二定义e d |PF |1=得:e |PF ||PF |12=,由焦半径公式得:e exa exa =+--,则a ee a)e 1(x 2-≤-+-=,即01e 2e 2≥--,解得21e 1+≤<。
归纳:求双曲线离心率取值范围时可先求出双曲线上一点的坐标,再利用性质:若点P 在双曲线1b y a x 2222=-的左支上则a x -≤;若点p 在双曲线1by a x 2222=-的右支上则a x ≥。
二、利用平面几何性质例2 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。
解析:由双曲线第一定义得:a 2|PF ||PF |21=-,与已知|PF |4|PF |21=联立解得:a 32|PF |,a 38|PF |21==,由三角形性质|F F ||PF ||PF |2121≥+得:c 2a 32a 38≥+解得:35e 1≤<。
归纳:求双曲线离心率的取值范围时可利用平面几何性质,如“直角三角形中斜边大于直角边”、“三角形两边之和大于第三边”等构造不等式。
三、利用数形结合 例3 (同例2) 解析:由例2可知:a 32|PF |,a 38|PF |21==,点P 在双曲线右支上由图1可知:a c |PF |1+≥,a c PF -≥||2,即a c a 32,a c a 38-≥+≥,两式相加得:c a 35≥,解得:35e 1≤<。
四、利用均值不等式例4 已知点P 在双曲线)0b ,0a (1by a x 2222>>--的右支上,双曲线两焦点为21F F 、,|PF ||PF |221最小值是a 8,求双曲线离心率的取值范围。