理论力学 Fx1-h
- 格式:ppt
- 大小:1.69 MB
- 文档页数:55
清华理论力学课后答案4篇一:理论力学课后习题答案第4章运动分析基础第4章运动分析基础4-1 小环A套在光滑的钢丝圈上运动,钢丝圈半径为R(如图所示)。
已知小环的初速度为v0,并且在运动过程中小环的速度和加速度成定角θ,且 0 <θ<?,试确定小环2A的运动规律。
22解:asin??a?v,a?v nRsin?R2vdvt1a?dv?acos??v,?dt t2??v00vdtRtan?Rtan?v?ds?v0Rtan?dtRtan??v0tstv0Rtan?ds??0?0Rtan??v0tdtAs?Rtan?lnRtan?Rtan??v0t习题4-1图2??x?3sint?x?4t?2t1.?, 2.?2y?2cos2t?y?3t?1.5t??4-2 已知运动方程如下,试画出轨迹曲线、不同瞬时点的解:1.由已知得 3x = 4y ? v?5?5t?y?3?3t? ?a??5 ??y??3????4x????4?4t?x(1)为匀减速直线运动,轨迹如图(a),其v、a图像从略。
2.由已知,得arcsinx3?12arccosy242(b)习题4-2图化简得轨迹方程:y?2?x9(2)轨迹如图(b),其v、a图像从略。
4-3 点作圆周运动,孤坐标的原点在O点,顺钟向为孤坐标的正方向,运动方程为s?12?Rt2,式中s以厘米计,t以秒计。
轨迹图形和直角坐标的关系如右图所示。
当点第一次到达y坐标值最大的位置时,求点的加速度在x和y轴上的投影。
解:v?s???Rt,at?v???R,an?v??2Rt2y坐标值最大的位置时:?s? ax?at??R,ay???R22R12?Rt2??22R,?t?1习题4-3图4-4 滑块A,用绳索牵引沿水平导轨滑动,绳的另一端绕在半径为r 的鼓轮上,鼓轮以匀角速度ω转动,如图所示。
试求滑块的速度随距离x 的变化规律。
解:设t = 0时AB长度为l0,则t时刻有:r (?t?arcta?arctan)r?l?x2?r2l0x2?r2对时间求导:?r??r2x22xx?r?rx ???xx2?r2???xxx?r224-5 凸轮顶板机构中,偏心凸轮的半径为R,偏心距OC = e,绕轴O以等角速转动,从而带动顶板A作平移。
C(a-2)D R F(a-3)(b-1)DR第1篇 工程静力学基础第1章 受力分析概述1-1 图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。
试将同一力F 分别对两坐标系进行分解和投影,并比较分力与力的投影。
习题1-1图解:(a )图(c ):11 s i n c o s j i F ααF F +=分力:11 cos i F αF x = , 11 s i n j F αF y =投影:αcos 1F F x = , αs i n 1F F y =讨论:ϕ= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。
(b )图(d ): 分力:22)cot sin cos (i F ϕααF F x -= ,22sin sin j F ϕαF y = 投影:αcos 2F F x = , )cos(2αϕ-=F F y讨论:ϕ≠90°时,投影与分量的模不等。
1-2 试画出图a 和b习题1-2图比较:图(a-1)与图(b-1)不同,因两者之F R D 值大小也不同。
(c ) 22x(d )1-3 试画出图示各物体的受力图。
习题1-3图B或(a-2)B(a-1)(b-1)F Ay(c-1) 或(b-2)(e-1)F(a)1-4 图a 所示为三角架结构。
荷载F 1作用在铰B 上。
杆AB 不计自重,杆BC 自重为W 。
试画出b 、c 、d 所示的隔离体的受力图,并加以讨论。
习题1-4图1-5 图示刚性构件ABC 由销钉A 和拉杆D 支撑,在构件C 点作用有一水平力F 。
试问如果将力F 沿其作用线移至D 或E (如图示),是否会改为销钉A 的受力状况。
解:由受力图1-5a ,1-5b 和1-5c 分析可知,F 从C 移至E ,A 端受力不变,这是因为力F 在自身刚体ABC 上滑移;而F 从C 移至D,则A 端受力改变,因为HG 与ABC 为不同的刚体。
(f-1) 'A(f-2)1O(f-3)F F'F 1(d-2)F yB 21(c-1)F A B1B FDx y(b-2)1F'(b-3)F yB 2 A A B1B F习题1-5图AxF(b-3)E D(a-3)B(b-2)(b-1)F 'CBC(c)'AxF1-6 试画出图示连续梁中的AC 和CD 梁的受力图。
仅供个人学习参考哈工大理论力学(I )第7版部分习题答案1-2两个老师都有布置的题目2-3?2-6?2-14?2-?20?2-30?6-2?6-4?7-9??7-10?7-17?7-21?8-5?8-8?8-16?8-24?10-4?10-6?11-5?11-15?10-3以下题为老师布置必做题目1-1(i,j ),1-2(e,k)2-3,2-6,2-14,2-20,2-306-2,6-47-9,7-10,7-17,7-21,7-268-5,8-8(瞬心后留),8-16,8-2410-3,10-410-611-5,11-1512-10,12-15,综4,15,16,1813-11,13-15,13-166-2图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5m 在铅垂面内转动,杆AB=0.8m ,A 端为铰链,B 端有放置工件的框架。
在机构运动时,工件的速度恒为0.05m/s ,杆AB 始终铅垂。
设运动开始时,角0=?。
求运动过程中角?与时间的关系,以及点B 的轨迹方程。
10-3如图所示水平面上放1均质三棱柱A ,在其斜面上又放1均质三棱柱B 。
两三棱柱的横截面均为直角三角形。
三棱柱A 的质量为mA 三棱柱B 质量mB 的3倍,其尺寸如图所示。
设各处摩擦不计,初始时系统静止。
求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。
11-4解取A 、B 两三棱柱组成1质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。
由于在水平方向无外力作用,且开始时系统处于静止,故系统 质心位置在水平方向守恒。
设A 、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c 所示。
两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4如图所示,均质杆AB ,长l ,直立在光滑的水平面上。
求它从铅直位无初速地倒下时,端点A 相对图b 所示坐标系的轨迹。