二次函数的定义讲义
- 格式:docx
- 大小:197.60 KB
- 文档页数:10
二 次 函 数1、二次函数的常见解析式及其三要素①a 的符号决定抛物线的的开口大小、形状相同;如果a 相同,那么抛物线的开口方向、开口大小完全相同。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .③二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=, ④当0>a 时⇔抛物线开口向上⇔顶点为其最低点⇔a b ac y 最小442-=;当0<a 时⇔抛物线开口向下⇔顶点为其最高点⇔ab ac y 最大442-=。
2、二次函数的性质:⑴增减性:以对称轴h x =为界,具有双向性。
⑵对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线的对称轴垂直平分对称点的连线. 即:若A 、B 两点是抛物线上关于对称轴h x =对称的两点,则有:①B A y y =;②h x x B A =+2(即abx x -=+21)。
基础练习题:1、抛物线y = - 2 ( x – 3 )2– 7 对称轴 x = , 顶点坐标为 ; 2、抛物线 y = 2x 2+ 12x – 25的对称轴为 x = , 顶点坐标为 . 3、若将二次函数y =x 2-2x + 3配方为y =(x -h )2+ k 的形式,则y =4、抛物线y = - 4(x +2)2+5的对称轴是 。
5、抛物线 y = - 3x 2+ 5x - 4开口 , y = 4x 2– 6x + 5 开口 .6、已知P 1(11y ,x )、P 2(22y ,x )、P 3(33y ,x )是抛物线3x 2x y 2--=上的三个点,若321x x x 1<<<,则321y y y 、、的大小关系是____________。
7、已知函数y =x 2-2x -2的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥38、如图中有相同对称轴的两条抛物线,下列关系不正确的是( ) A h=m B k=n C k >n D h >0,k >0 9、抛物线4)2(22-+-+=m x m x y 的顶点在原点,则m= 10、如图抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点的坐标是(3,0),则A 点的坐标是 11、请选择一组你喜欢的的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:(1)开口向下,(2)当时,y 随x 的增大而增大;当时,y 随x的增大而减小。
学科教师辅导讲义体系搭建(a >0)(a <0) 开口向上 开口向下 直线x =-b2a直线x =-b2a⎛⎫b 4ac -b 2⎛⎫b 4ac -b 2(3)当Δ>0时,有两个不同的交点;当Δ=0时,有一个交点;当Δc<0时,抛物线与x轴没有交点.考点一:二次函数的定义例1、若y=(1+m)是二次函数,且开口向下,则m的值为()A.±3B.﹣3C.+3D.0例2、下列函数关系中,可以看做二次函数y=ax2+bx+c模型的是()A.在一定距离内,汽车行驶的速度与行驶的时间的关系B.我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与半径之间的关系考点二:二次函数的图像与性质例1、一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.例2、如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0 ;③4ac﹣b2<8a ;④<a<;⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤例3、将抛物线y=2(x+1)2﹣2向右平移2个单位,再向上平移2个单位所得新抛物线的表达式()A.y=2(x+3)2B.y=(x+3)2C.y=(x﹣1)2D.y=2(x﹣1)2考点三:二次函数的表达式例1、把二次函数y=﹣x2﹣x+3配方化为y=a(x﹣h)2+k形式()A.y=﹣(x﹣2)2+2B.y=﹣(x﹣2)2+4C.y=﹣(x+2)2+4D.y=﹣(x﹣1)2+3例2、二次函数图象如图所示,则其解析式是()A.y=﹣x2+2x+4B.y=x2+2x+4C.y=﹣x2﹣2x+4D.y=﹣x2+2x+3考点四:二次函数的应用例1、便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y=﹣2(x﹣20)2+1558,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是()A.20B.1508C.1550D.1558例2、如图,正六边形的边长为10,分别以正六边形的顶点A、B、C、D、E、F为圆心,画6个全等的圆.若圆的半径为x,且0<x≤5,阴影部分的面积为y,反映y与x之间函数关系的大致图形是()A.B.C.D.例3、某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?考点五:二次函数与一元二次方程例1、若二次函数y=ax2+bx+c(a<0)的图象如图所示,且关于x的方程ax2+bx+c=k有两个不相等的实根,则常数k的取值范围是()A.0<k<4B.﹣3<k<1C.k<﹣3或k>1D.k<4例2、如图,一段抛物线y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3,…如此进行下去,得到一条“波浪线”.若点P(41,m)在此“波浪线”上,m的值为()A.2B.﹣2C.0D.实战演练➢课堂狙击1、若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3B.a≠﹣1或a≠0C.a=3D.a=﹣12、下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体的质量x之间的关系B.当距离一定时,汽车行驶的时间t与速度v之间的关系C.矩形的面积S和矩形的宽x之间的关系D.等边三角形的面积S与边长x之间的关系3、二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.直线x=﹣3B.直线x=﹣2C.直线x=﹣1D.直线x=04、如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.45、将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13D.y=(x+1)2﹣3 6、二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中可能的图象为()A.B.C.D.7、如图,已知抛物线y=ax2+bx+c与轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.正确的是()A.①③B.②③C.②④D.③④8、若二次函数y=﹣x2+2x+m2+1的最大值为4,则实数m的值为()A.B.C.±2D.±19、某宾馆有客房50间,当每间客房每天的定价为220元时,客房会全部住满;当每间客房每天的定价增加10元时,就会有一间客房空闲,设每间客房每天的定价增加x元时,客房入住数为y间.(1)求y与x的函数关系式(不要求写出x的取值范围);(2)如果每间客房入住后每天的各种支出为40元,不考虑其他因素,则该宾馆每间客房每天的定价为多少时利润最大?10、如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一动点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.➢课后反击1、若y=(1+m)是二次函数,且开口向下,则m的值为()A.±3B.﹣3C.+3D.02、在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()A.B.C.D.3、如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个4、已知二次函数y=ax2+4x+a﹣1的最小值为2,则a的值为()A.3B.﹣1C.4D.4或﹣15、若二次函数的图象的顶点坐标为(2,﹣1),且抛物线过(0,3),则二次函数的解析式是()A.y=﹣(x﹣2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=(x﹣2)2﹣1D.y=(x﹣2)2﹣16、已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3D.y=3(x+1)2+37、某种产品的成本是120元/件,试销阶段每件产品的售价x(元)与产品的日销量y(件)之间关系如表所示:x/元130150165y/件70 50 35若日销售量y是销售价x的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?8、已知关于x的一元二次方程x2﹣(2m+1)x+2m=0.(1)求证:不论m为任何实数时,该方程总有两个实数根;(2)若抛物线y=x2﹣(2m+1)x+2m与x轴交于A、B两点(点A与点B在y轴异侧),且AB=4,求此抛物线的表达式;(3)在(2)的条件下,若抛物线y=x2﹣(2m+1)x+2m向上平移b个单位长度后,所得到的图象与直线y=x没有交点,请直接写出b的取值范围.直击中考1、【2016•广州】对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点2、【2016•赤峰】函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A.B.C.D.3、【2016•临沂】二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2 D.抛物线的对称轴是x=﹣4、【2016•兰州】二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1B.2C.3D.45、【2016•武汉】某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.重点回顾二次函数的定义;二次函数的图像与性质;二次函数的表达式与应用;二次函数与一元二次方程。
一、二次函数概念:1.二次函数的概念:一般地,形如2=++(a b cy ax bx ca≠)的函数,叫做二次,,是常数,0函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c=++的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
Array2.2y ax c=+的性质:上加下减。
3.()2y a x h =-的性质:左加右减。
4.()2y a x h k=-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成mc bx axy +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成cm x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k=-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k aa-=-=,.五、二次函数2y ax bx c=++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2b x a=-时,y有最小值244ac b a-.2.当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a<-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2b x a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=---;y ax bx c=++关于x轴对称后,得到的解析式是2y a x b x c()2=---;y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k2. 关于y轴对称2=-+;y ax bx c=++关于y轴对称后,得到的解析式是2y a x b x c()2=++;y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k3. 关于原点对称2=-+-;y ax bx c=++关于原点对称后,得到的解析式是2y a x b x c()2y a x hk =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c=++关于顶点对称后,得到的解析式是222by ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k=-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2=++中a,b,c的符号,或由二次函数中a,b,y ax bx cc的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)++≠本身就是所含字母x的ax bx c a二Array次函数;下面以0a>时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )0 x o-1 x 0 x A B C D 3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数的图像和性质----基础概念1.二次函数的定义:形如的函数叫二次函数。
限制条件:(1)自变量的最高次数是;(2)二次项系数。
2.二次函数的解析式(表达式)——三种形式,重点是前两种。
(1)一般式:;(2)顶点式:y=a(x-h)2+k(a≠0),此时二次函数的顶点坐标为(,),对称轴是。
注意:顶点形式的最大优点是直接从解析式看出顶点坐标和对称轴,比较方便。
离开它用一般形式也可以。
※(3)交点式(两点式):设x1、x2是抛物线与x轴的两个交点的横坐标,则y=a(x-x1)(x-x2)此时抛物线的对称轴为直线x=221xx+。
注意:(1)当顶点在X轴上(即抛物线与X轴只有一个交点(0,x1))时,函数表达式为。
这个交点是抛物线的什么点?(2)是不是任意一个二次函数都可以写成交点形式?在什么条件下才有交点式?(3)利用这种形式只是解决相关问题要简便一些,直接用一般形式也可以。
实际上利用一般形式和顶点坐标公式可以解决二次函数的多数问题。
▲三种二次函数的解析式的联系:针对一般形式而言,顶点式:y=a(x-h)2+k(a≠0)中,h= ;k=。
当Δ=b2-4ac 时,才有两根式。
3、二次函数y=ax2+bx+c(a≠0)的图象与性质 ----抛物线的特征---待定系数a,b,c的作用二次函数y=ax2+bx+c(a≠0)的图象是一条线,它是一个对称图形,抛物线与对称轴的交点叫抛物线的点。
不过这个结论成立的条件是自变量的取值范围是。
(1)形状----开口大小。
由决定,越大,开口越。
(2)开口方向:由决定。
当a>0时,函数开口方向向;当a<0时,函数开口方向向;(3)对称轴:直线x= ;注意:一次函数的图象是直线,但直线的解析式不一定是一次函数。
例如与坐标轴平行(垂直)的直线的解析式是X=K,或Y=K,它们为什么不是一次函数呢?▲(4)顶点坐标公式:(,);利用顶点坐标公式的注意事项:当求得顶点横坐标后,可以用纵坐标公式,也可以不用纵坐标公式,而直接将横坐标代入哪里求得纵坐标。
二次函数复习讲义一、基本概念1. 二次函数的定义二次函数是指一个变量的二次多项式方程所定义的函数。
其一般形式可表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。
2. 二次函数的图像二次函数的图像是一条开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的顶点坐标为(-b/2a, f(-b/2a))。
3. 二次函数的对称轴和顶点二次函数的对称轴是与抛物线对称的直线,由x = -b/2a表示。
抛物线的顶点坐标即为对称轴的交点。
二、性质与变换1. 平移变换二次函数可通过平移变换进行移动。
设二次函数为f(x),平移的规则如下:a)水平平移:f(x + h)表示将抛物线沿x轴正方向移动h个单位;b)垂直平移:f(x) + k将抛物线沿y轴正方向移动k个单位。
2. 拉伸与压缩变换二次函数可通过拉伸或压缩变换进行缩放。
设二次函数为f(x),变换的规则如下:a)水平拉伸或压缩:f(mx)表示将抛物线的横坐标压缩到原来的1/m倍;b)垂直拉伸或压缩:m*f(x)表示将抛物线的纵坐标拉伸到原来的m 倍。
3. 顶点形式与标准形式的转换二次函数可以通过顶点形式和标准形式之间的转换来说明抛物线的性质。
顶点形式可表示为:f(x) = a(x - h)^2 + k其中,(h, k)为抛物线的顶点坐标。
标准形式可表示为:f(x) = ax^2 + bx + c其中,(h, k)为对称轴的交点。
三、特殊二次函数1. 平方函数平方函数是一种特殊的二次函数,其形式为:f(x) = x^2平方函数的图像是一条开口向上的抛物线,其顶点在(0, 0)处。
2. 平移后的二次函数对于二次函数f(x) = ax^2 + bx + c,进行平移变换可以得到新的二次函数g(x) = a(x - h)^2 + k。
3. 开口向上与开口向下的二次函数当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
二次函数【知识点1】二次函数的图象和性质1.二次函数的定义与解析式(1)二次函数的定义:形如f(x)=ax2+bx+c (a≠0)的函数叫做二次函数.(2)二次函数解析式的三种形式①一般式:f(x)=___ ax2+bx+c (a≠0)___ . 已知三个点的坐标时,宜用一般式.②顶点式:f(x)=__ a(x-m)2+n(a≠0)____.已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③零点式:f(x)=___ a(x-x1)(x-x2) (a≠0)_ _.已知二次函数与x轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便.点评:.求二次函数解析式的方法:待定系数法.根据所给条件的特征,可选择一般式、顶点式或零点式中的一种来求.2.二次函数的图象和性质11,第 1 页共12 页第 2 页 共 12 页M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ|a |. 【知识点2】二次函数、一元二次方程及一元二次不等式之间的关系当0∆<⇔()f x =2ax bx c ++的图像与x 轴无交点⇔20ax bx c ++=无实根⇔20(0)ax bx c ++><的解集为∅或者是R;当0∆=⇔()f x =2ax bx c ++的图像与x 轴相切⇔20ax bx c ++=有两个相等的实根⇔20(0)ax bx c ++><的解集为∅或者是R;当0∆>⇔()f x =2ax bx c ++的图像与x 轴有两个不同的交点⇔20ax bx c ++=有两个不等的实根⇔ 20(0)ax bx c ++><的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞。
【知识点3】一元二次方程20ax bx c ++=实根分布的充要条件一般地对于含有字母的一元二次方程20ax bx c ++=的实根分布问题,用图象求解,有如下结论:令()f x =2ax bx c ++(0a >)(同理讨论0a <的结论)(1) x 1<α, x 2<α ,则0/(2)()0b a f αα∆≥⎧⎪-<⎨⎪>⎩; (2) x 1>α, x 2>α,则0/(2)()0b a f αα∆≥⎧⎪->⎨⎪>⎩(3) α<x 1<β, α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4) x 1<α, x 2>β (α<β),则()0()0f f αβ<⎧⎨<⎩(5)若f(x)=0在区间( α ,β)内只有一个实根,则有0))(<(βαf f点评:(1)讨论二次函数的区间根的分布情况一般需从三方面考虑:①判别式; ②区间端点的函数值的符号; ③对称轴与区间的相对位置. 在讨论过程中,注意应用数形结合的思想.【知识点4】二次函数()02≠++=a c bx ax y 在闭区间[]q p ,上的最值二次函数()02≠++=a c bx ax y 在闭区间[]q p ,上的最值一般分为三种情况讨论:第 3 页 共 12 页(1)若对称轴2bx a=-在区间左边,则函数在此区间上具有单调性,只需比较(),()f p f q 的大小即可决定函数的最大(小)值;(或利用函数的单调性直接决定函数的最大(小)值) (2)若对称轴2bx a=-在区间右边,则函数在此区间上具有单调性,只需比较(),()f p f q 的大小即可决定函数的最大(小)值; (3)若对称轴2b x a =-在区间内,则()2bf a-是函数的最小值(0a >)或最大值(0a <),再比较(),()f p f q 的大小决定函数的最大(小)值。
第二十六章 二次函数 知识点1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 10.几种特殊的二次函数的图像特征如下: 函数解析式开口方向 对称轴顶点坐标2ax y =当0>a 时开口向上当0<a 时开口向下0=x (y 轴)(0,0) k ax y +=20=x (y 轴) (0, k ) ()2h x a y -=h x =(h ,0) ()k h x a y +-=2h x =(h ,k )c bx ax y ++=2ab x 2-= (ab ac a b 4422--,) 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121常见题型1.抛物线y =x 2+2x -2的顶点坐标是 ( )A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3)2.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A.ab >0,c >0 B.ab >0,c <0 C.ab <0,c >0 D.ab<0,c <0CA EF BD第2,3题图 第4题图3.二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( ) A .a >0,b <0,c >0 B .a <0,b <0,c >0 C .a <0,b >0,c <0 D .a <0,b >0,c >04.如图,已知∆ABC 中,BC=8,BC 上的高h =4,D 为BC 上一点,EF BC //,交AB 于点E ,交AC 于点F (EF 不过A 、B ),设E 到BC 的距离为x ,则∆DEF 的面积y 关于x 的函数的图象大致为( )DO 424O424O 424O 424AyxBC2482,484EF xEF x y x x -=⇒=-∴=-+ 5.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为 .6.已知二次函数11)(2k 2--+=x kx y 与x 轴交点的横坐标为1x 、2x (21x x <),则对于下列结论:①当x =-2时,y =1;②当2x x >时,y >0;③方程011)(22=-+-x k kx 有两个不相等的实数根1x 、2x ;④11-<x ,12>-x ;⑤22114k x x k+-=,其中所有正确的结论是 (只需填写序号).7.已知直线()02≠+-=b b x y 与x 轴交于点A ,与y 轴交于点B ;一抛物线的解析式为()c x b x y ++-=102.(1)若该抛物线过点B ,且它的顶点P 在直线b x y +-=2上,试确定这条抛物线的解析式; (2)过点B 作直线BC ⊥AB 交x 轴交于点C ,若抛物线的对称轴恰好过C 点,试确定直线b x y +-=2的解析式.8.有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-. (1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.9.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答: yO x⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?⑵第三天12时这头骆驼的体温是多少? ⑶兴趣小组又在研究中发现,图中10时到 22时的曲线是抛物线,求该抛物线的解 析式.10.已知抛物线4)334(2+++=x a ax y 与x 轴交于A 、 B 两点,与y 轴交于点C .是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出a 的值;若不存在,请说明理由.11.已知抛物线y =-x 2+mx -m +2.(1)若抛物线与x 轴的两个交点A 、B 分别在原点的两侧,并且AB =5,试求m 的值; (2)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且 △MNC 的面积等于27,试求m 的值.12.已知:抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0).(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.14.已知二次函数22-=ax y 的图象经过点(1,-1).求这个二次函数的解析式,并判断该函数图象与x 轴的交点的个数.15.卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨度AB =5 cm ,拱高OC =0.9 cm ,线段DE 表示大桥拱内桥长,DE ∥AB ,如图(1).在比例图上,以直线AB 为x 轴,抛物线的对称轴为y 轴,以1 cm 作为数轴的单位长度,建立平面直角坐标系,如图(2).(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;(2)如果DE 与AB 的距离OM =0.45 cm ,求卢浦大桥拱内实际桥长(备用数据:4.12 ,计算结果精确到1米).16.已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图.二次函数c bx ax y ++=2(a ≠0)的图象经过点A 、B ,与y 轴相交于点C .(1)a 、c 的符号之间有何关系?(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证a 、c 互为倒数;(3)在(2)的条件下,如果b =-4,34=AB ,求a 、c 的值.同步练习1.如果抛物线y =-2x 2+mx -3的顶点在x 轴正半轴上,则m =______.2.二次函数y =-2x 2+x -21,当x =______时,y 有最______值,为______.它的图象与x 轴______交点(填“有”或“没有”). 3.已知二次函数y =ax 2+bx +c 的图象如图1所示.①这个二次函数的表达式是y =______;②当x =______时,y =3;③根据图象回答:当x ______时,y >0.xy 1 12 -1OxyA B O图1图24.某一元二次方程的两个根分别为x 1=-2,x 2=5,请写出一个经过点(-2,0),(5,0)两点二次函数的表达式:______.(写出一个符合要求的即可)5.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是______,此时关于一元二次方程2x 2-6x +m =0的解的情况是______(填“有解”或“无解”).6.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为______(只写一个),此类函数都有______值(填“最大”“最小”).7.半径为r 的圆,如果半径增加m ,那么新圆的面积S 与m 之间的函数关系式是______.8.如图2,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m).二、选择题(每小题3分,共24分)1.某产品进货单价为90元,按100元一个售出时,能售500个,如果这种商品涨价1元,其销售额就减少10个,为了获得最大利润,其单价应定为A.130元B.120元C.110元D.100元2.已知抛物线y =ax 2+bx +c 如图3所示,则关于x 的方程ax 2+bx +c -8=0的根的情况是A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根3.抛物线y =kx 2-7x -7的图象和x 轴有交点,则k 的取值范围是A.k >-47B.k ≥-47且k ≠0C.k ≥-47D.k >-47且k ≠04.关于二次函数y =ax 2+bx +c 的图象有下列命题,其中是假命题的个数是①当c =0时,函数的图象经过原点 ②当b =0时,函数的图象关于y轴对称 ③函数的图象最高点的纵坐标是ab ac 442④当c >0且函数的图象开口向下时,方程ax 2+bx +c =0必有两个不相等的实根A.0个B.1个C.2个D.3个5.某产品进货单价为90元,按100元一个售出时,能售500个,如果这种商品涨价1元,其销售额就减少10个,为了获得最大利润,其单价应定为A.130元B.120元C.110元D.100元6.已知抛物线y =ax 2+bx +c 如图3所示,则关于x 的方程ax 2+bx +c -8=0的根的情况是A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根7.抛物线y =kx 2-7x -7的图象和x 轴有交点,则k 的取值范围是A.k >-47B.k ≥-47且k ≠0C.k ≥-47D.k >-47且k ≠08.如图4所示,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为A.424m B.6 m C.15 m D.25 mxy 8O5 m 12m ABCDx y2.412O图3 图4 图59.二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,△ABC 的面积为A.1B.3C.4D.610.无论m 为任何实数,二次函数y =x 2+(2-m )x +m 的图象总过的点是A.(-1,0)B.(1,0)C.(-1,3)D.(1,3)11.为了备战2008奥运会,中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门横梁底侧高)入网.若足球运行的路线是抛物线y =ax 2+bx +c (如图5所示),则下列结论正确的是①a <-601 ②-601<a <0 ③a -b +c >0 ④0<b <-12a A.①③ B.①④C.②③D.②④三、简答题(共20分) 1.二次函数的图象经过()()()4,2,4,0,0,4--C B A 三点:① 求这个函数的解析式② 求函数图顶点的坐标③ 求抛物线与坐标轴的交点围成的三角形的面积。
二次函数一.知识梳理1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。
一元二次方程的标准式:ax2+bx+c=0 (a≠0)其中: ax2叫做二次项, bx叫做一次项, c叫做常数项a是二次项系数,b是一次项系数2、一元二次方程根的判别式(二次项系数不为0):“△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac△=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2△=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2△=b2-4ac<0 <====> 方程没有实数根。
注:“<====>” 是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<03、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。
ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有:因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。
注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。
5、一元二次方程的求根公式:注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。
一、求二次函数的三种形式:1. 一般式:y=ax 2+bx+c ,(已知三个点)顶点坐标(-2b a,244ac b a -)2.顶点式:y=a (x -h )2+k ,(已知顶点坐标对称轴)顶点坐标(h ,k )3.交点式:y=a(x- x 1)(x- x 2),(有交点的情况)与x 轴的两个交点坐标x 1,x 2对称轴为221x x h +=二、a b c 作用分析│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b同号时,对称轴x=-2b <0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=-2ba>0,即对称轴在y 轴右侧,c•的符号决定了抛物线与y 轴交点的位置,c=0c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.二.专题精练专题一:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况. 例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值y=ax2+bx+c(a>0)y=ax 2+bx+c(a<0)由a,b 和c 的符号确定由a,b 和c 的符号确定 a>0,开口向上a<0,开口向下在对称轴的左侧,y 随着x 的增大而减小. .在对称轴的左侧,y 随着x 的增大而增大. 在.⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=直线abx 2-=直线考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( )专项练习31.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.图2图1(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题二、探究几何图形中的二次函数关系【例11】在梯形ABCD 中,AD BC ∥,6AB DC AD ===,60ABC ∠=o,点E F,分别在线段AD DC ,上(点E 与点A D ,不重合),且120BEF ∠=o,设AE x =,DF y =.(1)求y 与x 的函数表达式;(2)当x 为何值时,y 有最大值,最大值是多少课堂检测1、二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( )A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位;C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位2、在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( ) A .y =2(x -2)2+ 2 B .y =2(x + 2)2-2 C .y =2(x -2)2-2D .y =2(x + 2)2+ 2A ED FCBO xy1-1A 3、二次函数21(4)52y x =-+的开口方向、对称轴、顶点坐标分别是( ) A .向上、直线x=4、(4,5) B .向上、直线x=-4、(-4,5) C .向上、直线x=4、(4,-5) D .向下、直线x=-4、(-4,5) 4、二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )A 、a <0B 、abc >0C 、c b a ++>0D 、ac b 42->05、函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )6、二次函数2(0)y ax bx c a =++≠的图象如图4所示, 则下列说法不正确的是( ) A .240b ac -> B .0a >C .0c >D .02ba-<7、如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( ). A .②④ B .①④ C .②③ D .①③8、已知关于x 的函数同时满足下列三个条件:①函数的图象不经过第二象限;②当2<x 时,对应的函数值0<y ;③当2<x 时,函数值y 随x 的增大而增大.你认为符合要求的函数的解析式可以是: (写出一个即可).9、如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B. (1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标...《专题五。
二次函数中考冲刺专题一、二次函数的概念和图像1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。
由C 、M 、D 三点可粗略地画出二次函数的草图。
如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。
二、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
如果没有交点,则不能这样表示。
三、二次函数的性质2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:a 表示开口方向:a >0时,抛物线开口向上a <0时,抛物线开口向下b 与对称轴有关:对称轴为x=ab2-c 表示抛物线与y 轴的交点坐标:(0,c ) 3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。
二次函数最全面的复习讲义学习目标1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.知识网络要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数. 要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.二、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式:(1)一般式:(a,b,c为常数,a≠0);(2)顶点式:(a,h,k为常数,a≠0);(3)交点式:(,为抛物线与x轴交点的横坐标,a≠0).三、2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如或,或,其中a≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.类型一:二次函数的概念1、下列函数中,是关于x的二次函数的是__________________(填序号).(1)y=-3x2;(2);(3)y=3x2-4-x3; (4);(5)y=ax2+3x+6;(6).【变式1】下列函数中,是二次函数的是( )A. B. C.D.【变式2】如果函数是二次函数,求m的值类型二、求二次函数的解析式1.已知二次函数的图象经过原点及点,且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为______________.【答案】或.【变式】已知:抛物线y=x2+bx+c的对称轴为x=1,交x轴于点A、B(A在B的左侧),且AB=4,交y轴于点C.求此抛物线的函数解析式及其顶点M的坐标.【答案】∵对称轴x=1,且AB=4∴抛物线与x轴的交点为:A(-1,0),B(3,0)∴y=x2-2x-3为所求,∵x=1时y=-4,∴M(1,-4).课堂练习1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式【答案与解析】本题已知三点求解析式,可用一般式.设此二次函数的解析式为y=ax2+bx+c(a≠0),由题意得:解得∴所求的二次函数的解析式为y=-x2+3x-5.2 在直角坐标平面内,二次函数图象的顶点为,且过点.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.【答案】(1).(2)令,得,解方程,得,.∴二次函数图象与轴的两个交点坐标分别为和.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与轴的另一个交点坐标为3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为(a≠0),由图象知函数图象经过点(3,0),(0,3).则有解得∴抛物线解析式为.解法二:设抛物线解析式为(a≠0).由图象知,抛物线与x轴两交点为(-1,0),(3,0).则有,即.又,∴∴抛抛物物解析式为.课后巩固练习一、选择题1. 二次函数的图象经过点A(0,0),B(-1,-11),C(1,9)三点,则它的解析式为( ).A. B. C. D.2.二次函数有( )A.最小值-5 B.最大值-5 C.最小值-6 D.最大值-63.把抛物线y=3x2先向上平移2个单位再向右平移3个单位,所得的抛物线是()A.y=3(x-3)2+2B.y=3(x+3)2+2C.y=3(x-3)2-2D.y=3(x+3)2-24.如图所示,已知抛物线y=的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数的图象向右平移a(a>0)个单位,得到函数的图象,则a的值为( )A.1 B.2 C.3 D.46.若二次函数的x与y的部分对应值如下表:x -7 -6 -5 -4 -3 -2Y -27 -13 -3 3 5 3则当x=1时,y的值为 ( )A.5 B.-3 C.-13 D.-27二、填空题7.抛物线的图象如图所示,则此抛物线的解析式为______________.第7题第10题8.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),则这个二次函数的关系式为______.9.已知抛物线.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数的图象经过点(-1,0),(1,-2),当y 随x的增大而增大时,x的取值范围是______________.11.已知二次函数(a≠0)中自变量x和函数值y的部分对应值如下表:…-1 0 1 ……-2 -2 0 …则该二次函数的解析式为______________.12.已知抛物线的顶点坐标为(3,-2),且与x轴两交点间的距离为4,则抛物线的解析式为______________.三、解答题13.根据下列条件,分别求出对应的二次函数解析式.(1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点;(3)已知抛物线与x轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y=-2x+2分别与x轴、y轴交于点A,B,以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,求过A、B、C三点的抛物线的解析式.15.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在的直线为轴和轴建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数(k >0)的图象与AC边交于点E.(1)求证:AE×AO=BF×BO;(2)若点E的坐标为(2,4),求经过点O,E,F三点的抛物线的解析式.一、选择题1.【答案】D;【解析】设抛物线的解析式为(a≠0),将A、B、C三点代入解得,,c=0.2.【答案】C;【解析】首先将一般式通过配方化成顶点式,即,∵a=1>0,∴x=-1时,.3.【答案】A;4.【答案】D;【解析】∵点A,B均在抛物线上,且AB与x轴平行,∴点A与点B关于对称轴x=2对称,又∵A(0,3),∴AB=4,y B=y A=3,∴点B的坐标为(4,3).5.【答案】B;【解析】抛物线的平移可看成顶点坐标的平移,的顶点坐标是,的顶点坐标是,∴移动的距离.6.【答案】D;【解析】此题如果先用待定系数法求出二次函数解析式,再将x=1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x=-4和x=-2时,函数值均为3,由此可知对称轴为x=-3,再由对称性可知x=1的函数值必和x=-7的函数值相等,而x=-7时y=-27.∴x=1时,y=-27.二、填空题7.【答案】;【解析】由图象知抛物线与x轴两交点为(3,0),(-1,0),则.8.【答案】;【解析】设顶点式,再把点(0,0)代入所设的顶点式里即可.9.【答案】(1)x=1;(1,3);【解析】代入对称轴公式和顶点公式即可.10.【答案】;【解析】将(-1,0),(1,-2)代入中得b=-1,∴对称轴为,在对称轴的右侧,即时,y随x的增大而增大.11.【答案】;【解析】此题以表格的形式给出x、y的一些对应值.要认真分析表格中的每一对x、y值,从中选出较简单的三对x、y的值即为(-1,-2),(0,-2),(1,0),再设一般式,用待定系数法求解.设二次函数解析式为(a≠0)由表知解得∴二次函数解析式为.12.【答案】【解析】由题意知抛物线过点(1,0)和(5,0).三、解答题13.【答案与解析】(1)∵顶点是(1,2),∴设(a≠0).又∵过点(2,3),∴,∴a=1.∴,即.(2)设二次函数解析式为(a≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得解得故所求的函数解析式为.(3)由抛物线与x轴交于点(1,0),(3,0),∴设y=a(x-1)(x-3)(a≠0),又∵过点(0,-3),∴a(0-1)(0-3)=-3,∴a=-1,∴y=-(x-1)(x-3),即.14.【答案与解析】过C点作CD⊥x轴于D.在y=-2x+2中,分别令y=0,x=0,得点A的坐标为(1,0),点B的坐标为(0,2).由AB=AC,∠BAC=90°,得△BAO≌△ACD,∴AD=OB=2,CD=AO=1,∴C点的坐标为(3,1).设所求抛物线的解析式为,则有,解得,∴所求抛物线的解析式为.15.【答案与解析】(1)证明:由题意知,点E、F均在反比例函数图象上,且在第一象限,所以AE×AO=k,BF×BO=k,从而AE×AO=BF×BO.(2)将点E的坐标为(2,4)代入反比例函数得k=8,所以反比例函数的解析式为.∵OB=6,∴当x=6时,点F的坐标为.设过点O、E、F三点的二次函数表达式为(a≠0),将点0(0,0),E(2,4),三点的坐标代入表达式得:解得∴经过O、E、F 三点的抛物线的解析式为:.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0)(轴) (0,)(,0)(,)() 2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.类型一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=x2的图象对称轴左侧上有两点A(a,15),B(b,),则a-b_______0(填“>”、“<”或“=”号).【解析】将A(a,15),分别代入y=x2中得:∴;,又A、B在抛物线对称轴左侧,∴a<0,b<0,即,∴【变式1】二次函数与的形状相同,开口大小一样,开口方向相反,则______.【答案】2.【变式2】不计算比较大小:函数的图象右侧上有两点A(a,15),B(b,0.5),则a______b.答案】>.2.已知y=(m+1)x是二次函数且其图象开口向上,求m的值和函数解析式.【答案与解析】由题意,,解得m=1,∴二次函数的解析式为:y=.3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y轴对称的抛物线.【答案与解析】(1)由于待求抛物线形状相同,开口方向相反,可知二次项系数为,又顶点坐标是(0,-5),故常数项,所以所求抛物线为.(2)因为抛物线的顶点为(0,1),所以其解析式可设为,又∵该抛物线过点(3,-2),∴,解得.∴所求抛物线为.4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x____时,随x的增大而减小;当x____时,函数y有最____值,其最____值是____.【答案与解析】函数与的图象如图所示:(1)下;l ;(2)向下;y轴;(0,1);(3)>0;=0;大;大;1.课堂练习一、选择题1. 关于函数y=的图象,则下列判断中正确的是()A. 若a、b互为相反数,则x=a与x=b的函数值相等;B. 对于同一个自变量x,有两个函数值与它对应;C. 对任一个实数y,有两个x和它对应;D. 对任意实数x,都有y>0.2. 下列函数中,开口向上的是()A. B. C. D.3. 把抛物线向上平移1个单位,所得到抛物线的函数表达式为().A.B.C.D.4. 下列函数中,当x<0时,y值随x值的增大而增大的是()A. B. C. D.5. 在同一坐标系中,作出,,的图象,它们的共同点是().A.关于y轴对称,抛物线的开口向上B.关于y轴对称,抛物线的开口向下C.关于y轴对称,抛物线的顶点都是原点D.关于原点对称,抛物线的顶点都是原点6. 晴天时,汽车的刹车距离s (m)与开始刹车时的速度v(m/s)之间满足二次函数,若汽车某次的刹车距离为2.25m,则开始刹车时的速度为( ).A. 10m/sB. 15m/sC. 20m/sD. 25m/s二、填空题7. 已知抛物线的解析式为y=-3x2,它的开口向______,对称轴为______,顶点坐标是________,当x>0时,y随x的增大而________.8. 若函数y=ax2过点(2,9),则a=________.9. 已知抛物线y=x2上有一点A,A点的横坐标是-1,过点A作AB∥x轴,交抛物线于另一点B,则△AOB的面积为________.10. 写出一个过点(1,2)的函数解析式_________________.11. 函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.12. 若对于任意实数x,二次函数的值总是非负数,则a的取值范围是____________.三、解答题13.已知是二次函数,且当x>0时,y随x的增大而增大.(1)求m的值;(2)画出函数的图象.14. 已知抛物线经过A(-2,-8).(1)求此抛物线的函数解析式;(2)判断B(-1,-4)是否在此抛物线上?(3)求此抛物线上纵坐标为-6的点的坐标.15.函数y=ax2 (a≠0)的图象与直线y=2x-3交于点(1,b).(1)求a和b的值;(2)求抛物线y=ax2的解析式,并求顶点坐标和对称轴;(3)x取何值时,y随x的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.一、选择题1.【答案】A.2.【答案】D;【解析】开口方向由二次项系数a决定,a>0,抛物线开口向上;a<0,抛物线开口向下.3.【答案】A;【解析】由抛物线的图象知其顶点坐标为(0,0),将它向上平移1个单位后,抛物线的顶点坐标为(0,1),因此所得抛物线的解析式为.4.【答案】B;【解析】根据抛物线的图象的性质,当a<0时,在对称轴(x=0)的左侧,y值随x值的增大而增大,所以答案为B.5. 【答案】C;【解析】y=2x2,y=-2x2,的图象都是关于y轴对称的,其顶点坐标都是(0,0).6. 【答案】B;【解析】当s=2.25时,,v=15.二、填空题7.【答案】下;y轴;(0,0);减小;8.【答案】;【解析】将点(2,9)代入解析式中求a.9.【答案】1 ;【解析】由抛物线的对称性可知A(-1,1),B(1,1),则.10.【答案】【解析】答案不唯一.11.【答案】,,.【解析】先比较,|1|,|3|的大小关系,由|a|越大开口越小,可确定从里向外的三条抛物线所对应的函数依次是y=3x2,y=x2,.12.【答案】a>-1;【解析】二次函数的值总是非负数,则抛物线必然开口向上,所以a+1>0.三、解答题13. 【解析】解:(1)∵为二次函数,且当x>0时,y随x的增大而增大,∴,∴,∴m=1.(2)由(1)得这个二次函数解析式为,自变量x的取值范围是全体实数,可以用描点法画出这个函数的图象.如图所示.14. 【解析】解:(1)∵抛物线经过A(-2,-8),∴-8=4a,∴a=-2,抛物线的解析式为:.(2)当x=-1时,y=-2=-2≠-4,∴点B(-1,-4)不在此抛物线上.(3)当y=-6时,即,得,∴此抛物线上纵坐标为-6的点的坐标是(,-6)和(,-6).15. 【解析】解:(1)将x=1,y=b代入y=2x-3,得b=-1,所以交点坐标是(1,-1).将x=1,y=-1代入y=ax2,得a=-1,所以a=-1,b=-1.(2)抛物线的解析式为y=-x2,顶点坐标为(0,0),对称轴为直线x=0(即y轴).(3)当x<0时,y随x的增大而增大.(4)设直线y=- 2与抛物线y=-x2相交于A、B两点,抛物线顶点为O(0,0).由,,得∴A(,-2),B(,-2).∴AB=|-(-)|=2,高=|-2|=2.∴.类型二、二次函数y=a(x-h)^2+k(a≠0)的图象与性质1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向;(3)以x轴为对称轴,将原抛物线开口方向反向.【答案与解析】抛物线的顶点为(1,3).(1)将抛物线向左平移2个单位,再向下平移3个单位后,顶点为(-1,0),而开口方向和形状不变,所以a=2,得到抛物线解析式为.(2)顶点不动为(1,3),开口方向反向,则,所得抛物线解析式为.(3)因为新顶点与原顶点(1,3)关于x轴对称,故新顶点应为(1,-3).又∵抛物线开口反向,∴.故所得抛物线解析式为.2.把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,求b,c的值.【答案与解析】根据题意得,y=(x-4)2-2=x2-8x+14, 所以【变式】二次函数的图象可以看作是二次函数的图象向平移4个单位,再向平移3个单位得到的.【答案】上;右.3.已知与的图象交于A、B两点,其中A(0,-1),B(1,0).(1)确定此二次函数和直线的解析式;(2)当时,写出自变量x的取值范围.【答案与解析】(1)∵,的图象交于A、B两点,∴且解得且∴二次函数的解析式为,直线方程为.(2)画出它们的图象如图所示,由图象知当x<0或x>1时,.4.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,-m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是x=-).【答案与解析】解:(1)设二次函数的解析式为y=a(x-2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=-.所以二次函数的解析式为y=-(x-2)2+1;(2)∵抛物线y=-(x-2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴S△AOB =×4×1=2;(3)∵点P(m,-m)(m≠0)为抛物线y=-(x-2)2+1上一点,∴-m=-(m-2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,-8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(-4,-8).如下图.课堂巩固一、选择题1.抛物线的顶点坐标是()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)2.函数y=x2+2x+1写成y=a(x-h)2+k的形式是()A.y=(x-1)2+2 B.y=(x-1)2+C.y=(x-1)2-3D.y=(x+2)2-13.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )A.y=(x+3)2-2B.y=(x-3)2+2C.y=(x-3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为()A. B.C.D.5.由二次函数,可知()A.其图象的开口向下B.其图象的对称轴为直线C.其最小值为1D.当时,y随x的增大而增大6.在同一坐标系中,一次函数与二次函数的图象可能是()二、填空题7. 抛物线y=-(•x+•3)2•-•5•的开口向_______,•对称轴是________,•顶点坐标是_______.8.已知抛物线y=-2(x+1)2-3,如果y随x的增大而减小,那么x的取值范围是_ _____.9.抛物线y=-3(2x2-1)的开口方向是_____,对称轴是_____.10.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为.11.将抛物线向上平移3个单位,再向右平移4个单位得到的抛物线是__ _____.12.抛物线的顶点为C,已知的图象经过点C,则这个一次函数的图象与两坐标轴所围成的三角形面积为________.三、解答题13.已知抛物线的顶点(-1,-2),且图象经过(1,10),求抛物线的解析式.14. 已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线;(1)求出a,h,k的值;(2)在同一直角坐标系中,画出与的图象;(3)观察的图象,当________时,y随x的增大而增大;当________时,函数y有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y的取值范围吗?15.已知抛物线的顶点为A,原点为O,该抛物线交y轴正半轴于点B,且,求:(1)此抛物线所对应的函数关系式;(2)x为何值时,y随x增大而减小?一、选择题1.【答案】D;【解析】由顶点式可求顶点,由得,此时,.2.【答案】D;【解析】通过配方即可得到结论.3.【答案】A;【解析】抛物线y=x2向左平移3个单位得到y=(x+3)2,再向下平移2个单位后,所得的抛物线表达式是y=(x+3)2-2.4.【答案】B【解析】通过配方即可得到结论.5.【答案】C;【解析】可画草图进行判断.6.【答案】C;【解析】A中的符号不吻合,B中抛物线开口不正确.D中直线与y轴交点不正确.二、填空题7.【答案】下;直线x=-3 ;(-3,-5);【解析】由二次函数的图象性质可得结论.8.【答案】x≥-1;【解析】由解析式可得抛物线的开口向下,对称轴是x=-1,对称轴的右边是y随x的增大而减小,故x≥-1.9.【答案】向下,y轴;10.【答案】;【解析】设过点(1,-14)得,所以.11.【答案】;【解析】先化一般式为顶点式,再根据平移规律求解.12.【答案】1;【解析】C(2,-6),可求与x轴交于,与y轴交于(0,3),∴.三、解答题13.【答案与解析】∵抛物线的顶点为(-1,-2)∴设其解析式为,又图象经过点(1,10),∴,∴,∴解析式为.14.【答案与解析】(1)由向上平移2个单位,再向右平移1个单位所得到的抛物线是.∴,,.(2)函数与的图象如图所示.(3)观察的图象,当时,随x的增大而增大;当时,函数有最大值,最大值是.(4)由图象知,对于一切的值,总有函数值.15.【答案与解析】(1)由题意知A(2,1),令,则,所以.由得,所以,因此抛物线的解析式为.(2)当时,y随x增大而减小.类型三:二次函数y=ax^2+bx+c(a≠0)的图象与性质类型一、二次函数的图象与性质1.求抛物线的对称轴和顶点坐标.【变式】把一般式化为顶点式.(1)写出其开口方向、对称轴和顶点D的坐标;(2)分别求出它与y轴的交点C,与x轴的交点A、B的坐标.2.如图所示,抛物线的对称轴是x=1,与x轴交于A、B两点,点B的坐标为(,0),则点A的坐标是_______.类型二、二次函数的最值3.求二次函数的最小值.类型三、二次函数性质的综合应用4.已知二次函数的图象过点P(2,1).(1)求证:;(2)求bc的最大值.【答案与解析】(1)∵的图象过点P(2,1),∴1=4+2b+c+1,∴c=-2b-4.(2).∴当时,bc有最大值.最大值为2.课堂巩固一、选择题1. 将二次函数化为的形式,结果为().A.B.C.D.2.已知二次函数的图象,如图所示,则下列结论正确的是().A.B.C.D.3.若二次函数配方后为,则b、k的值分别为().A.0,5B.0,1 C.-4,5D.-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b、c的值为().A.b=2,c=2B.b=2,c=0C.b= -2,c= -1 D.b= -3,c=25.已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),则a+b+c的值()A. 等于0B.等于1C. 等于-1D. 不能确定6.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是( )二、填空题7.二次函数的最小值是________.8.已知二次函数,当x=-1时,函数y的值为4,那么当x=3时,函数y的值为________.9.二次函数的图象经过A(-1,0)、B(3,0)两点,其顶点坐标是________.10.二次函数的图象与x轴的交点如图所示.根据图中信息可得到m 的值是________.第10题第11题11.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是___;第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是___ __.12.已知二次函数y=x2-2x-3的图象与x轴交于点A、B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则C点的坐标为__ __.三、解答题13.(1)用配方法把二次函数变成的形式;(2)在直角坐标系中画出的图象;(3)若,是函数图象上的两点,且,请比较、的大小关系.14.如图所示,抛物线与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.15.已知抛物线:(1)求抛物线的开口方向、对称轴和顶点坐标;(2)画函数图象,并根据图象说出x取何值时,y随x的增大而增大?x取何值时,y随x 的增大而减小?函数y有最大值还是最小值?最值为多少?一、选择题1.【答案】D;【解析】根据配方法的方法及步骤,将化成含的完全平方式为,所以.【解析】由图象的开口方向向下知;图象与y轴交于正半轴,所以;2.【答案】D;又抛物线与x轴有两个交点,所以;当时,所对应的值大于零,所以.3.【答案】D;【解析】因为,所以,,.4.【答案】B;【解析】,把抛物线向左平移2个单位长度,再向上平移3个单位长度后得抛物线,∴,∴,.5.【答案】A;【解析】因为抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),所以过点(1,0)代入解析式得a+b+c=0.6.【答案】A;【解析】分类讨论,当a>0,a<0时分别进行分析.二、填空题7.【答案】-3;【解析】∵,∴函数有最小值.当时,.8.【答案】4【解析】由对称轴,∴x=3与x=-1关于x=1对称,∴x=3时,y=4.9.【答案】(1,-4) ;【解析】求出解析式.10.【答案】4;【解析】由图象发现抛物线经过点(1,0),把,代入,得,解得.11.【答案】①④,②③④;12.【答案】(-2,5)或(4,5);【解析】先通过且△ABC的面积等于10,求出C点的纵坐标为5,点C在抛物线y=x2-2x-3上,所以x2-2x-3=5,解得x=-2或x=5,则C点的坐标为(-2,5)或(4,5).三、解答题13.【答案与解析】(1).(2)略.(3)∵,∴当时,y随x增大而减小,又,∴.14.【答案与解析】(1)把点C(5,4)代入抛物线得,,解得.∴该二次函数的解析式为.∵,∴顶点坐标为.(2)(答案不唯一,合理即正确)如先向左平移3个单位,再向上平移4个单位,得到二次函数解析式为,即.15.【答案与解析】(1)∵,b=-3,∴,把x=-3代入解析式得,.∴抛物线的开口向下,对称轴是直线x=-3,顶点坐标是(-3,2).(2)由于抛物线的顶点坐标为A(-3,2),对称轴为x=-3.抛物线与x轴两交点为B(-5,0)和C(-1,0),与y轴的交点为,取D关于对称轴的对称点,用平滑曲线顺次连结,便得到二次函数的图象,如图所示.从图象可以看出:在对称轴左侧,即当x<-3时,y随x的增大而增大;在对称轴右侧,即当x >-3时,y 随x 的增大而减小.因为抛物线的开口向下,顶点A 是抛物线的最高点,所以函数有最大值,当x =-3时,.要点三、二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解 方程有两个相等实数解方程没有实数解类型一、函数与方程4.已知抛物线与x 轴没有交点.①求c 的取值范围; ②试确定直线经过的象限,并说明理由.【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( )A.B.C.D.【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A.1 B.2 C.0 D.不能确定要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.类型一、利用二次函数求实际问题中的最大(小)值1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖出这种商品每天的销售利润y与每件的销售价x之间的函数关系;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?【答案与解析】(1)∵每件商品利润为(x-30)元.∴销售m件商品利润为m(x-30)元,又∵m=162-3x,∴每天利润y=(162-3x)(x-30).即y=-3x2+252x-4860.(2)∵y=-3x2+252x-4860=-3(x-42)2+432,又∵a=-3<0,∴当x=42时,=432(元).。
二次函数的定义讲义 考点一✧ 相关概念及定义二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 典型例题例1.下例函数中,是二次函数的是( )A ,22x y -= B ,xx y 12-= C ,22)2(x x y --= D ,123+-=x x y 例2.下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a 、b 、c . (1) 3y=x(x-1);(2)y=3x(2-x)+3x2;(3)y=x 4+2x 2+1;(4)y=2x 2+3x+1 例3.当k 为何值时,函数1)1(2+-=+kk x k y 为二次函数?变式练习1、函数y=(m +)x+2x -1是二次函数,则m=.变式练习2、下列函数中是二次函数的有()①y=x +;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=+x .A .1个B .2个C .3个D .4个222-mx 121x补充:判断一个函数是否为二次函数的方法和步骤;(1)先将函数进行整理,使其右边是含有自变量的代数式,左边是因变量; (2)判断右边含自变量的代数式是否为整式; (3)判断含自变量的项的最高次数是否为2; (4)判断二次项的系数是否为零。
巩固练习1.判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c 的值. (1) y =1—23x (2)y =x(x -5) (3)y =x 21-23x +1 (4) y =3x(2-x)+ 3x 2 (5)y = 12312++x x (6) y =652++x x (7)y = x 4+2x 2-1 (8)y =ax 2+bx +c★ m 取哪些值时,函数)1()(22+++-=m mx x m m y 是二次函数?例3、某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x ,请你得出每天销售利润y 与售价的函数表达式.变式练习 、如图,正方形ABCD 的边长为4,P 是BC 边上一点,QP ⊥AP 交DC 于Q ,如果BP=x ,△ADQ 的面积为y ,用含x 的代数式表示y .变式练习:用一根长为800厘米的木条,做一个长方形的窗框,若宽为x 厘米,写出它的面积)(2cm y 与x )(cm 之间的函数解析式,并判断y 是否是x 的二次函数。
考点二二次函数的一般形式任何一个二次函数的解析式都可以化成c bx ax y ++=2)(o a c b a ≠为常数,、、的形式,因此,把c bx ax y ++=2)(o a c b a ≠为常数,、、叫做二次函数的一般形式。
其中c bx ax 、、2分别是二次项、一次项和常数项;而c b a ,,分别是二次项系数,一次项系数和常数项。
补充:在一般形式中,只有0≠a 时,c bx ax y ++=2才是二次函数,当0=a 时,c bx y +=,若0≠b ,则它是一次函数,若0=b ,则它是一个常数函数。
例1.把下列二次函数化成一般形式,并指出二次项系数、一次项系数、常数项:(1)22)1(++=x x y (2)5)1)(32(+-+=x x y(3))1(1242x x x y +-= (4))1)(1(-+=x x y巩固练习1.说出下列二次函数的二次项系数a ,一次项系数b 和常数项c . (1)2x y =中a =,b =,c = (2)2x 5x y 2+=中a =,b =,c =; (3)21)-(2x y =中a =,b =,c =;2.已知函数22(1)(1)()y m x m x m m =-+++是常数 (1) 当m 为何值时,y 是x 的二次函数? (2) 当m 为何值时,y 是x 的一次函数? (3) 当m 为何值时,这个函数是常值函数?考点三确定二次函数解析式要确定二次函数的解析式,就是要求解析式中二次项系数a ,一次项系数b ,常数项c 。
通常采用待定系数法对a ,b ,c 进行确定例1 已知二次函数c bx ax y ++=2,当6,1-=-=y x ;1=x 时,2=y ;2=x 时,3=y ,求这个二次函数的解析式。
例2 已知一个二次函数,当自变量x 的值为1时,函数y 的值为6,试写出一个符合条件的函数解析式。
例3,已知二次函数c bx ax y ++=2部分对应值如下表,求这个二次函数的解析式。
强化练习1. 已知二次函数c bx ax y ++=2)0(≠a ,若0=x 时1=y ;1=x 时1=y ;2=x 时1-=y .求这个二次函数关系式.2. 已知函数2234)()82()32(k x n m kx x n m x n m y ++++-++-=,且当1=x ,7=y ,求该二次函数的解析式及nm 的值。
及时训练题:1.已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数. 2.当m 时,y=(m -2)x是二次函数.3.已知菱形的一条对角线长为a,另一条对角线为它的倍,用表达式表示出菱形的面积S 与对角线a 的关系.4.在物理学内容中,如果某一物体质量为m ,它运动时的能量E 与它的运动速度v 之间的关系是E=mv 2(m 为定值).(1)若物体质量为1,填表表示物体在v 取下列值时,E 的取值:(2)若物体的运动速度变为原来的2倍,则它运动时的能量E 扩大为原来的多少倍?22-m 3215、请你分别给a ,b ,c 一个值,让c bx ax y ++=2为二次函数,且让一次函数y=ax+b 的图像经过一、二、三象限6.下列不是二次函数的是()A .y=3x 2+4 B .y=-x 2 C .y= D .y=(x +1)(x -2)7.函数y=(m -n )x 2+mx +n 是二次函数的条件是()A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围.3152-x9.如图,在矩形ABCD中,AB=6cm,BC=12cm.点P从点A开始沿AB方向向点B以1cm/s 的速度移动,同时,点Q从点B开始沿BC边向C以2cm/s的速度移动.如果P、Q两点分别到达B、C两点停止移动,设运动开始后第t秒钟时,五边形APQCD的面积为Scm2,写出S与t的函数表达式,并指出自变量t的取值范围.10.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8.点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF.设DE=x,DF=y.(1)AE用含y的代数式表示为:AE=;(2)求y与x之间的函数表达式,并求出x的取值范围;(3)设四边形DECF的面积为S,求S与x之间的函数表达式.课后作业1.下列函数一定是二次函数的是( ) A ,c bx ax y ++=2 B ,xy 3-= C ,1342+-=x x y D ,c bx x m y ++-=2)1(2.下列函数:(1)y=3x 2+x2+1;(2)y=61x 2+5;(3)y=(x-3)2-x 2;(4)y=1+x-22x ,属于二次函数的是 (填序号).3.函数y=(a-b)x 2+ax+b 是二次函数的条件为.4.是232m m y mx ++=二次函数,则m=_______5.已知正方形边长为3,若边长增加x ,那么面积增加y ,则y 与x 的函数关系式是.6.已知二次函数21572y x x =--+(1)当0,1x x ==时,分别求它所对应的函数值y (2)当x 为何值时,函数值0y =?7.当m 是何值时,下列函数是二次函数,并写出这时的函数关系式. (1)432y +-=m mmx ,.________________,==y m (2)y =,.________________,==y m (3)y =,.________________,==y m8.某商场以每件30元的价格购进一种商品,试销中发现,这种商品的日销量m (件)与每件商品的销售价x (元)满足一次函数关系式m=162-3x ,求商场销售这种商品的日销售利润y (元)与每件商品的销售价x 元之间的函数关系式2(1)m mm x++232(4)m m m x -+-9.已知y+2x2=kx(x-3)(k≠2).(1)证明y是x的二次函数;(2)当k=-2时,写出y与x的函数关系式10.写出下列各函数关系,并判断它们是什么类型的函数.⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;⑵圆的面积y(cm2)与它的周长x(cm)之间的函数关系;⑶某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;⑷菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.。