2016年高考物理备考艺体生百日突围系列专题05万有引力定律含解析
- 格式:docx
- 大小:313.29 KB
- 文档页数:13
高中物理高考物理万有引力定律的应用及其解题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.由三颗星体构成的系统,忽略其他星体对它们的影响,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做角速度相同的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况)若A 星体的质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力的大小F A ; (2)B 星体所受合力的大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .【答案】(1)2223Gm a (2)227Gm a (3)74a (4)3πa T Gm= 【解析】 【分析】 【详解】(1)由万有引力定律,A 星体所受B 、C 星体引力大小为24222A B R CA m m m F G G F r a===,则合力大小为223A m F G a=(2)同上,B 星体所受A 、C 星体引力大小分别为2222222A B AB C B CBm m m F G G r am m m F G G r a==== 则合力大小为22cos 602Bx AB CB m F F F G a =︒+=22sin 603By AB m F F G a=︒=.可得22B m F a==(3)通过分析可知,圆心O 在中垂线AD 的中点,C R == (4)三星体运动周期相同,对C 星体,由2222C B C m F F m R a T π⎛⎫=== ⎪⎝⎭可得T =2.假设在半径为R 的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h 的轨道做匀速圆周运动,周期为T ,已知万有引力常量为G ,求: (1)该天体的质量是多少? (2)该天体的密度是多少?(3)该天体表面的重力加速度是多少? (4)该天体的第一宇宙速度是多少?【答案】(1)2324()R h GT π+; (2)3233()R h GT R π+;(3)23224()R h R T π+; 【解析】 【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解; (2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解; (4)该天体的第一宇宙速度是近地卫星的环绕速度. 【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有:G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h) 解得:M=2324()R h GTπ+ ① (2)天体的密度:ρ=MV=23234()43R hGTRππ+=3233()R hGT Rπ+.(3)在天体表面,重力等于万有引力,故:mg=G2MmR②联立①②解得:g=23224()R hR Tπ+③(4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m2vR④联立③④解得:v=gR=2324()R hRTπ+.【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.3.牛顿说:“我们必须普遍地承认,一切物体,不论是什么,都被赋予了相互引力的原理”.任何两个物体间存在的相互作用的引力,都可以用万有引力定律122=m mF Gr万计算,而且任何两个物体之间都存在引力势能,若规定物体处于无穷远处时的势能为零,则二者之间引力势能的大小为12=-pm mE Gr,其中m1、m2为两个物体的质量, r为两个质点间的距离(对于质量分布均匀的球体,指的是两个球心之间的距离),G为引力常量.设有一个质量分布均匀的星球,质量为M,半径为R.(1)该星球的第一宇宙速度是多少?(2)为了描述电场的强弱,引入了电场强度的概念,请写出电场强度的定义式.类比电场强度的定义,请在引力场中建立“引力场强度”的概念,并计算该星球表面处的引力场强度是多大?(3)该星球的第二宇宙速度是多少?(4)如图所示是一个均匀带电实心球的剖面图,其总电荷量为+Q(该带电实心球可看作电荷集中在球心处的点电荷),半径为R,P为球外一点,与球心间的距离为r,静电力常量为k.现将一个点电荷-q(该点电荷对实心球周围电场的影响可以忽略)从球面附近移动到p点,请参考引力势能的概念,求电场力所做的功.【答案】(1)1v =2)2=M E G R '引;(3)2v =4)11()W kQq r R=-【解析】 【分析】 【详解】(1)设靠近该星球表面做匀速圆周运动的卫星的速度大小为1v ,万有引力提供卫星做圆周运动的向心力212v mMG m R R=解得:1v =; (2)电场强度的定义式F E q=设质量为m 的质点距离星球中心的距离为r ,质点受到该星球的万有引力2=MmF Gr 引 质点所在处的引力场强度=F E m引引 得2=M E Gr引 该星球表面处的引力场强度'2=ME GR 引 (3)设该星球表面一物体以初速度2v 向外抛出,恰好能飞到无穷远,根据能量守恒定律22102mM mv G R-=解得:2v =; (4)点电荷-q 在带电实心球表面处的电势能1P qQE k R=- 点电荷-q 在P 点的电势能2P qQE kr=- 点电荷-q 从球面附近移动到P 点,电场力所做的功21()P P W E E =-- 解得:11()W kQq r R=-.4.“天舟一号”货运飞船于2017年4月20日在海南文昌航天发射中心成功发射升空,完成了与天宫二号空间实验室交会对接。
高考物理万有引力定律的应用及其解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期2T π=2.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。
若近似认为月球绕地球作匀速圆周运动,地球绕太阳也作匀速圆周运动,它们的绕行方向一致且轨道在同一平面内。
(1)已知地球表面处的重力加速度为g ,地球半径为R ,月心地心间的距离为r ,求月球绕地球一周的时间T m ;(2)如图是相继两次满月时,月球、地球和太阳相对位置的示意图。
已知月球绕地球运动一周的时间T m =27.4d ,地球绕太阳运动的周期T e =365d ,求地球上的观察者相继两次看到满月满月的时间间隔t 。
【答案】(1) 322m r T gR= (2)29.6 【解析】 【详解】(1)设地球的质量为M ,月球的质量为m ,地球对月球的万有引力提供月球的向心力,则222m MmG mr r T π⎛⎫=⋅ ⎪⎝⎭地球表面的物体受到的万有引力约等于重力,则02GMm m g R= 解得 322m r T gR=(2)相继两次满月有,月球绕地心转过的弧度比地球绕日心转过的弧度多2π,即2m e t t ωπω=+而2m mT πω=2e eT πω=解得 29.6t =天3.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体P 置于弹簧上端,用力压到弹簧形变量为3x 0处后由静止释放,从释放点上升的最大高度为4.5x 0,上升过程中物体P 的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。
第一部分 特点描述万有引力定律是高考的必考内容,也是高考命题的一个热点内容。
考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。
由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。
本章核心内容突出,主要考察人造卫星、宇宙速度以及万有引力定律的综合应用,与实际生活、新科技等结合的应用性题型考查较多。
第二部分 知识背一背一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小跟物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比。
2.公式:F =Gm 1m 2r 2,其中G 为引力常量,G =6.67×10-11 N ·m 2/kg 2,由卡文迪许扭秤实验测定.3.适用条件:两个质点之间的相互作用.(1)质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r 为两球心间的距离。
(2)一个质量分布均匀的球体和球外一个质点之间的万有引力也适用,其中r 为_质点到球心间的距离。
二、三种宇宙速度三、经典时空观和相对论时空观 1.经典时空观(1)在经典力学中,物体的质量不随运动状态而改变;(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的. 2.相对论时空观(1)在狭义相对论中,物体的质量随物体的速度的增加而增加,用公式表示为m=m 01-v 2c2.(2)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的。
第三部分 技能+方法考点一、万有引力定律在天体运动中的应用 1.利用万有引力定律解决天体运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式G Mm r 2=m v 2r =mω2r =m 4π2T2·r =ma mg =GMmR 2(g 为星体表面处的重力加速度).2.天体质量和密度的计算 (1)估算中心天体的质量①从环绕天体出发:通过观测环绕天体运动的周期T 和轨道半径r ,就可以求出中心天体的质量M ②从中心天体本身出发:只要知道中心天体表面的重力加速度g 和半径R ,就可以求出中心天体的质量M (2)设天体表面的重力加速度为g ,天体半径为R ,则mg =G Mm R 2,即g =GMR 2(或GM =gR 2)若物体距星体表面高度为h ,则重力mg ′=GMmR +h2,即g ′=GM R +h2=R 2R +h2g .【例1】“嫦娥一号”于2009年3月1日下午4时13分成功撞月,从发射到撞月历时433天,标志我国一期探月工程圆满结束.其中,卫星发射过程先在近地圆轨道绕行3周,再长途跋涉进入近月圆轨道绕月飞行.若月球表面的重力加速度为地球表面重力加速度的16,月球半径为地球半径的14,根据以上信息得 ( ).A .绕月与绕地飞行周期之比为3∶ 2B .绕月与绕地飞行周期之比为2∶ 3C.绕月与绕地飞行向心加速度之比为1∶6D.月球与地球质量之比为1∶96【答案】ACD考点二、双星模型1.模型概述:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星.2.模型特点:(1)两颗行星做圆周运动所需的向心力由它们之间的万有引力提供,故F1=F2,且方向相反,分别作用在m1、m2两颗行星上.(2)由于两颗行星之间的距离总是恒定不变的,所以两颗行星的运行周期及角速度相等.(3)由于圆心在两颗行星的连线上,所以r1+r2=L.【例2】宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动而不至因万有引力的作用吸引到一起.试证明它们的轨道半径之比、线速度之比都等于质量的反比.(2)设两者的质量分别为m1和m2,两者相距L,试写出它们角速度的表达式.【答案】(1)见解析;(2) G m1+m2L3第四部分 基础练+测1.【安徽省淮北一中、马鞍山二中、安师大附中2016届高三11月期中联考(第二次模拟)物理试题】已知某行星半径为R ,以某第一宇宙速度运行的卫星的绕行周期为T ,围绕该行星运动的同步卫星运行速率为v ,则该行星的自转周期为:A 、2222R Tv πB 、3334R v πC 、2R vπ D 、33238R T v π【答案】D 【解析】试题分析:设同步卫星轨道半径为r ,运动过程中万有引力充当向心力,则22mM v G m r r =,近地卫星有:2224Mm G m R R T π=,联立解得:23224R r v T π=,由于同步卫星周期与自转周期相同,故333228r R T T v v Tππ===同自,故D 正确考点:考查了万有引力定律的应用2.【安徽省屯溪第一中学2016届高三上学期期中(第三次月考)考试物理试题】设地球自转周期为T ,质量为M 。
万有引力定律一、重力加速度:某星球表面处(即距球心R ):mg =GMm R 2二、距离该星球表面h 处(即距球心R +h 处):mg ′=G Mm(R +h )2(R 为地球半径,g ′为离地面h 高度处的重力加速度)三、黄金代换:GM =gR 2(R 为地球半径)1.2022年11月29日“神舟十五号”飞船顺利发射,六名中国宇航员完成首次太空交接班。
已知核心舱绕地球运行近似为匀速圆周运动,离地面距离为400km ,做圆周运动的周期为90min ,向心加速度大小为a 1,地球赤道上物体随地球自转的向心加速度大小为a 2,已知地球半径为6400km ,地球表面的重力加速度为g ,下列关系正确的是()A.a 1=1617gB.a 2=gC.a 1=272a 2D.a 1=1716 2a2【解答】解:A .对地球表面物体有GMmR 2=mg 对核心舱有GMm(R +h )2=ma 1联立两式,代入数据解得a 1=16172g故A 错误;B .对地球表面物体有GMmR 2=mg 地球赤道上物体随地球自转,有G MmR2=ma 2+mg 赤对比两式,可知a 2<g ,故B 错误;CD .对核心舱有a 1=(R +h )2πT 12其中T 1=90min =1.5h对地球赤道上随地球自转的物体有a 2=R 2πT 22其中T 2=24h联立两式,代入数据解得a 1=272a 2故C 正确,D 错误。
故选:C 。
2.某星球的质量是地球的p 倍,半径是地球的q 倍。
一运动员在地球上能够跳起的最大高度为h ,假定运动员在地球上和该星球上起跳的最大初速度相同,则运动员在该星球上能够跳起的最大高度为()A.q phB.pqhC.q 2phD.p 2qh【解答】解:设地球质量为M ,半径为R ,表面的重力加速度为g ;球形星体的质量为M ',半径为R ',表面的重力加速度为g ',万有引力大小等于重力大小,则有G MmR 2=mg GM 'mR '2=mg '联立解得g 'g =R 2M 'R '2M =p q 2运动员起跳上升过程中有0-v 20=-2gh 0-v 20=-2g 'h '联立解得h '=q 2p h ,故C 正确,ABD 错误。
高考物理万有引力定律的应用解题技巧和训练方法及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字).【答案】(1)1.54V (2)不能(3)5410m ⨯【解析】【分析】【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流.(3)在地球表面有2Mm Gmg R= 匀速圆周运动 22()Mm v G m R h R h=++ 解得22gR h R v=- 代入数据得h ≈4×105m【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求:(1)a 、b 两颗卫星周期分别是多少?(2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2Mm G mg R= a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v = b 卫星b 卫星22(4)4Mm v G m R R=解得v 4b GM R = 所以 2a b V V = (3)最远的条件22a b T T πππ-= 解得87R t gπ=3.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M ,自转周期为T ,引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0. ①若在北极上空高出地面h 处称量,弹簧测力计读数为F 1,求比值的表达式,并就h=1.0%R 的情形算出具体数值(计算结果保留两位有效数字);②若在赤道表面称量,弹簧测力计读数为F 2,求比值的表达式. (2)设想地球绕太阳公转的圆周轨道半径为r 、太阳半径为R s 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②2322041F R F GMT π=- (2)“设想地球”的1年与现实地球的1年时间相同【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值. 在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断. 解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.4.假设在半径为R的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h的轨道做匀速圆周运动,周期为T,已知万有引力常量为G,求:(1)该天体的质量是多少?(2)该天体的密度是多少?(3)该天体表面的重力加速度是多少?(4)该天体的第一宇宙速度是多少?【答案】(1)2324()R hGTπ+;(2)3233()R hGT Rπ+;(3)23224()R hR Tπ+;2324()TR hRπ+【解析】【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解;(2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解;(4)该天体的第一宇宙速度是近地卫星的环绕速度.【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有: G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h) 解得:M=2324()R h GTπ+ ① (2)天体的密度: ρ=M V =23234()43R h GT R ππ+=3233()R h GT R π+. (3)在天体表面,重力等于万有引力,故: mg=G 2Mm R ② 联立①②解得:g=23224()R h R Tπ+ ③ (4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m 2v R④联立③④解得:【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.5.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间.【答案】t =或者t = 【解析】【分析】【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有 22Mm G mr rω=航天飞机在地面上,有2mM G Rmg = 联立解得22gR rω= 若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以202t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.6.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。
高考物理万有引力定律的应用及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T,地球半径为R,地球表面的重力加速度为g,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)“天宫一号”距离地球表面的高度.【答案】(1)34gGR ρπ=(2)v gR= (3)22324gT Rh Rπ=-【解析】(1)在地球表面重力与万有引力相等:2MmG mgR=,地球密度:343M MRVρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2vmg mR=v gR=(3)天宫一号的轨道半径r R h=+,据万有引力提供圆周运动向心力有:()()2224MmG m R hTR hπ=++,解得:22324gT Rh Rπ=-2.一名宇航员到达半径为R、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m的小球,上端固定在O点,如图甲所示,在最低点给小球某一初速度,使其绕O点在竖直面内做圆周运动,测得绳的拉力大小F随时间t的变化规律如图乙所示.F1、F2已知,引力常量为G,忽略各种阻力.求:(1)星球表面的重力加速度;(2)卫星绕该星的第一宇宙速度; (3)星球的密度.【答案】(1)126F F g m -=(2(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R = 2GMm R =2mv R两式联立得:(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.3.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小;(2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=4.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M ,自转周期为T ,引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0. ①若在北极上空高出地面h 处称量,弹簧测力计读数为F 1,求比值的表达式,并就h=1.0%R 的情形算出具体数值(计算结果保留两位有效数字); ②若在赤道表面称量,弹簧测力计读数为F 2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r 、太阳半径为R s 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②2322041F R F GMT π=-(2)“设想地球”的1年与现实地球的1年时间相同【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断.解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.5.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v 0的初速度竖直上抛一物体,经过时间t 1,物体回到抛出点;在月球的“两极”处仍以大小为v 0的初速度竖直上抛同一物体,经过时间t 2,物体回到抛出点。
高中物理高考必备物理万有引力定律的应用技巧全解及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hRt【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR, 解得该星球的第一宇宙速度为:2hRv gR ==2.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M ,自转周期为T ,引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0. ①若在北极上空高出地面h 处称量,弹簧测力计读数为F 1,求比值的表达式,并就h=1.0%R 的情形算出具体数值(计算结果保留两位有效数字);②若在赤道表面称量,弹簧测力计读数为F2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r、太阳半径为R s和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②23 22 041F R F GMTπ=-(2)“设想地球”的1年与现实地球的1年时间相同【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断.解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.3.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数33μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR=mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.4.宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个 星体的质量均为 m ,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为 G , 则: (1)直线三星系统中星体做囿周运动的周期为多少? (2)三角形三星系统中每颗星做囿周运动的角速度为多少?【答案】(1)345LGm233Gm L 【解析】 【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期; (2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度; 【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:222222()(2)Gm Gm m L L L Tπ+= 345L T Gm∴=(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗星,满足:2222cos30()cos30LGm m L ω︒=︒解得:33Gm Lω5.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tanav R t;(4)02tan Rt v α【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:02tana v R GMv gR R t===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.6.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) v 【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度v v ==7.2019年4月20日22时41分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为r 的匀速圆周运动。
专题05 万有引力定律与航天姓名:___________班级:___________学号:___________得分:___________【2018高考真题】1.我国高分系列卫星的高分辨对地观察能力不断提高.今年5月9日发射的“高分五号”轨道高度约为705 km,之前已运行的“高分四号”轨道高度约为36 000 km,它们都绕地球做圆周运动.与“高分四号冶相比,下列物理量中“高分五号”较小的是()A.周期B. 角速度C. 线速度D. 向心加速度【来源】2018年全国普通高等学校招生统一考试物理(江苏卷)【答案】 A点睛:本题考查人造卫星运动特点,解题时要注意两类轨道问题分析方法:一类是圆形轨道问题,利用万有引力提供向心力,即求解;一类是椭圆形轨道问题,利用开普勒定律求解。
2.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证A. 地球吸引月球的力约为地球吸引苹果的力的1/602B. 月球公转的加速度约为苹果落向地面加速度的1/602C. 自由落体在月球表面的加速度约为地球表面的1/6D. 苹果在月球表面受到的引力约为在地球表面的1/60【来源】2018年全国普通高等学校招生统一考试物理(北京卷)【答案】 B【解析】A、设月球质量为,地球质量为M,苹果质量为则月球受到的万有引力为:苹果受到的万有引力为:由于月球质量和苹果质量之间的关系未知,故二者之间万有引力的关系无法确定,故选项A错误;B、根据牛顿第二定律:,整理可以得到:,故选项B正确;C、在月球表面处:,由于月球本身的半径大小未知,故无法求出月球表面和地面表面重力加速度的关系,故选项C错误;D、苹果在月球表面受到引力为:,由于月球本身的半径大小未知,故无法求出苹果在月球表面受到的引力与地球表面引力之间的关系,故选项D错误。
点睛:本题考查万有引力相关知识,掌握万有引力公式,知道引力与距离的二次方成反比,即可求解。
高中必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字).【答案】(1)1.54V (2)不能(3)5410m ⨯【解析】【分析】【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流.(3)在地球表面有2Mm Gmg R= 匀速圆周运动 22()Mm v G m R h R h=++ 解得22gR h R v=- 代入数据得h ≈4×105m【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求:(1)a 、b 两颗卫星周期分别是多少?(2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2Mm G mg R= a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v = b 卫星b 卫星22(4)4Mm v G m R R=解得v 4b GM R =所以 2a bV V = (3)最远的条件22a b T T πππ-= 解得87R t g π= 3.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星= 解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.4.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。
专题05 万有引力定律第一部分 名师综述万有引力定律是高考的必考内容,也是高考命题的一个热点内容。
考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。
由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。
本章核心内容突出,主要考察人造卫星、宇宙速度以及万有引力定律的综合应用,与实际生活、新科技等结合的应用性题型考查较多。
第二部分 精选试题1.【广西省柳州铁路第一中学2016届高三上学期10月月考理综试题】如图所示,有一个质量为M ,半径为R ,密度均匀的大球体。
从中挖去一个半径为的小球体,并在空腔中心放置一质量为m 的质点,则大球体的剩余部分对该质点的万有引力大小为(已知质量分布均匀的球壳对壳内物体的引力为零)A .0B .2Mm G RC .22Mm G RD .24MmG R【答案】C考点:考查了万有引力定律的应用2.【云南省玉溪市第一中学2016届高三上学期期中考试理科综合试题】宇航员在某星球表面完成下面实验:如图所示,在半径为r 的竖直光滑圆弧轨道内部,有一质量为m 的小球(可视为质点),在最低点给小球某一水平初速度,使小球在竖直面内做圆周运动,测得轨道在最高点和最低点时所受压力大小分别为F1、F2;已知该星球的半径为R,引力常量G,则该星球的第一宇宙速度是()【答案】B考点:考查了圆周运动,动能定理,万有引力定律3.【广西桂林市第十八中学2016届高三上学期第三次月考理综试题】发射地球同步卫星时,先将卫星发射到近地圆轨道1,然后在圆轨道1的Q点经点火使卫星沿椭圆轨道2运行,待卫星到椭圆轨道2上距地球最远点P处,再次点火,将卫星送入同步圆轨道3,如图所示.则卫星在轨道1、2和3上正常运行时,有:A.卫星在轨道3上的速率大于在轨道1上的速率B .卫星在轨道3上的角速度小于在轨道1上的角速度C .卫星在轨道1上经Q 点的加速度等于它在轨道2上经Q 点的加速度D .卫星在轨道2上运行时经过P 点的加速度跟经过Q 点的加速度相等 【答案】BC考点:本题考查万有引力定律、匀速圆周运动向心力公式。
专题05 万有引力定律第一部分 特点描述万有引力定律是高考的必考内容,也是高考命题的一个热点内容。
考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。
由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。
本章核心内容突出,主要考察人造卫星、宇宙速度以及万有引力定律的综合应用,与实际生活、新科技等结合的应用性题型考查较多。
第二部分 知识背一背一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小跟物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比。
2.公式:F =Gm 1m 2r2,其中G 为引力常量,G =6.67×10-11 N ·m 2/kg 2,由卡文迪许扭秤实验测定. 3.适用条件:两个质点之间的相互作用.(1)质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r 为两球心间的距离。
(2)一个质量分布均匀的球体和球外一个质点之间的万有引力也适用,其中r 为_质点到球心间的距离。
二、三种宇宙速度三、经典时空观和相对论时空观 1.经典时空观(1)在经典力学中,物体的质量不随运动状态而改变;(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观(1)在狭义相对论中,物体的质量随物体的速度的增加而增加,用公式表示为m=m 01-v 2c2.(2)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的。
第三部分 技能+方法考点一、万有引力定律在天体运动中的应用 1.利用万有引力定律解决天体运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式G Mm r 2=m v 2r =m ω2r =m 4π2T2·r =ma mg =GMmR2(g 为星体表面处的重力加速度).2.天体质量和密度的计算 (1)估算中心天体的质量①从环绕天体出发:通过观测环绕天体运动的周期T 和轨道半径r ,就可以求出中心天体的质量M②从中心天体本身出发:只要知道中心天体表面的重力加速度g 和半径R ,就可以求出中心天体的质量M(2)设天体表面的重力加速度为g ,天体半径为R ,则mg =G Mm R 2,即g =GM R2(或GM =gR 2)若物体距星体表面高度为h ,则重力mg ′=GMmR +h 2,即g ′=GMR +h2=R 2R +h2g .【例1】“嫦娥一号”于2009年3月1日下午4时13分成功撞月,从发射到撞月历时433天,标志我国一期探月工程圆满结束.其中,卫星发射过程先在近地圆轨道绕行3周,再长途跋涉进入近月圆轨道绕月飞行.若月球表面的重力加速度为地球表面重力加速度的16,月球半径为地球半径的14,根据以上信息得 ( ).A .绕月与绕地飞行周期之比为3∶ 2B .绕月与绕地飞行周期之比为2∶ 3C .绕月与绕地飞行向心加速度之比为1∶6D .月球与地球质量之比为1∶96 【答案】ACD考点二、双星模型1.模型概述:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星. 2.模型特点:(1)两颗行星做圆周运动所需的向心力由它们之间的万有引力提供,故F 1=F 2,且方向相反,分别作用在m 1、m 2两颗行星上.(2)由于两颗行星之间的距离总是恒定不变的,所以两颗行星的运行周期及角速度相等. (3)由于圆心在两颗行星的连线上,所以r 1+r 2=L .【例2】宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动而不至因万有引力的作用吸引到一起.试证明它们的轨道半径之比、线速度之比都等于质量的反比.(2)设两者的质量分别为m 1和m 2,两者相距L ,试写出它们角速度的表达式.【答案】(1)见解析;(2)G m 1+m 2L 3第四部分 基础练+测1.【安徽省淮北一中、马鞍山二中、安师大附中2016届高三11月期中联考(第二次模拟)物理试题】已知某行星半径为R ,以某第一宇宙速度运行的卫星的绕行周期为T ,围绕该行星运动的同步卫星运行速率为v ,则该行星的自转周期为:A 、2222R Tv πB 、3334R v π C 、2R vπ D 、33238R T v π 【答案】D 【解析】试题分析:设同步卫星轨道半径为r ,运动过程中万有引力充当向心力,则22mM v G m r r=,近地卫星有:2224Mm G m R R T π=,联立解得:23224R r v T π=,由于同步卫星周期与自转周期相同,故333228r R T T v v Tππ===同自,故D 正确考点:考查了万有引力定律的应用2.【安徽省屯溪第一中学2016届高三上学期期中(第三次月考)考试物理试题】设地球自转周期为T ,质量为M 。
引力常量为G 。
假设地球可视为质量均匀分布的球体,半径为R 。
同一物体在南极和赤道水平面上静止时所受到的支持力之比为( )A 、22234GMT GMT R π-B 、22234GMT GMT R π+C 、22324GMT R GMT π-D 、22324GMT R GMT π+【答案】A考点:考查了万有引力定律的应用3.【江西省上高县第二中学2016届高三上学期第三次月考物理试题】假设航天飞机在太空绕地球作匀速圆周运动.宇航员利用机械手将卫星举到机舱外,并相对航天飞机静止释放该卫星,则被释放的卫星将(不计空气阻力)()A.停留在轨道的被释放处 B.随航天飞机同步绕地球作匀速圆周运动C.向着地球做自由落体运动 D.沿圆周轨道的切线方向做直线运动【答案】B【解析】试题分析:释放后,速度和航天飞行的速度相同,万有引力充当向心力,所以随航天飞机同步绕地球作匀速圆周运动,B正确考点:考查了万有引力定律的应用4.【宁夏银川市第二中学2016届高三上学期统练(三)物理试题】“嫦娥三号”于2013年12月2日发射成功,是我国探月工程的又一大进步.假设月球半径为R,月球表面的重力加速度为g0,如图所示,若飞船沿距月球表面高度为3R的圆形轨道运动,则飞船在此轨道上饶月球运动一周所需的时间为( )A.2πB.4πC.6πD.16π【答案】D考点:考查了万有引力定律的应用5.【安徽省屯溪第一中学2016届高三上学期期中(第三次月考)考试物理试题】在物理学理论建立的过程中,有许多伟大的科学家做出了贡献,关于科学家和他们的贡献,下列说法正确的是()A.牛顿最早指出力不是维持物体运动的原因并提出了惯性定律B.伽利略创造了把实验和逻辑推理和谐结合起来的科学研究方法C.开普勒认为,在高山上水平抛出一物体,只要速度足够大就不会再落在地球上D.卡文迪许发现了万有引力定律,并通过实验测出了引力常量【答案】B【解析】试题分析:伽利略通过理想斜面实指出力不是维持物体运动的原因,创造了把实验和逻辑推理和谐结合起来的科学研究方法,牛顿发现了惯性定律,A错误B正确;牛顿认为,在高山上水平抛出一物体,只要速度足够大就不会再落在地球上,C错误;牛顿发现了万有引力定律,卡文迪许通过扭秤实验测得了万有引力常量,D错误考点:考查了物理学史6.【云南省师范大学附属中学2016届高三适应性月考卷(二)理科综合物理试题】关于环绕地球运动的卫星,下列说法正确的是A.分别沿圆轨道和椭圆轨道运行的两颗卫星.可能具有相同的周期B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速度C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合【答案】A考点:人造卫星7.【吉林省实验中学2016届高三上学期第一次模拟理科综合试题】2007年10月24日,“嫦娥一号”成功发射,11月5日进入38万公里以外的环月轨道,11月24日传回首张图片,这是我国航天事业的又一成功。
“嫦娥一号”围绕月球的运动可以看作匀速圆周运动,万有引力常量已知,如果在这次探测工程中要测量月球的质量,则需要知道的物理量有( ) A .“嫦娥一号”的质量和月球的半径B . “嫦娥一号”绕月球运动的周期和轨道半径C .月球的半径和“嫦娥一号”绕月球运动的周期D .“嫦娥一号”的质量、月球的半径和“嫦娥一号”绕月球运动的周期 【答案】B 【解析】试题分析:根据万有引力提供向心力r mMmGTr2224π=,得TrG M 2324π=,要计算月球的质量,需要知道绕其运动的卫星的轨道半径和周期,与卫星的质量以及月球的半径无关,选项B 正确,A 、C 、D 错误。
考点:万有引力定律、匀速圆周运动向心力公式。
8.【福建省师大附中2016届高三上学期期中考试物理试题】组成星球的物质靠引力吸引在一起随星球自转。
如果某质量分布均匀的星球自转周期为T ,万有引力常量为G ,为使该星球不至于瓦解,该星球的密度至少是 A .24GT π B .23GT π C .22GT π D .2GT π【答案】B 【解析】试题分析:对星球赤道上的物体而言,当星球恰好不瓦解时,万有引力等于向心力,则222()Mm Gm R R T π=,又343M R πρ=,联立解得23GT πρ=,故选B. 考点:万有引力定律的应用.9.【湖南省衡阳市第八中学2016届高三上学期第二次月考物理试题】关于人造地球卫星下列说法正确的是( )A.在地球周围作匀速圆周运动的人造卫星的线速度都等于7.9 km/sB.发射速度大于7.9 km/s的人造地球卫星进入轨道后的线速度一定大于7.9 km/sC.由可知,离地面越高的卫星其发射速度越小D.卫星受阻力作用轨道半径缓慢减小后,其线速度将变大【答案】D考点:万有引力定律及应用;人造地球卫星10. 【四川省成都市第七中学2016届高三10月阶段性考试理综试题】下列说法正确的是( )A.丹麦天文学家第谷通过长期的天文观测,指出所有行星绕太阳运动的轨道都是椭圆,揭示了行星运动的有关规律B.卫星轨道必为圆形,卫星运行速度总不超过7.9km/sC.卫星运行速度与卫星质量无关D.卫星轨道可以与纬度不为零的某条纬线在同一平面内【答案】C【解析】试题分析:开普勒通过长期的天文观测,指出所有行星绕太阳运动的轨道都是椭圆,揭示了行星运动的有关规律,选项A错误;卫星轨道不一定必为圆形,卫星做圆周运动时的运行速度总不超过7.9km/s,选项B错误;卫星运行速度为v C正确;卫星轨道必定要过地心的,不可以与纬度不为零的某条纬线在同一平面内,选项D错误;故选C.考点:物理学史;人造卫星11.【广东省广州市执信中学2016届高三上学期期中考试理综试题】了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要。