等腰三角形的判定教学设计
- 格式:doc
- 大小:61.26 KB
- 文档页数:8
13.3.2等腰三角形的判定教学设计一、教学目标:1.掌握等腰三角形的判定方法.2.掌握等腰三角形的判定定理,并运用其进行证明和计算.二、教学重、难点:重点:理解和运用等腰三角形的判定定理.难点:利用尺规作等腰三角形:已知底边及底边上的高作等腰三角形.三、教学过程:复习回顾性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)情境引入在△AB C中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形画出来?知识精讲思考:已知:如图,在△AB C中,∠B=∠C,那么它们所对的边AB和AC有什么数量关系?猜想:AB =AC如图,在△AB C 中,∠B =∠C.作△ABC 的角平分线AD.在△BAD 与△CA D 中,⎪⎩⎪⎨⎧=∠=∠∠=∠AD AD C B 21∴△BAD ≌△CAD (AAS )∴AB =AC等腰三角形判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).定理应用格式:∵∠B =∠C∴AB =AC典例解析例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:如图,∠CAE 是△ABC 的外角,∠1=∠2,AD ∥B C.求证:AB =AC.分析:要证明AB=AC,可先证明∠B=∠C.因为∠1=∠2,所以可以设法找出∠B,∠C与∠1,∠2的关系.证明:∵AD∥AC∴∠1=∠B(_______________________)∠2=∠C(_______________________)又∵∠1=∠2∴∠B=∠C∴AB=AC(____________)【针对练习】求证:如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.已知:如图,△AB C中,CD是AB边上的中线,且CD=12A B.求证:△ABC是直角三角形.证明:∵CD是AB边上的中线,且CD=12AB∴AD=CD=BD∴∠A=∠ACD,∠B=∠BCD∵∠A+∠B+∠ACD+∠BCD=180°∴∠ACD+∠BCD=90°即∠ACB=90°∴△ABC是直角三角形.思考1:已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作的三角形都全等吗?已知:三角形的一条边a和这边上的高h.求作:△ABC,使AB=a,AB边上的高为h.思考2:如果已知是等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?例2.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.作法:1.作线段AB=a;2.作线段AB的垂直平分线MN,与AB相交于点D;3.在MN上取一点C,使DC=h;4.连接AC,B C.例3.如图,在△AB C中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F,求证:△CEF是等腰三角形.证明:∵在△AB C中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠AC D.∵AE是∠BAC的平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.【点睛】“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【针对练习】如图,把一张长方形的纸沿对角线折叠,重合部分是一个等腰三角形吗?为什么?解:△BED是等腰三角形.理由如下:∵△BC′D与△BCD关于直线BD对称∴△BC′D≌△BCD∴∠C′BD=∠CBD又∵AD∥BC∴∠ADB=∠CBD∴∠ADB=∠C′BD∴EB=ED即△BED是等腰三角形.例4.如图,在△AB C中,AB=AC,∠ABC和∠ACB的平分线交于点O.过O作EF∥BC交AB于E,交AC于F.探究EF、BE、FC之间的关系.解:EF=BE+CF.理由如下:∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO.∵BO、CO分别平分∠ABC、∠ACB,∴∠CBO=∠ABO,∠BCO=∠ACO,∴∠EOB=∠ABO,∠FOC=∠ACO,∴BE=OE,CF=OF,∴EF=EO+FO=BE+CF.若AB≠AC,其他条件不变,图中还有等腰三角形吗?结论还成立吗?【点睛】判定线段之间的数量关系,一般做法是通过全等或利用“等角对等边”,运用转化思想,解决问题.例5.如图,点E在△ABC的AC边的延长线上,点D在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.证明:如图,过点D作DG//AE交BC于点G.∴∠GDF=∠CEF在△GDF和△CEF中,GDF CEF DF EF DFG EFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GDF ≌△CEF (ASA )∴GD =CE又∵BD =CE∴BD =DG∴∠DBG =∠DGB∵DG //AC∴∠DGB =∠ACB∴∠ABC =∠ACB∴AB =AC ,即△ABC 是等腰三角形课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。
等腰三角形的判断【课题】:等腰三角形的判断(平行班)【教课目的】:( 1)经过着手研究并掌握一个三角形是等腰三角形的条件:两个角相等的三角形是等腰三角形.( 2)理解并掌握“等角平等边”,领会与“等边平等角”的互逆关系.( 3)提升学生的着手能力,学会数学说理,发展初步的演绎推理.【教课要点】:让学生掌握一个三角形是等腰三角形的条件和正确应.【教课难点】:经过例题教课及其学生独立学习,掌握“等角平等边”,领会与“等边平等角”的关系. 【教课打破点】:能利用一个三角形是等腰三角形的条件,正确判断某个三角形能否为等腰三角形【教法、学法设计】:教法:教具直观教课法,联想发现教课法,设疑思虑法,逐渐浸透法和师生社交相联合的方法;学法:小组合作, 实验操作 , 察看发现 , 师生互动 , 学生互动的学习方式 .【课前准备】:课件,三角形纸片【教课过程设计】:教课环教课活动设计企图节一、复习复习旧知识,为研1. 如图 1,△ ABC, AB=AC,AP⊥ BC,请你写出 5 个结论 .究新知识做准备导入2. 图 1 中,若△ ABC是等边三角形,则∠B=度,∠ 1=度.二、研究由问题引出研究(一)等腰三角形的判断方法新知1. 思虑:( 1)如图,位于在海上A、 B 两处的两艘救生船接到O 处遇险船只的报警,当时测得∠ A= ∠ B .假如这两艘经过实践得出?能不可以大概0救生船以相同的速度同时出发,“等角平等边”同时赶到失事地址(不考虑风波要素)?A B( 2)我们把这个问题一般化,在一般的三角形中,假如有两个角相等,?那么它们所对的边有什么关系?已知:在△ ABO 中,∠ A= ∠B求证: AO=AO简单应用2. 等腰三角形的判断方法:假如一个三角形有两个角相等,那么这两个角认识等腰直角三角形的观点所对的也相等(简写成).3.思虑:“等边平等角”与“等角平等边”的差别是什么?4.等腰直角三角形:顶角是直角的等腰三角形是等腰直角三角形,如下图3,△ ABC是等腰直角三角形 .例 2 求证:假如三角形一个外角的均分线平行于三角形的一边,那么这个三角形是等腰三角形 .应用知识,形成技能练习:1. 已知:如图,∠ A=∠ DBC=360,∠ C=720。
等腰三角形的判定【教学目标】1.知识与技能:通过动手操作探索并掌握识别一个三角形是等腰三角形和等边三角形的方法。
2.过程与方法:理解并掌握“等角对等边”,体会与“等边对等角”的互逆关系,能够利用三角形的识别方法去解决问题。
3.情感、态度与价值观:提高学生的动手能力,学会数学说理,发展初步的演绎推理能力,进一步体会等腰三角形的对称美。
【教学重难点】1.重点:理解并掌握识别等腰三角形和等边三角形的方法。
2.难点:对边、角关系互相转化的理解及运用。
【教学过程】一、创设情境,导入新课我们学过等腰三角形两底角相等,反过来,有两个角相等的三角形是等腰三角形吗?同学们画一画,量一量,你有什么结论,请表达。
二、师生互动,探究新知1.等腰三角形的判定:教师活动:如何证明AB=AC→AB.AC所在的两个三角形全等→作AD⊥BC。
学生活动:完成证明过程。
教师归纳:如果一个三角形有两个角相等,那么它们所对的边也相等。
(简写成“等角对等边”)。
那么证明一个三角形有几条途径?学生活动:证边所在三角形有两个角相等;证边所在的两个三角形全等。
2.等边三角形的判定:教师活动:由等腰三角形的判定方法可以直接得到等边三角形的判定吗?学生活动:探索——交流——发言。
教师活动:归纳:三个角相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形(分两种情况分析)。
三、随堂练习,巩固新知在△ABC中,已知∠A=50°,∠B=65°,你能判断△ABC的形状吗?为什么?答案:因为∠C=180°-∠A-∠B,又∠A=50°,∠B=65°,所以∠C=180°-50°-65°=65°,所以∠C=∠B,所以△ABC是一个等腰三角形。
四、典例精析,拓展新知例:如图,OB=OC,∠ABO=∠ACO,求证:AB=AC。
分析:连结BC,BO=OC⇒∠OBC=∠OCB⇒∠ABC=∠ACB⇒AB=AC;证明:连结BC,∵OB=OC,∴∠OBC=∠OCB,又∵∠ABC=∠ACB,∴∠ABC=∠ACB,∴AB=AC。
等腰三角形教案设计等腰三角形教案设计作为一名老师,常常需要准备教案,借助教案可以更好地组织教学活动。
来参考自己需要的教案吧!下面是小编为大家整理的等腰三角形教案设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
等腰三角形教案设计1等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
教学难点等腰三角形的判定与性质的区别。
教具准备作图工具和多媒体课件。
教学方法引以学生为主体的讨论探索法;教学过程Ⅰ.提出问题,创设情境1.等腰三角形性质是什么?性质1 等腰三角形的两底角相等.(等边对等角)性质2等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.(等腰三角形三线合一)2、提问:性质1的逆命题是什么?如果一个三角形有两个角相等,那么这个三角形是等腰三角形。
这个命题正确吗?下面我们来探究:Ⅱ.导入新课大胆猜想:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.[例1]已知:在△ABC中,∠B=∠C(如图).求证:AB=AC. 教师可引导学生分析:BA12DC联想证有关线段相等的知识知道,先需构成以AB、AC 为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. (学生板演证明过程)证明:作∠BAC的平分线AD. 在△BAD和△CAD中1??2,? ??B??C,AD?AD,? ∴△BAD≌△CAD(AAS).∴AB=AC.提问:你还有不同的证明方法吗?(由学生口述证明过程)等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).符号语言:在△ABC中∵ ∠B=∠C ∴ AB=AC (等角对等边)4、等腰三角形的性质与判定有区别吗? 性质是:等边等角判定是:等角等边小结:证明三角形是等腰三角形的`方法:①等腰三角形定义;②等腰三角形判定定理.下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.(演示课件)[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.这个题是文字叙述的证明题,?我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).求证:AB=AC.同学们先思考,再分析.(由学生完成)要证明AB=AC,可先证明∠B=∠C.接下来,可以找∠B、∠C与∠1、∠2的关系.(演示课件,括号内部分由学生来填)证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).又∵∠1=∠2,∴∠B=∠C,∴AB=AC(等角对等边).看大屏幕,同学们试着完成这个题.(课件演示)已知:如图,AD∥BC,BD平分∠ABC.求证:AB=AD.(投影仪演示学生证明过程)证明:∵AD∥BC,∴∠ADB=∠DBC(两直线平行,内错角相等).又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD(等角对等边).下面来看另一个例题.(演示课件)例2、已知等腰三角形的底边等于a,底边上的高等于b,你能用尺规作图的方法作出EA12DBCADBCM A这个等腰三角形吗? ab作法:(1)作线段BC,使BC=a;(2)作BC的垂直平分线MN,交BC于D; (3)在MN上截取DA=h,得A点;(4)连结AB、AC,则△ABC即为所求等腰三角形。
等腰三角形判定教案5篇等腰三角形判定教案5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形判定教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形判定教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
1教学目标1.会从作图实践和理论推证中得到等腰三角形的判定定理,掌握等腰三角形的判定定理并能简单应用.2.通过作图实践培养观察、分析和归纳问题的能力.3.在学习过程中,勇于发表自己的看法,增强探究问题的意识,感受学习的乐趣.2学情分析从学生学习的基础和认知特点来看,学生已经掌握了等腰三角形的概念和性质的基础上对等腰三角形的又一深入探究。
在学习态度上,绝大部分学生上课能全神贯注,积极投入到学习中去,个别学生学习上有困难。
课前任务,大部分学生能认真完成,个别学生需要教师督促,这一少数学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,课上专心致至学习的习惯,主动纠正错误的习惯,还需要加强。
3重点难点重点:等腰三角形的判定定理.难点:等腰三角形的判定证明中辅助线的添加.4教学过程4.1 第一学时4.1.1教学活动活动1【导入】前面我们学习了等腰三角形的定义与性质,今天我们来共同研究等腰三角形的判定.(以“思维导图”形式呈现)活动2【活动】展示交流(前置研究:画一个等腰三角形,方法越多越好,并说出作图的过程以及验证或证明方法。
)(一)组内交流.下面请同学们在小组内对“前置研究”进行交流,并达成共识,时间为5分钟.(二)班级展示.方法预设见素材活动3【练习】巩固应用见素材活动4【活动】归纳反思1.等腰三角形的判定方法:(1)定义:两条边相等的三角形.(2)判定:两个角相等的三角形.2.思想方法:证明线段相等的思路现在有两个:(1)利用三角形全等(两个三角形);(2)等角对等边(一个三角形).活动5【作业】导学:P57 必做题:A组选做题:拓展提高。
北师大版八年级下册第一章
1.3等腰三角形判定(1)教学设计
姓名:吕文彬
单位:郑州航空港区八岗初级中学
1.3 等腰三角形判定(1)教学设计
教材来源:义务教育课程标准实验教科书,北京师范大学出版社2014年11月第二版
教学内容来源:中学八年级数学(下册)第一章
教学主题:等腰三角形判定
课时:第一课时
授课对象:八年级学生
设计者:郑州航空港区八岗初级中学吕文彬
教学目标确定的依据:
1、课程标准要求:学生探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。
2、在八年级上册第七章《平行线的证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题;而前一课时,学生刚刚证明了等腰三角形的性质,这为本课时拓展等腰三角形的性质、研究等要三角形的判定定理都做了很好的铺垫。
3、本节知识在几何证明中起着承上启下的作用。
学习目标
1、通过折纸、自主或小组合作探索等腰三角形的判定定理.
2、通过探索出等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念.
3、通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并
通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.
教学重点
等腰三角形的判定定理的探索和应用。
教学难点
等腰三角形的判定与性质的区别。
教具准备
作图工具和多媒体课件。
教学方法
引导探索法;情景教学法
教学过程
本节课设计了六个教学环节:第一环节:复习旧知,提出问题,引入新课;第二环节:自主探究;第三环节:典型例题;第四环节:随堂练习;第五环节课时小结。
第六环节:作业布置
Ⅰ.复习旧知,提出问题,引入新课
[师]上节课我们学习了等腰三角形的性质,现在大家来回忆一下,等腰三角形有些什么性质呢?
[生甲]等腰三角形的两底角相等.
[生乙]等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.[师]同学们回答得很好,我们已经知道了等腰三角形的性质,那么满足了什么样的条件就能说一个三角形是等腰三角形呢?刚才的定义能不能作为等腰三角形的一个判定方法呢?学生叙述,老师板书。
判定定理1、有两边相等的三角形是等腰三角形。
我们以前怎样画等腰三角形?哪位同学上来画一画。
这样所画的三角形是不是等腰三角形呢?根据什么去判断呢?是不是没有依据呀!教师根据定理一用尺规演示画等腰三角形,学生跟着画。
让学生根据定理一来判断。
除了这个方法外,还有没有别的方法呢? 这就是我们这节课要研究的问题. [师]同学们看下面的问题并讨论:
思考:如图,位于在海上A 、B 两处的两艘救生船接到O 处遇险船只的报警,当时测得∠A=∠B .如果这两艘救生船以同样的速度同时出发,•能不能大约同时赶到出事地点(不考虑风浪因素)?
在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系? [生甲]应该能同时赶到出事地点.因为两艘救生船的速度相同,同时出发,•在相同的时间内走过的路程应该相同,也就是OA=OB ,所以两船能同时赶到出事地点.
[生乙]我认为能同时赶到O 点的位置很重要,也就是∠A 如果不等于∠B ,•那么同时以同样的速度就不一定能同时赶到出事地点.
[师]现在我们把这个问题一般化,在一般的三角形中,如果有两个角相等,•那么它们所对的边有什么关系? [生丙]我想它们所对的边应该相等.
[师]为什么它们所对的边相等呢?同学们思考一下,给出一个简单的证明. Ⅱ自主探究
2
1A
如图:已知△ABC 中,∠B=∠C 请问△ABC 是否是等腰三角形?
(请同学们先自己画出图形,写出已知和求证,然后小组合作写出证明过程。
并派代表发言。
)
已知:在△ABC 中,∠B=∠C (如图).
求证:AB=AC .
学生可以先通过折叠手中的三角形(有两个角相等),思考应做什么样的辅助线,然后自主写出证明过程。
证明:作∠BAC 的平分线AD . 在△BAD 和△CAD 中
12,
,,B C AD AD ∠=∠⎧⎪
∠=∠⎨⎪=⎩
∴△BAD ≌△CAD (AAS ). ∴AB=AC .
提问:你还有不同的证明方法吗?有学生提出做高,让大家想一想行不行,用的是哪一个判定定理证明三角形的全等。
老师要强调解题书写的格式。
(演示课件)
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
[师]下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用. Ⅲ 典型例题
[例1]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.
[师]这个题是文字叙述的证明题,•我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.
已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).
求证:AB=AC .
[师]同学们先思考,再分析.
[生]要证明AB=AC ,可先证明∠B=∠C .
[师]这位同学首先想到我们这节课的重点内容,很好! [生]接下来,可以找∠B 、∠C 与∠1、∠2的关系. [师]我们共同证明,注意每一步证明的理论根据. (演示课件,括号内部分由学生来填) 证明:∵AD ∥BC ,
∴∠1=∠B (两直线平行,同位角相等), ∠2=∠C (两直线平行,内错角相等). 又∵∠1=∠2, ∴∠B=∠C ,
∴AB=AC (等角对等边).
[师]看大屏幕,同学们试着完成这个题. (课件演示)
例2已知:如图,AD ∥BC ,BD 平分∠ABC . 求证:AB=AD .
(投影仪演示学生证明过程) 证明:∵AD ∥BC ,
2
1
E
D
A
B
D
C
A
B
∴∠ADB=∠DBC (两直线平行,内错角相等). 又∵BD 平分∠ABC , ∴∠ABD=∠DBC , ∴∠ABD=∠ADB , ∴AB=AD (等角对等边). [师]下面来看另一个例题. (演示课件) Ⅳ 随堂练习
(一)课本P53 1、2、3.
1、判断:满足下列条件的三角形ABC 是否是等腰三角形?
1.如图,∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1、∠2的度数,•并说明图中有哪些等腰三角形。
2.如图,把一张矩形的纸沿对角线折叠.重合部分是一个等腰三角形吗?为什么?
2
2
1
D C
A
B
1. ∠A=∠B
2. AC=BC
3. ∠A=50° ,∠B=80°
4. ∠A=70° ,∠B=50°
3.如图,AC和BD相交于点O,且AB∥DC,OA=OB,求证:OC=OD.
D C
A B
Ⅳ.课时小结
本节课我们主要探究了等腰三角形判定定理,•并对判定定理的简单应用作了一定的了解.在利用定理的过程中体会定理的重要性.在直观的探索和抽象的证明中发现和养成一定的逻辑推理能力.
Ⅴ.作业布置:
必做题:教科书第56页2、5题。
选做题:教科书第58页12题
VI板书设计
§1.1 等腰三角的判定(一)
判定定理1:有两边相等的三角形是等腰三角形例2
判定定理2:有两角相等的三角形是等腰三角形小结
例1
教学反思:本节应把重点放在探究等腰三角形的判定定理上,在应用环节,应重在倾听学生的思路方法上。