数学人教版五年级下册长方体和正方体整理复习
- 格式:doc
- 大小:42.00 KB
- 文档页数:5
毫米mm、厘米cm、分米dm、米m、千米km3分米=( )厘米0.2米=( )厘米50厘米=( )米7.05米=()米()厘米(长度单位用来表征长、宽、高、棱长、棱长和等)二、表面积过渡:棱长和v.s表面积,PPT给出生活中的图片,让学生直观地看出棱长和与表面积的差别,因为笔者所在学校基础不太好所以增加了此内容,对于基础好的班级可带过。
1. 公式及变形长方体的表面积=(长X宽+长X高+宽X高)X 2正方体的表面积= 棱长X棱长X 62. 基础练习(学生口答)(1)倩倩是个动手能力很强的女孩,她想用硬纸为妈妈做一个棱长为2分米的首饰收纳盒,她要用多少平方分米的硬纸呢?(2)杨大哥的房间,长6米,宽2米,高3米,门窗面积是8平方米。
现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?3. 巩固练习(只列式,不计算)(1)明明家有一个无盖的长方体鱼缸,长4分米,宽2分米,深0.3 米,这只鱼缸的占地面积是多少平方分米?做这只鱼缸至少要用玻璃多少平方分米?(2)任先生楼房外壁用于流水的水管是长方体。
如果每节长15分米,横截面是一个长方形,长1分米,宽0.6米。
做一节水管,至少要用铁皮多少平分米?(3)张乖乖搭了这样一个组合图形,你能帮他求表面积吗?(3) —个长方体高26厘米,沿着水平方 向横切成两个小长方体,表面积增加了 80 平方厘米,求原来长方体的体积。
4. 不规则物体的体积(=容器底面积X 水面5 dm变化(1)10cm(2) 发发家有一个长40厘米、宽20厘米、高30厘米的长方体玻璃 缸,里面放着一些漂亮的雨花石,此时水面高 20厘米。
当露露把这些 雨花石捞出去之后,水面下降了5厘米,这些雨花石的体积是多少立 方厘米?(玻璃厚度忽略不计)(3) 明明家的长方体鱼缸,长、宽、高分别是 4dm 、2dm 、3dm ,若 在里面装1.6L 水,水面离鱼缸口还有多少厘米?(4) 右上图是一个长方体容器,里面水深5.6dm ,把一个南瓜放入后, 南瓜全部浸没,从容器里溢出了 4L 水。
《长方体和正方体的整理与复习》教学设计【教学内容:】人教版《义务教育课程标准实验教科书?数学》五年级下册第三单元《长方体和正方体的整理与复习》【教学目标】:1、对长方体和正方体知识进行整理和复习。
2、通过整理、复习,使学生进一步掌握长方体和正方体的特征,表面积、体积的概念以及相邻单位间的进率;能进一步认识长方体、正方体的表面积和体积及其计算方法,并能正确地计算。
理解它们的内在联系,能灵活运用。
3、巩固本单元的基本概念和基本计算,提高学生的空间想象的能力。
4、使学生知道知识的内在联系,提高学生灵活运用知识的能力。
【教学重点、难点】:1、学生对知识进行自我梳理,知道知识的内在联系。
2、灵活运用知识解决实际问题。
3、使学生形成表象,形成空间观念。
【教具准备】:用纸条打印本单元的知识点、课件。
【教学过程设计】:一、整理。
1、引入:同学们,我们已经学完了第三单元的全部知识,这节课我们一起对这一单元的知识进行整理和复习,把所学的知识系统的整理,形成知识网络。
板书课题:长方体和正方体的整理与复习2、学生回顾本单元所学知识。
①引导学生说出本单元的知识点(学生想到什么说什么,教师根据学生说的顺序用事先准备好的纸条出示相关知识点在右边的黑板上)。
全班学生交流,互相补充。
②引导学生梳理,形成知识网络。
教师指名学生回答我们先学了什么?后学了什么?最后学了什么?教师根据学生的归纳总结,并把刚才粘贴在右边的纸条按一定的顺序粘贴在左边的板书上二、复习。
(一)、课件出示长方体和正方体,让学生回忆长方体和正方体的特征。
1、长方体:①面:长方体上平平的部分是长方体的面【长方体有6个面(相对的面完全相同)】②棱:两个面相交的边叫做长方体的棱【长方体有12条棱(相对的棱长度相等)】③顶点:三条棱相交的点叫做顶点【长方体有8个顶点】。
2、正方体:①面:正方体有6个面(6个面完全相同)。
②棱:正方体有12条棱(12条棱长度都相等)。
③顶点:正方体有8个顶点。
人教版五年级下册数学第三单元知识点易错点汇总一、长方体和正方体的认识 【知识点1】要素 立体图形棱面 顶点数量 特征 数量 特征数量 特征长方体12互相平行的棱长度相等 6相对的面完全相同 8同一个顶点引出的三条棱分别叫做长、宽、高特殊长方体 12 垂直于正方形面的棱长度相等 6 两个面是正方形,其余四个面是完全相同的长方形 8正方体 12 所有的棱长度都相等6 所有面都是正方形且完全相同8一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形! 练习:(1)判断并改正:长方体的六个面一定是长方形; ( ) 正方体的六个面面积一定相等; ( )一个长方体(非正方体) 最多有四个面面积相等; ( )相交于一个顶点的三条棱相等的长方体一定是正方体。
( ) 一个长方体中,可能有4个面是正方形。
( ) 正方体是特殊的长方体。
( )长方体的三条棱分别叫做长、宽、高。
( )有两个面是正方形的长方体一定是正方体。
( ) 有三个面是正方形的长方体一定是正方体。
( ) 正方体的相邻三条棱的交点叫做顶点。
( )有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( ) 长方体和正方体最多可以看到3个面。
( )长方体的12条棱中,长、宽、高各有4条。
( )正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( ) 长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( ) 一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( ) (2)一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
(3)一个长方体的底面是一个正方形,则它的4个侧面是( )形。
(4)正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
(5)把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4 长方体棱长和=下面周长×2+高×4 长方体棱长和=右面周长×2+长×4 长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12 棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
期末专项复习人教版五年级下册数学长方体与正方体练习题一.选择题1.一个长方体的长、宽、高都扩大到原来的2倍,它的体积扩大到原来的()倍。
A.8B.16C.24D.322.如图,将纸片沿虚线折起来,可折成一个正方体,这时正方体的4号面所对的面是()号面。
A.1B.5C.2D.63.把一个长方体分割成若干个小长方体,原来长方体的体积与小长方体的体积和相比,()。
A.小长方体的体积和大B.原来长方体的体积大C.一样大D.无法确定4.下面的图形()沿虚线折叠后能围成一个正方体。
A. B. C. D.5.一个长方体,长、宽、高都扩大为原来的2倍,它的()扩大为原来的8倍.A.表面积B.体积C.棱长和D.无法判断6.下列说法正确的是()。
A.把四个相同的正方体拼成一个长方体,表面积与原来相等B.等式两边同时乘或除以同一个数,等式仍然成立C.把一个正方体切成两个小长方体,这两个小长方体的表面积之和大于原来正方体的表面积D.琪琪和乐乐沿着湖边跑步,他们同时从同一起点出发向相反的方向跑,经过60分他们一定会相遇7.一个立体图形,从不同方向看到的图形如下图,搭这个立体图形需要()个小正方体。
A.4B.5C.6D.78.一盒表面标注“净含量600mL”的长方体盒装酸奶,量得外包装长8cm、宽5cm、高15cm。
请判断:这盒酸奶的净含量与600mL相比,()。
A.大于600mLB.小于600mLC.等于600mLD.无法比较9.一盒标有“净含量650mL”的长方体盒装牛奶,量得外包装长8cm、宽5cm、高15cm,根据以上数据,你认为这盒牛奶的净含量标注()。
A.比真实容积小B.和真实容积一样C.比真实容积大D.无法确定二.填空题10.单位换算。
0.18L=()mL=()cm3125dm3=()m3=()L400mL=()L=()dm311.在括号里填上适当的最简分数。
25秒=()分60cm=()m400g=()kg500m=()km 200ml=()L50cm2=()dm212.一根方钢长6m,切割成4段(截面是正方形),表面积增加了150cm2,原来这根方钢的体积是()cm3。
五年级下长方体和正方体——课堂讲解姓名:_____________一、知识导航(熟记!!!)长方体和正方体是我们较为熟悉的立体图形。
长方体共有六个面,八个顶点,十二条棱。
在六个面中,两个对面是全等的,即三组对面两两全等。
1、长方体的表面积= 2×(长×宽+长×高+宽×高)2、长方体的体积= 长×宽×高= 横截面×高正方体是棱长相等的长方体,它是一种特殊的长方体,它的六个面都是正方形。
1、正方体的表面积= 棱长×棱长×62、正方体的体积= 棱长×棱长×棱长二、经典例题例1.求出如图所示立体图形的表面积和体积。
(单位:厘米)同步演练1:在一个棱长是12分米的正方体上放一个棱长是5分米的小正方体(如图)。
求这个立体图形的表面积和体积。
例2.在一个长20分米、宽10分米的长方体玻璃缸中,有10分米深的水,放入一块棱长是4分米的正方体铁块,铁块全部浸没在水中,并且没有水溢出,这时水面升高了几厘米?同步演练2:在一个长50厘米、宽40厘米、高10厘米的长方体容器中,盛有5厘米深的水。
现将一块石头放入水中,水面升高到8厘米处,这块石头的体积是多少立方厘米?例3.有一个空的长方体容器(如图1)和另一个水深为24厘米的长方体容器(如图2)。
若把容器2中的水倒一部分到容器1中,使两个容器中的水的深度相同,求这时水的深度。
同步演练3:在一个长24分米、宽9分米、高8分米的水槽中注入4分米深的水,然后放入一个棱长为6分米的铁块。
问水位上升了多少分米?例4.一个正方体被切成24个小长方体(如图)。
这些小长方体的表面积总和为162平方厘米,求这个正方体的表面积。
同步演练4:一个正方体形状的木块,棱长为1米。
沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又按任意尺寸锯成5小块,共得到大大小小的长方体60个(如图)。
《长方体、正方体单元整理复习课》教学设计长沙县黄花镇大路小学王彩艳教学目标:1、引领学生全程参与长方体、正方体相关知识点梳理的全过程,使得学生在参与的过程中亲身体验、感悟“知识整理”的方法与策略。
2、创设学生实践的空间,提升学生同伴合作、探究的能力。
3、通过不同层面的质疑,促使师生之间、生生之间多角度的思考与交流,从而体验整理提升的快乐。
4、借助云课堂,实现便捷的师生交互,及时更好的查漏补缺。
教学过程:一、长方体、正方体特征的整理复习1、游戏:猜猜我是谁?出示图师:玩过猜猜猜的游戏吗?猜猜我是谁?生:长方体、正方体………(引起学生的争论,学生逐渐明晰:这个物体可能是长方体,也可能是正方体,还可能是既不是长方体也不是正方体)2、为什么“不确定”师:咱不能确定,那么“什么情况下,这个物体既不是长方体也不是正方体。
”生:如果被挡住的部分是弯曲的,那么它既不是长方体,也不是正方体。
生:如果最下面的那个面是半球形或者。
总之,不是平的也不行。
……….师:真好!想得很周到。
那么什么情况下,我们就能肯定的说,它就一定是长方(将既不是长方体也不是正方体的情况,借助学生的“不确定”率先提出,在陈述理由的过程中,学生完成对长方体、正方体共有特征的初次整理。
)师:好,假设现在这个物体已经具备了上表这些特点,你能马上判断出它是长方体还是正方体吗?生:不能。
师:为什么?生:如果周围四个面也都是正方形,它才是正方体.师:为什么这样说?生:这个物体的底面是正方形,那么它的底面也一定是正方形;可是,如果周围的四面是长方形的话,这个物体是长方体。
因为长方体也会有一对相对的面是正方形的情况。
生:12条棱的长度要相等。
随着学生的表述,教师将表述内容整理到表格,最后由学生贴入图片,体会长方体、正方体的关系。
(通过问题的引领,将正方体是特殊的长方体悄然提炼出来,教师根据学生对正方体特点的整理,对表格进行补充和完善。
)师:通过刚大家的描述,看来大家对长方体和正方体的特征有很深刻的认识了,小马虎同学想请大家来帮帮忙,辨一辨。
第三单元《长方体和正方体》1.长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。
2.长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3.长方体的特征(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。
特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。
(3)长方体有12条棱,相对的棱长度相等。
可分为三组,每一组有4条棱。
还可分为四组,每一组有3条棱。
(3)长方体有8个顶点。
每个顶点连接三条棱。
(4) 长方体相邻的两条棱互相(相互)垂直。
长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
在一个长方体中,相对的面完全相同,相对的棱长度相等。
顶点个数面棱个数大小关系条数长度关系8 6 相对的面相等12 平行的棱长相等4.棱长总和公式:长方体棱长总和=4条长+4条宽+4条高=(长+高+宽)×4宽=棱长之和÷4-长-高长=棱长之和÷4-宽-高高=棱长之和÷4-宽-长二、正方体的认识:1. 正方体的认识:正方体是由6个完全相同的正方形围成的立体图形。
正方体有6个面,12条棱,8个顶点,每个面都是正方形,面积都相等。
每条棱的长度都相等。
正方体的长、宽、高都相等,统称棱长。
2.长方体和正方体的关系:正方体是一种特殊的长方体。
3.正方体棱长之和:棱长×12=棱长之和棱长之和÷12=棱长4.长方体的表面积(1)长方体和正方体6个面的总面积,叫做它的表面积。
(2)表面积计算公式①.因为长方体有“上”、“下”、“前”、“后”、“左”、“右”6个面,相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。
②长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示: S=(ab+ah+bh)×2长方体表面积=(长×宽+长×高+宽×高)×2设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:S = 2ab + 2bc+ 2ca= 2 ( ab + bc + ca)长方体没盖的表面积=长×宽+长×高×2 +宽×高×2③特殊长方体的表面积(有两个面是正方形)正方形的两个面完全相同,其余四个面完全相同。
《长方体和正方体整理复习》教学设计
【教学内容】义务教育课程标准实验教科书五年级下册第三单元的内容
【教学目标】
1.使学生经历对长方体和正方体的知识系统化的整理过程,进一步掌握长方体和正方体的特征,表面积、体积、容积的概念以及相邻单位间的进率;能进一步理解长方体、正方体的表面积、体积和容积的计算方法,并能正确地计算。
理解它们的内在联系,能灵活运用。
2.在复习整理知识的过程中,学习复习整理的方法。
3.培养学生提出问题,并运用所学知识解决问题的能力。
让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值。
并通过合作学习活动,激发培养学生的合作意识与创新精神。
【教学重点、难点】
学生对知识进行自我梳理,灵活运用知识解决实际问题。
【教学过程】
一、创设情境,引入课题
今天,老师给大家带来了一张图片,请大家一起来认识一下,你们会想到什么呢?
的确,这张图片能让我们联想到我们本学期学习过的长方体。
今天我们就一起来复习关于长方体和正方体的知识
板书:长方体和正方体整理复习
二、自主探究,夯实基础
质疑:对于这部分知识你有什么疑问吗?
回顾整理
1.探究提示1:请同学们打开书,看看在这一单元中,我们学习了有关长方体和正方体的哪些知识?(板书:特征、表面积、体积和棱长总和、常用单位和换算、)
2.接下来我们就是从特征、表面积、体积和棱长总和、常用单位和换算、这三大方面来复习有关长方体和正方体的知识。
3.找到《长方体和正方体的特征》的课堂小卷,说一说你都学会了什么。
4.指名汇报。
(1)特征:
(2)判断并说明理由:
A、长方体鱼缸的三条棱就是它的长宽高。
()
B、正方体是特殊的长方体。
()
C、长方体相邻的两个面一定不完全相同。
()
(3)一个长5厘米,宽 3厘米,高4厘米的长方体木块,要削成一个最大的正方体,正方体棱长是多少厘米?
5.复习表面积、体积和棱长总和:(表格)
探究提示2:找到公式的表格,复习一下,你学会了什么?
6.学生汇报。
师提问:实际生活中并不是总是算长方体的六个面的总面积,我们在运用长方体的表面积解决实际问题时会遇到哪些情况?请举例说明。
预想:无盖的长方体铁皮水桶算下、左右、前后五个面,给饼干桶的四周贴商标算前后、左右四个面……
7.复习常用单位及换算:
(1)学生汇报表格
(2)填空:
A、3.05立方米=( ) 立方分米
B、560毫升=()升
C、81立方分米=()毫升
D、3.25平方米=()平方米()平方分米
E、()米=45分米=()厘米
三、合作交流,提升能力
在大家的共同努力下,我们已经明晰了本单元的知识点,整个过程中,同学们主动探究,每位同学的表现都很出色。
所谓“学以至用”,敢不敢接受老师的挑战,试试自己能否灵活的运用所学的知识?
最近,我决定定做这样一个的四周是玻璃的无盖鱼缸,请思考一下,你能提出什么样的数学问题?(预设:表面积是多少?体积是多少?占地面是多少?容积是多少?)
在我们的实际生活中碰到的问题往往不是这样表达的,请同学们看大屏幕(1)如果把金鱼缸放在柜子上,需要在柜子上留出多大的面积?
(2)制作这个金鱼缸需要多少玻璃?
(3)制作这个金鱼缸需要多长的角钢?
(4)如果忽略厚度金鱼缸大约可以装多少升水?
合作要求:
1.思考这些问题其实就是同学们刚才提到的什么数学问题?该怎样计算呢?
2.要解决这些问题,我们必须要知道这个鱼缸的哪些信息?(出示:长10分米米,宽5分米,高8分米)请同学们快速的在练习本上解决这几个问题。
独立计算,集体交流。
同学们刚刚解决了生活中一些和长方体的表面积、体积有联系的最基本的知识,你们认为在解决这些问题时应该注意什么问题?
小结:首先要明确题目到底要我们求什么,如果是表面积的话要注意是求几个面,哪几个面,用什么数据去求,还有单位转换。
解决这些问题的过程就是审题。
四、突破难点,展现活力
1.老师这里还有两个关于这个相关的信息
(1)每平方米的玻璃售价是40元。
(2)我用小水泵往鱼缸里面注水120升。
你能利用这个鱼缸的有关信息,还能提出什么样的数学问题?
(预设:做这个鱼缸所用的玻璃需要多少钱?鱼缸内水的高度是多少分米?)(3)我往水里放入鹅卵石、水草和鱼,水面上升了5厘米,这些鹅卵石、水草和鱼的体积一共是多少立方分米?
2.因为我看中的鱼缸形状是长方体,所以在解题时我们没有用到正方体的知识,但正方体是特殊的长方体,所以有关正方体的问题,解题策略和正方体是一样的,只是计算的公式不相同。
五、拓展延伸,综合运用
1.下面是小马虎的数学日记的一个片段,请你读一读,说说你的感受。
我家房子的面积约是90立方米。
客厅里有一桶容积是18毫升的纯净水够我家喝上两星期的呢!我的身高只有1.4厘米,睡在3平方分米的床上,我的写字台不大,上面放着一个体积为1立方米的笔盒,笔盒的旁边是一瓶容积为60升的黑墨水。
在写字台旁还有一台体积是200立方厘米的电视机。
2.重点让学生认识体积单位,并注重平时养成细心认真的好习惯。
六、总结升华
请你们说说这节课你们认为自己有什么收获呢?
板书:
长方体和正方体整理复习
特征(表格)
长方体和正方体表面积、体积和棱长总和(表格)
常用单位和换算(表格)
教学反思:
《长方体和正方体》是五年级教材“空间与图形”领域的主体内容。
这一单元内容多,跨度大,既有关于长度、面积的进一步学习,又有体积和容积的学习,对于培养学生形成初步的空间观念、提高学生解决问题能力有着重要作用。
介于这一单元概念多、容易混淆的特点,复习时,关键要帮助学生对已学的知识形成知识网络,使所学的知识在头脑中形成纵向、横向的联系,这样学生就会在知识网络中进行比较和鉴别,从而加深对知识的理解。
五年级学生已经具备了初步的整理知识的能力,因此上课之前,我先布置学生结合教材找全这单元的知识点,并用自己喜欢的方法进行整理,再结合这单元的学习,想一想你要提醒大家应该注意什么。
让学生自己回忆和整理知识,有利于他们主动地梳理头脑中原有的知识体系,加强理解知识间的内在联系。
而让他们自由地独立设计,也较大程度地激发了学生的创造性。
整理与复习的过程,既是学生对所学知识查漏补缺、自我完善的过程,也是学生对所学知识系统整理、归纳总结的过程,更是学生对所学知识深化理解、实践应用的过程。
只要我们教师相信学生,充分挖掘他们的潜能,就会有可喜的收获!。