第二节离散时间马尔可夫链的几个性质-资料
- 格式:ppt
- 大小:180.06 KB
- 文档页数:22
离散时间马氏链-回复离散时间马尔可夫链(Discrete-Time Markov Chain)是一种随机过程,它的状态在离散的时间步长内发生变化。
这种变化是由一个概率转移矩阵来描述的,该矩阵表示从一个状态转移到另一个状态的概率。
本文将逐步介绍离散时间马尔可夫链的基本概念、性质以及其在实际中的应用。
一、基本概念1. 马尔可夫链:马尔可夫链是一种特殊的随机过程,它满足无后效性,即当前状态只与前一状态有关,而与其他历史状态无关。
2. 状态空间:马尔可夫链的状态空间是所有可能状态的集合。
3. 转移概率:在马尔可夫链中,从一个状态转移到另一个状态的概率称为转移概率。
4. 初始分布:马尔可夫链的初始状态分布通常用一个向量来表示,这个向量的每个元素对应于状态空间中的一个状态,其值表示开始时处于该状态的概率。
5. 转移矩阵:马尔可夫链的转移矩阵是一个方阵,其中的每个元素表示从一个状态转移到另一个状态的概率。
二、性质1. 无后效性:马尔可夫链最重要的特性就是无后效性,也称为马尔可夫性质。
这意味着系统未来的状态只与当前状态有关,而不依赖于过去的任何状态。
2. 平稳分布:如果一个马尔可夫链在经过足够长时间后,无论初始状态如何,其状态分布都会收敛到一个固定的分布,那么这个分布就称为平稳分布。
3. 回顾性和展望性:回顾性是指系统的当前状态可以完全由过去的状态决定;展望性则是指系统的未来状态只与当前状态有关。
三、应用1. 信息检索:在信息检索中,马尔可夫链可以用来预测用户下一个可能的查询词,从而提高搜索结果的相关性。
2. 自然语言处理:马尔可夫链模型被广泛应用于自然语言处理任务,如词性标注、命名实体识别等。
3. 生物信息学:马尔可夫链模型在生物信息学中有多种应用,如蛋白质序列分析、基因结构预测等。
4. 经济学和金融学:马尔可夫链模型也被用于经济学和金融学领域,如股票价格预测、经济周期分析等。
四、总结离散时间马尔可夫链是一种重要的随机过程模型,其无后效性的特性使得它在许多领域都有广泛的应用。
马尔可夫链▏小白都能看懂的马尔可夫链详解1.什么是马尔可夫链在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。
马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。
该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。
这种特定类型的“无记忆性”称作马尔可夫性质。
马尔科夫链作为实际过程的统计模型具有许多应用。
在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。
状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。
随机漫步就是马尔可夫链的例子。
随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
2.一个经典的马尔科夫链实例用一句话来概括马尔科夫链的话,那就是某一时刻状态转移的概率只依赖于它的前一个状态。
举个简单的例子,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。
这么说可能有些不严谨,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等。
假设状态序列为由马尔科夫链定义可知,时刻Xt+1 的状态只与Xt 有关,用数学公式来描述就是:既然某一时刻状态转移的概率只依赖前一个状态,那么只要求出系统中任意两个状态之间的转移概率,这个马尔科夫链的模型就定了。
看一个具体的例子。
这个马尔科夫链是表示股市模型的,共有三种状态:牛市(Bull market), 熊市(Bear market)和横盘(Stagnant market)。
马尔可夫链马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类: (1) 时间,状态都是离散的马尔可夫过程,称为马尔可夫链.(2) 时间连续,状态离散的马尔可夫过程,称为连续时间的马尔可夫 (3) 时间,状态都连续的马尔可夫过程. 4.1马尔可夫链的概念及转移概率 一,定义假设马尔可夫过程},{T n X n ∈的参数集T 是离散的时间集合,即 T={0,1,2,…},其相应n X 可能取值的全体组成的状态空间是离散的状态集,...}.,{21i i I =定义4.1 设有随机过程},{T n X n ∈,若对于任意的整数T n ∈和任意的I i i i i n ∈+.,...,,,1210,条件概率满足n n n n i X i X i X i X P ====++,...,,{110011}=},{11n n n n i X i X P ==++ (4.1) 则称},{T n X n ∈为马尔可夫链,简称.马氏链.(4.1)式是马尔可夫链的马氏性(或无后效性)的数学表达式.由定义知 ],...,,{1100n n i X i X i X P =====}.,...,,{111100--====n n n n i X i X i X i X P },...,,{111100--===n n i X i X i X P =}{11--==n n n n i X i X P .},...,,{111100--===n n i X i X i X P =… =}{11--==n n n n i X i X P }{2211----==n n n n i X i X P …}{0011i X i X P ==}.{00i X P =可见,马尔可夫链的统计特性完全由条件概率}{11n n n n i X i X P ==++所决定. 二,转移概率条件概率}{1i X j X P n n ==+的直观含义为系统在时刻n 处于状态i 的条件下,在时刻n+1系统处于状态j 的概率.它相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到状态j 的概率.记此条件概率为).(n p ij 定义4.2 称条件概率).(n p ij = }{11n n n n i X i X P ==++为马尔可夫链},{T n X n ∈在时刻n 的一步转移概率,其中i,j I ∈,简称为转移概率. 定义4.3 若对任意i,j I ∈,马尔可夫链},{T n X n ∈的转移概率).(n p ij 与n 无关,则称马尔可夫链是齐次的,并记).(n p ij 为.ij p下面我们只讨论齐次马尔可夫链,通常将齐次两字省略.设p 表示一步转移概率.ij p 所组成的矩阵,且状态空间I={1,2,…},则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=...........................2222111211nnp p p p p p p 称为系统的一步转移概率矩阵,它有性质: (1) .,1)2(;,,0∑∈∈=∈≥Ij ij ijI i p I j i p通常称满足上述(1),(2)性质的矩阵为随机矩阵. 定义4.4称条件概率ij n p )(= )1,0,,(},{≥≥∈==+n m I j i i X j X P m n m 为马尔可夫链},{T n X n ∈的n 步转移概率,.并称)()()(n ij n p p =为马尔可夫链的n 步转移矩阵,其中(1) .,1)2(;,,0)(∑∈∈=∈≥Ij ij n ij n I i p I j i p 即也是随机矩阵.当n=1 时, .)1(ij p =.ij p ,此时一步转移矩阵.)1(p p =此外我们规定 ⎩⎨⎧=≠=.,1,,0)0(j i j i pij定理4.1设},{T n X n ∈为马尔可夫链,则对任意整数n l n <≤≥0,0和,,I j i ∈n 步转移概率.)(ij n p 具有下列性质:(1)))()()(l n kj Ik l ik n ij p p p -∈∑=; (4.2)(2) ;......112111)(j k Ik k k ik Ik n ij n n p p p p --∑∑∈∈= (4.3)(3);)1()(-=n n PP P (4.4) (4).)(n n P P =(4.5)证明(1) 利用全概率公式及马尔可夫性,有}{)(i X j X P p m n m n ij ===+=}{},{i X P j X i X P m n m m ===+}{},{.},{},,{i X P k X i X P k X i X P j X k X i X P m l m m Ik l m m n m l m m =========+∈+++∑}{}{i X k X P k X j X P m l m l m Ik n m =====++∈+∑=)()()()(m p l m p l ik Ik l n ij +∑∈-=)()(.l n kjIk l ik p p -∈∑. (2)在(1)中令1,1k k l ==得))1()(111-∈∑=n jkIk ik n ij p p p 这是一个递推公式,可递推下下去即得(4.3). (3)在(1).令l=1利用矩阵乘法可得. (4) 由(3),利用归纳法可证.定理4.1中的(1)式称为切普曼---柯尔哥洛夫方程,简称C-K 方程 .定义4.5设},{T n X n ∈为马尔可夫链,称 },{0j X P p j ==)(},{)(I j j X P n p n j ∈==为},{T n X n ∈的初始概率和绝对概率,并分别称}),({},,{I j n p I j p j j ∈∈为},{T n X n ∈的初始分布和绝对分布.简记为}.),({},,{n p p j j 称概率向量 )0(),...),(),(()(21>=n n p n p n P T 为n 时刻的绝对概率向量,而称)0(,...),,(21>=n p p P T为初始向量.定理4.2设},{T n X n ∈为马尔可夫链,则对任意整数I j n ∈≥,1,绝对概率).(n p j 具有下列性质:(1)))()(n ij Ii i j p p n p ∑∈=; (4.6)(2) ij Ii i j p n p p )1(-=∑∈ (4.7)(3);)0()()(n T T P P n P = (4.8) (4)P n P n P T T )1()(-= (4.9)证明(1) ===}{)(j X P n p n j},{0j X i XP n Ii ==∑∈= }{}{00i X P i X j XP nIi ===∑∈ =)(n ijIi i p p ∑∈ (2)===}{)(j X P n p n j },{1j X i X P n Ii n ==∑∈-=}{}{11i X P i X j X P n n n Ii ===--∈∑==ij Ii i p n p ∑∈-)1((3)与(4)是(1)与(2)的矩阵形式.定理4.3 设},{T n X n ∈为马尔可夫链,则对任意,1,,...,1≥∈n I i i n 有 },...{11n n i X i X P ===....11n n i i ii i p p p -∑ (4.10) 证明 由全概率公式及马氏性有},...{11n n i X i X P ===},...,,{110n n Ii i X i X i X P ===∈=},...,,{110n n Ii i X i X i X P ===∑∈=}.,{}{0110i X i X P i X P Ii ===∑∈...},...,{110--===n n n n i X i X i X P=}.,{}{0110i X i X P i X P Ii ===∑∈..}{11--==n n n n i X i X P=n n i i ii Ii i p p p 11...-∑∈.三,马尔可夫链的例子例4.1 无限制随机游动设质点在数轴上移动,每次移动一格,向右移动的概率为p,向左移动的概率为 q=1-p,这种运动称为无限制随机游动.以n X 表示时刻n 质点所处的位置,则},{T n X n ∈是一个齐次马尔可夫链,试写出它的一步和k 步转移概率. 解 },{T n X n ∈的状态空间,...},2,1,0{±±=I 其一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=.....................00.........0.....................p q p q P 设在第k 步转移中向右移了x 步向左移动了y 步,且经过k 步转移状态从j 进入j,则⎩⎨⎧-=-=+i j y x k y x ,.2)(,2)(i j k y i j k x --=-+=由于x,y 都只取整数,所以)(i j k -±必须是偶数.又在k 步中哪x 步向右,哪y 步向左是任意的,选取的方法有x k C 种.于是⎩⎨⎧-+-+=是奇数是偶数)(,0)(,i j k i j k q p C p y x x k k ij.例4.2赌徒输光问题.两赌徒甲,乙进行一系列赌博.赌徒甲有a 元,赌注乙有b 元,每赌一局输者给赢者1元,没有和局,直到两人中有一个输光为止.设在每一局中,甲赢的概率为p,输的概率为q=1-p,求甲输光的概率.这个问题实质上是带有两个吸收壁的随机游动,其状态空间为I={0,1,2,…,c} c=a+b.故现在的问题是求质点从a 出发到达0状态先于到达c=a+b 状态的概率.解 设i u 表示甲从状态i 出发转移到状态0的概率,要计算的是a u ..由于0和c 是吸收状态,故,10=u .0=c u i u 由全概公式).1,...,2,1(,11-=+=-+c i qu pu u i i i (4.11) 上式的含义是,甲从状态i 出发开始赌到输光的概率等于’他接下去赢了一局(概率为p)处于状态i+1后再输光”;和他接下去输一局(概率为q),处于状态i-1后再输光”这两个事件的概率.由于p+q=1,(4.11)实质上是一个差分方程.1,...,2,1),(11-=-=--+c i u u r u u i i i i (4.12)其中pqr =,其边界条件为.0,10==c u u (4.13) 先讨论r=1,即p=q=1/2的情况,(4.12)成为 .1,...,2,1),(11-=-=--+c i u u r u u i i i i 令,01α+=u u 得,2012αα+=+=u u u …,01ααi u u u i i +=+=- …,01ααc u u u c c +=+=-将,1,00==u u c 代于最后一式,得参数,1c-=α所以.1,...,2,1,1-=-=ci ciu i 令i=a, 求得甲输光的概率为.1ba bc a u a +=-= 由于甲,乙的地位是对称的,故乙输光的概率为.ba a u a +=再讨论1≠r ,即q p ≠的情况.由(4.12)式得到)(11--=-=-∑i c k i i k c u u r u u =)(011u u r c ki i-=∑-=.1)1(1r r r u ck ---= (4.14) 令k=0,由于,0=c u 有rr u c---=11)1(11即,11)1(1crru --=- 代入(4.14)式,得.1,...,2,1,1-=--=c k rr r u cck k 令k=a,得到输光的概率,1cca a rr r u --= 由对称性,乙输光的概率为.,11111q p r r r r u c cb b =--= 由于,1=+b a u u 因此在1≠r 时,即q p ≠时两个人中也总有一个人要输光的. 例4.3 天气预报问题设昨日,今日都下雨,明日有雨的概率为0.7;昨日无雨今日有雨,明日有雨的概率为0.5;昨日有雨,今日无雨明日有雨的概率为0.4;昨日,今日均无雨,明日有雨的概率为0.2.若星期一星期二均下雨,求星期四下雨的概率.解 设昨日,今日连续两天有雨称为状态0(RR),昨日无雨今日有雨称为状态1(NR),昨日有雨今日无雨称为状态2(RN),昨日今日无雨称为状态3(NN),于是天气预报模型可看作一个四状态的马尔可夫链,其中转移概率为 7.0}{}{}{00====今昨明今昨明今连续三天有雨R R R P P R R R R P p , )(0}{01不可能事件今昨明今==R R R N P p ,,3.07.01}{}{02=-===今昨明今昨明今R R N P R R N R P p)(0}{03不可能事件今昨明今==R R N N P p ,其中R 代表有雨,N 代表无雨.类似地可得到所有状态的一步转移概率,于是它的一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=33323130232221201312111003020100p p p p p p p p p p p p p p p p P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0其中两步转移矩阵为==P P P .)2(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡.64.010.016.010.048..020.012.020.030.015.020.035.018.021.012.049.0 由于星期四下雨意味着过程所处的状态为0或1,因此星期一星期二连续下雨,星期四下雨的概率为.61.012.049.0)2(01)2(00=+=+=p p p例 4.4 设质点在线段[1,4]上作随机游动,假设它只能在时刻T n ∈发生移动,且只能停留在1,2,3,4点上.当质点转移到2,3点时,它以1/3的概率向左或向右移动一格或停留在原处.当质点称动到点1时,它以概率1停留在原处.当质点移动到点4时,它以概率1移动到点3.若以n X 表示质点在时刻n 所处的位置,则},{T n X n ∈ 是一个齐次马尔可夫链,其转移概率矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=0100313131003131310001P 例中的点1称为吸收壁,即质点一旦到达这种状态后就被吸收住了,不再移动;点4称为反射壁,即质点一旦到达这种状态后,必然被反射出去.例4.5生灭链.观察某种生物群体,以n X 表示在时刻n 群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个单位的概率为i b ,减灭到i 个数量单位的概率为i a ,保持不变的概率为)(1i i i b a r +-=,则}0,{≥n X n 为齐次马尔可夫链,I={0,1,2,…,}.其转移概率为⎪⎩⎪⎨⎧+==+==.1,,,1,i j a j i r i j b p ii i ij称此马尔可夫链为生灭链. 4.2 遍历性设齐次马氏链的状态空间为I,若对于所有,,I a a j i ∈转移概率)(n P ij 存在极限 j ij n n P π=∞→)(lim (不依赖于i)或 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→=................................................)(212121j j jn P n P πππππππππ则称此链具有遍历性.又若∑=jj 1π,则同时称,...),(21πππ=为链的极限分布.齐次马氏链在什么条件下才具有遍历性?如何求出它的极限分布?这问题在理论上已经解决,但是要较多的篇幅.下面对有限链的遍历性给出一个充分条件. 定理4.4设齐次马氏链},{T n X n ∈的状态空间为P a a a I n },,...,,{21=是它的一步转移概率矩阵,如果存在正整数m,使对任意的j i a a ,都有 ,,...,2,1,,0)(N j i m p ij =>则此链具有遍历性,且有极限分布, ),,...,,(21N ππππ=它是方程组 P ππ=或即ij Ni i j p ∑==1ππ的满足条件∑==>Nj j j 11,0ππ的唯一解.在定理条件下马氏链的极限分布又是平稳分布.即若用π作为链的初始分布,即π=)0(p ,则链在任一时刻T n ∈的分布)(n p 永远与π一致,事实上ππππ======-P P P n P p n p n n ...)()0()(1 例4..6 设马尔可夫链的转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9.005.005.01.08.01.02.01.07.0P 解 容易证明满足定理4.4条件.可得方程组⎪⎪⎩⎪⎪⎨⎧=++++=++=++=1,9.01.02.0,05.08.01.0,05.01.07.0321321332123211πππππππππππππππ解上述方程组得平稳分布为.5882.0,2353.0,1765.0321===πππ。
马尔可夫链及其性质马尔可夫链是一个具有马尔可夫性质的随机过程。
马尔可夫性质指的是在给定当前状态的情况下,未来的状态仅依赖于当前状态,而与过去的状态无关。
这个概念最早由俄国数学家马尔可夫在20世纪初提出,并且在各领域展示了广泛的应用。
一、马尔科夫链的定义马尔可夫链可以由以下元素定义:1. 状态空间:表示系统可能处于的所有状态的集合。
用S表示状态空间。
2. 转移概率:表示从一个状态到另一个状态的概率。
这些概率可以用转移矩阵P来表示,其中P[i, j]表示从状态i转移到状态j的概率。
3. 初始概率分布:表示系统在初始状态时各个状态的概率分布。
用初始概率向量π表示,其中π[i]表示系统初始时处于状态i的概率。
二、马尔可夫链的性质1. 马尔科夫性质:马尔可夫链的核心特性是满足马尔可夫性质,即未来状态只依赖于当前状态,与过去状态无关。
2. 细致平稳条件:若马尔可夫链的转移概率满足细致平稳条件,则存在唯一的平稳分布。
细致平稳条件是指对于任意两个状态i和j,从i 到j的概率乘以停留在状态i的时间和从j到i的概率乘以停留在状态j 的时间应相等。
3. 遍历性:若马尔可夫链的任意两个状态之间存在一条路径,并且这条路径上的概率都不为零,那么这个马尔可夫链是遍历的。
遍历性保证了无论初始状态如何,最终都可以到达所有的状态。
4. 不可约性:若马尔可夫链的任意两个状态之间都是互达的,那么这个马尔可夫链是不可约的。
不可约性保证了从任意一个状态出发,都可以到达所有的状态。
5. 周期性:若马尔可夫链中存在状态i,使得从状态i出发,无论经过多少次转移,都不能回到状态i,那么这个状态具有周期性。
马尔可夫链的周期定义为状态的所有周期的最大公约数,具有相同周期的状态构成一个封闭的循环。
三、马尔可夫链的应用1. 自然语言处理:马尔可夫链可以用于文本生成和语音识别等自然语言处理领域。
通过观察文本中的状态转移概率,可以生成类似语义的新文本。
2. 金融市场分析:马尔可夫链可以应用于股票价格预测和市场波动分析等金融领域。
4模型完整的四叉树模型也存在一些问题.⑴因概率值过小,计算机的精度难以保障而出现下溢,若层次多,这一问题更为突出.虽然可以通过取对数的方法将接近于0 的小值转换成大的负值,但若层次过多、概率值过小,该方法也难以奏效,且为了这些转换所采用的技巧又增加了不少计算量.⑵当图像较大而导致层次较多时,逐层的计算甚为繁琐下溢现象肯定会出现,存储中间变量也会占用大量空间,在时间空间上都有更多的开销 .⑶分层模型存在块效应,即区域边界可能出现跳跃,因为在该模型中,同一层随机场中相邻的像素不一定有同一个父节点,同一层的相邻像素间又没有交互,从而可能出现边界不连续的现象.5MRF为了解决这些问题,我们提出一种新的分层MRF 模型——半树模型,其结构和图15类似,仍然是四叉树,只是层数比完整的四叉树大大减少,相当于将完整的四叉树截为两部分,只取下面的这部分.模型最下层仍和图像大小一致,但最上层则不止一个节点.完整的四叉树模型所具有的性质完全适用于半树模型,不同点仅在于最上层,完整的树模型从上到下构成了完整的因果依赖性,而半树模型的层间因果关系被截断,该层节点的父节点及祖先均被删去,因此该层中的各节点不具有条件独立性,即不满足上述的性质2,因而对这一层转为考虑层内相邻节点间的关系.半树模型和完整的树模型相比,层次减少了许多,这样,层次间的信息传递快了,概率值也不会因为过多层次的逐层计算而小到出现下溢.但第0 层带来了新的问题,我们必须得考虑节点间的交互,才能得出正确的推导结果,也正是因为在第0 层考虑了相邻节点间的影响,使得该模型的块现象要好于完整的树模型.对于层次数的选取,我们认为不宜多,太多则达不到简化模型的目的,其优势体现不出来,但也不能太少,因为第0 层的概率计算仍然要采用非迭代的算法,层数少表明第0 层的节点数仍较多,计算费时,所以在实验中将层数取为完整层次数的一半或一半稍少.MPM 算法3半树模型的MPM 算法图像分割即已知观测图像y,估计X 的配置,采用贝叶斯估计器,可由一个优化问题来表示:?x = arg min [E C ( x,x )′ | Y = y],x其中代价函数C 给出了真实配置为x 而实际分割结果为x′时的代价.在已知y 的情况下,最小化这一代价的期望,从而得到最佳的分割.代价函数取法不同得到了不同的估计器,若C(x,x′)=1?δ(x,x′)(当x=x′时δ(x,x′)=1,否则δ(x,x′)=0)得到的是MAP 估计器,它意味着x 和x′只要在一个像素处有不同,则代价为1,对误分类的惩罚比较重,汪西莉等:一种分层马尔可夫图像模型及其推导算法而在实际中存在一些误分类是完全允许的.若将半树模型的MPM 算法记为HT-MPM,它分为向上算法和向下算法两步,向上算法自下而上根据式⑵、式⑶逐层计算P(yd(s)|xs)和P(xs,xρ(s)|yd(s)),对最下层P(yd(s)|xs)=P(ys|xs). 向下算法自上而下根据式⑴逐层计算P(xs|y),对最上层由P(x0|y)采样x0⑴,…,x0(n),6详细说明马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。