通信原理课设
- 格式:doc
- 大小:644.50 KB
- 文档页数:22
通信原理课程设计报告Stbc一、课程目标知识目标:1. 理解并掌握通信原理中空时编码的基本概念,特别是正交空时编码(Stbc)的原理;2. 学会分析并计算Stbc系统的误码率性能及分集增益;3. 掌握Stbc在多输入多输出(MIMO)系统中的应用及其优势。
技能目标:1. 能够运用Stbc编码技术设计简单的通信系统模型;2. 通过数学软件(如MATLAB)模拟Stbc通信过程,分析并优化系统性能;3. 培养解决复杂通信问题时的团队协作能力和实验操作能力。
情感态度价值观目标:1. 培养学生对于通信工程领域的兴趣和热情,激发其探索精神;2. 增强学生面对通信技术挑战时的自信心和解决问题的耐心;3. 通过小组合作,加强学生之间的沟通与协作,培养集体荣誉感和责任感。
课程性质分析:本课程为通信原理的高级课程,适合高年级本科生或研究生学习。
课程强调理论与实践相结合,注重培养学生的实际应用能力和科研素养。
学生特点分析:学生应具备扎实的通信原理基础,对数学和物理有一定的理解和应用能力。
他们通常对通信技术有较高的兴趣,但需要进一步引导以深化理解和提高实践技能。
教学要求:1. 结合教材内容,通过案例分析和实验模拟,深入浅出地讲解Stbc技术;2. 设计具有挑战性和实践性的课后作业和团队项目,促使学生将理论知识应用于实际问题的解决;3. 提供反馈和个别指导,帮助学生达到既定的学习成果,并持续跟踪学生进展以调整教学策略。
二、教学内容本课程教学内容围绕Stbc技术展开,依据课程目标,教学内容分为以下三个部分:1. 理论基础:- Stbc编码原理及其数学描述;- 空时编码与MIMO系统的关系;- Stbc系统的误码率性能分析及分集增益计算。
教学内容参考教材第四章“空时编码”相关内容,通过讲解和案例分析,使学生深入理解Stbc技术的基本原理。
2. 实践操作:- 使用MATLAB软件进行Stbc通信系统的建模与仿真;- 分析并优化Stbc系统在不同信道条件下的性能;- 探讨Stbc技术在其他通信系统中的应用。
通信原理课程设计信道为awgn一、教学目标本节课的教学目标是让学生掌握通信原理课程中关于信道为AWGN的知识,主要包括以下三个方面:1.知识目标:使学生了解信道AWGN的基本概念、特性及其在通信系统中的应用;理解AWGN信道的概率分布、噪声功率和信道容量等关键参数。
2.技能目标:培养学生运用通信原理分析和解决实际问题的能力,能够运用AWGN信道的知识对通信系统进行性能评估。
3.情感态度价值观目标:激发学生对通信原理学科的兴趣,培养其严谨治学、勇于探索的科学精神。
二、教学内容本节课的教学内容主要包括以下几个部分:1.AWGN信道的定义、特性和数学模型;2.AWGN信道的概率分布函数及其性质;3.AWGN信道中的噪声功率和信道容量;4.AWGN信道在通信系统中的应用和性能分析。
三、教学方法为了实现本节课的教学目标,将采用以下几种教学方法:1.讲授法:通过讲解AWGN信道的相关概念、特性和应用,使学生掌握基本知识;2.案例分析法:分析实际通信系统中的AWGN信道问题,提高学生的应用能力;3.实验法:安排实验室实践环节,让学生亲自动手进行AWGN信道实验,加深对知识的理解。
四、教学资源为了保证本节课的教学质量,将准备以下教学资源:1.教材:《通信原理》;2.参考书:相关学术论文和书籍;3.多媒体资料:PPT课件、实验演示视频等;4.实验设备:计算机、通信实验装置等。
以上教学资源将有助于实现本节课的教学目标,提高学生的学习兴趣和主动性。
五、教学评估本节课的教学评估将采用多元化的评估方式,以全面、客观地评价学生的学习成果。
评估方式包括:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估其对知识的掌握程度;2.作业:布置相关练习题,评估学生对课堂所学知识的应用能力;3.考试:安排期末考试,全面测试学生对信道为AWGN章节的知识点和技能的掌握情况。
评估标准将根据教学目标和教材内容制定,确保评估结果的公正性和准确性。
通信原理课程设计电路一、课程目标知识目标:1. 理解并掌握通信原理中的基本电路概念,包括放大器、滤波器、调制解调器等;2. 学习并掌握通信电路的设计原理和方法,能够运用相关知识分析电路性能;3. 了解通信系统中各个模块的功能和相互关系,形成完整的通信原理知识体系。
技能目标:1. 培养学生运用所学知识设计简单通信电路的能力,提高动手实践操作技能;2. 能够运用仿真软件对通信电路进行模拟,分析并优化电路性能;3. 培养学生团队协作能力,通过小组合作完成课程设计任务。
情感态度价值观目标:1. 激发学生对通信原理课程的兴趣,培养其主动学习的热情;2. 培养学生严谨的科学态度,注重理论与实践相结合;3. 增强学生的国家使命感和社会责任感,认识到通信技术在国家发展和社会进步中的重要作用。
课程性质:本课程为通信原理课程设计部分,侧重于实践操作,旨在让学生将所学理论知识运用到实际电路设计中。
学生特点:学生已具备一定的电子技术和通信原理基础知识,具有较强的学习能力和动手能力。
教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的主观能动性,提高学生的实际操作能力和创新能力。
通过课程设计,使学生将所学知识内化为具体的学习成果,为今后的学习和工作打下坚实基础。
二、教学内容1. 通信原理基础知识回顾:重点复习放大器、滤波器、调制解调器等基本电路原理,对应教材第二章和第三章内容。
2. 通信电路设计原理:学习通信电路的设计方法,包括电路图的绘制、元件选型、性能分析等,对应教材第五章内容。
3. 通信电路仿真:介绍仿真软件的使用,通过实际操作演示,让学生学会运用仿真软件对通信电路进行模拟和优化,对应教材第七章内容。
4. 通信电路实践:分组进行课程设计,每组设计一个简单的通信电路,如放大器、滤波器等,结合教材内容和实际需求,完成电路设计、搭建和测试。
5. 教学大纲:(1)第1周:通信原理基础知识回顾;(2)第2周:通信电路设计原理学习;(3)第3-4周:通信电路仿真实践;(4)第5-6周:分组进行通信电路实践,完成课程设计报告。
通信原理教案通信原理教案一、教学目的和要求通过本课程的学习,学生将掌握通信原理的基本理论知识和实践技能,能够理解和应用各种通信技术和系统,提高分析和解决问题的能力。
二、教学内容和计划本课程包括以下章节:1、通信系统概述2、信道特性及其对信号传输的影响3、模拟信号的调制解调4、数字信号的基带传输5、数字信号的调制传输6、信道编码与解码7、通信协议与网络8、通信系统实例分析三、教学方法和手段本课程采用课堂讲解、实验和课外阅读等多种教学方法和手段,使学生更好地理解和掌握通信原理的知识。
1、课堂讲解:教师将通过讲解和示威实验,使学生了解通信原理的基本概念和原理。
2、实验:学生将通过实验操作,进一步了解通信技术和系统的实践应用。
3、课外阅读:学生将阅读相关的学术论文和教科书,扩大知识面和提高解决问题的能力。
四、实验设计和安排本课程设计以下实验,包括:1、模拟信号的调制解调实验2、数字信号的基带传输实验3、数字信号的调制传输实验4、信道编码与解码实验五、教学评估和反馈本课程将通过以下方式进行评估和反馈:1、课堂表现:观察学生的课堂表现,包括提问和小组讨论等方式。
2、实验报告:学生将提交实验报告,其中包括实验目的、原理、步骤和结果分析。
3、期末考试:通过期末考试检验学生对通信原理理论和实践技能的掌握程度。
六、教学资源本课程将提供以下教学资源:1、讲义:学生将获得课程相关的讲义和课件。
2、实验指导书:提供实验相关的指导和说明。
3、网络资源:提供相关的学术论文、教科书和网络资源,以便学生进一步学习和研究。
七、教学难点和重点本课程的难点和重点包括:1、信道特性和信号传输:学生需要掌握信道特性和信号传输的基本概念和原理,并能够分析不同信道对信号传输的影响。
2、调制技术和解调技术:学生需要掌握模拟信号的调制技术和解调技术,并能够分析不同调制方式的特点和优劣。
3、数字信号的基带传输和调制传输:学生需要掌握数字信号的基带传输和调制传输的基本原理和技术,并能够分析不同传输方式的优劣和应用。
通信原理课课程设计6一、教学目标本节课的教学目标是使学生掌握通信原理的基本概念、基本原理和基本方法,能够运用通信原理分析和解决实际问题。
具体目标如下:1.理解通信系统的组成和基本原理;2.掌握调制、解调、编码和解码的基本概念和方法;3.了解通信系统的性能评估方法。
4.能够运用通信原理分析和解决实际问题;5.能够使用仿真软件进行通信系统的模拟和分析;6.能够进行通信系统的调试和优化。
情感态度价值观目标:1.培养学生对通信技术的兴趣和热情,提高学生对通信技术的认识;2.培养学生团队合作意识和沟通能力,提高学生解决实际问题的能力;3.培养学生对科学研究的热情和责任感,提高学生的科学研究能力。
二、教学内容本节课的教学内容主要包括通信系统的组成、调制解调技术、编码解码技术以及通信系统的性能评估。
具体内容包括:1.通信系统的组成:通信系统的基本概念、发送端、接收端、传输介质等;2.调制解调技术:调制的基本概念、调制的方法、解调的基本概念和解调的方法;3.编码解码技术:编码的基本概念、编码的方法、解码的基本概念和解码的方法;4.通信系统的性能评估:通信系统的性能指标、性能评估的方法。
三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:通过教师的讲解,使学生掌握通信原理的基本概念、基本原理和基本方法;2.讨论法:通过小组讨论,培养学生团队合作意识和沟通能力,提高学生解决实际问题的能力;3.案例分析法:通过分析实际案例,使学生能够运用通信原理分析和解决实际问题;4.实验法:通过实验操作,使学生能够掌握调制解调技术、编码解码技术,提高学生的实践能力。
四、教学资源为了支持本节课的教学内容和教学方法的实施,将选择和准备以下教学资源:1.教材:通信原理教材,用于引导学生学习和掌握通信原理的基本概念、基本原理和基本方法;2.参考书:通信原理相关参考书,用于丰富学生的知识体系;3.多媒体资料:通信原理相关视频、动画等多媒体资料,用于辅助学生理解和掌握通信原理;4.实验设备:通信原理实验设备,用于进行通信系统的模拟和分析,提高学生的实践能力。
通信原理相关课程设计一、课程目标知识目标:1. 理解并掌握通信原理的基本概念,包括信号、信道、调制与解调等;2. 学习并掌握通信系统中常用的数学模型和公式,能够运用相关理论知识分析通信过程;3. 了解现代通信技术的发展趋势,认识通信技术在生活中的应用。
技能目标:1. 能够运用通信原理分析并解决实际问题,具备一定的通信系统设计能力;2. 能够运用所学知识进行通信设备的调试与维护,具备实际操作能力;3. 能够通过查阅资料、开展讨论等方式,自主学习和拓展通信领域的相关知识。
情感态度价值观目标:1. 培养学生对通信原理的兴趣,激发学习热情,养成主动探究和积极思考的习惯;2. 增强学生的团队合作意识,培养在团队中沟通与协作的能力;3. 提高学生的信息素养,使他们对通信技术在我国社会经济发展中的重要作用有深刻认识。
本课程针对高中年级学生,结合通信原理相关知识,注重理论联系实际,提高学生的知识水平和实践能力。
在教学过程中,教师需关注学生的个体差异,因材施教,使学生在掌握基本通信原理的基础上,能够灵活运用所学知识解决实际问题。
通过本课程的学习,旨在培养学生具备通信领域的基本素养和创新能力,为我国通信事业的发展储备人才。
二、教学内容本章节教学内容围绕以下三个方面展开:1. 通信原理基础知识:- 信号与系统:信号的概念、分类及特性;系统的概念、线性时不变系统及其性质;- 信道:信道的概念、分类、特性及信道模型;- 调制与解调:调制原理、分类及性能指标;解调原理及方法。
2. 通信系统分析与设计:- 通信系统的数学模型:信号的数学表示、系统方程的建立;- 通信系统性能分析:误码率、带宽、功率等性能指标的计算与优化;- 通信系统设计:根据实际需求,选择合适的调制解调方式、信道编码等技术。
3. 现代通信技术应用:- 数字通信技术:数字信号传输、数字调制解调、多路复用技术;- 移动通信技术:移动通信系统的组成、多址技术、蜂窝技术;- 互联网通信技术:网络结构、协议、路由算法等。
教学大纲通信原理通信原理是电子信息类专业中的一门重要课程,旨在介绍通信系统的基本原理、方法和技术。
本文将分为三个部分来论述通信原理的教学大纲。
一、课程简介通信原理是电子信息类专业中的核心课程之一,主要涵盖了通信系统的基本概念、信号与系统、调制技术、解调技术、传输介质、误码控制、多址技术等内容。
通过学习通信原理,学生将深入了解通信系统的基本原理、方法和技术,为后续专业课程的学习打下坚实的基础。
二、教学目标1. 理论知识:掌握通信系统的基本概念、信号与系统的描述与分析方法、调制与解调技术、信道传输特性与传输介质的选择、误码控制的方法、多址技术等理论知识。
2. 实践技能:掌握通信系统的建模和仿真方法,能够使用相关软件工具进行通信系统的仿真实验设计与分析。
3. 创新意识:培养学生的创新意识,使其能够主动解决通信系统中的问题,提出优化方案,并具备一定的科研能力。
4.团队合作:培养学生的团队协作能力,使其能够在通信系统设计与实现过程中与他人进行有效的合作与沟通。
三、教学内容与模块划分1. 通信系统基本概念1.1 通信系统的定义与基本组成部分1.2 信道类型与信号传递方式1.3 通信系统的性能指标与评价方法2. 信号与系统2.1 信号的基本概念与分类2.2 信号的时域与频域表示2.3 系统的概念与特性2.4 线性时不变系统的数学描述与分析方法3. 调制与解调技术3.1 传输信号的调制方法与种类3.2 解调技术与信号恢复方法3.3 调制解调系统性能与优化4. 传输介质与信道传输特性4.1 传输介质的分类与性能特点4.2 信道传输特性的量化与评估4.3 信噪比、带宽与传输速率的关系5. 误码控制5.1 基本概念与误码控制的重要性5.2 编码与解码技术5.3 常用的误码控制编码方法6. 多址技术6.1 多用户接入的需求与挑战6.2 多址技术的分类与应用6.3 CDMA技术的原理与特点四、教学方法与手段1. 理论讲授:通过课堂讲解,向学生介绍通信原理的基本概念、理论知识和应用技术。
通信原理理论课程设计一、课程目标知识目标:1. 让学生理解并掌握通信原理的基本概念,如信号、信道、噪声等;2. 使学生了解并熟悉模拟通信与数字通信的区别及各自的特点;3. 引导学生掌握通信系统中常用的调制与解调技术,以及其优缺点;4. 帮助学生了解通信系统的性能指标,如误码率、带宽、信噪比等。
技能目标:1. 培养学生运用通信原理解决实际问题的能力,如分析并优化通信系统性能;2. 提高学生运用数学工具进行通信系统建模与仿真的技能;3. 培养学生团队协作能力,通过小组讨论、实验等形式,共同完成通信系统的设计与调试。
情感态度价值观目标:1. 激发学生对通信原理学科的兴趣,培养其探索精神与求知欲;2. 引导学生关注通信技术在现代社会中的广泛应用,认识到其在国家发展和社会进步中的重要性;3. 培养学生具备良好的科学素养,尊重事实,遵循科学原理,严谨治学。
本课程针对高年级通信工程及相关专业学生,结合课程性质、学生特点和教学要求,明确以上课程目标。
在教学过程中,将目标分解为具体的学习成果,以便进行后续的教学设计和评估。
通过本课程的学习,使学生不仅能掌握通信原理的基本知识,还能将其应用于实际问题,提高解决实际问题的能力,为未来从事通信领域的工作打下坚实基础。
二、教学内容1. 通信原理概述:介绍通信原理的基本概念、发展历程和通信系统的基本组成。
- 教材章节:第1章 通信原理概述- 内容安排:信号与系统、信道与噪声、通信系统分类及其应用。
2. 模拟通信系统:讲解模拟调制与解调技术,分析其性能特点。
- 教材章节:第2章 模拟通信系统- 内容安排:幅度调制、频率调制、相位调制、模拟解调技术。
3. 数字通信系统:介绍数字通信的基本原理、性能分析及其应用。
- 教材章节:第3章 数字通信系统- 内容安排:数字调制与解调、误码率分析、同步技术。
4. 数字信号处理:讲解数字信号处理技术在通信系统中的应用。
- 教材章节:第4章 数字信号处理- 内容安排:数字滤波器、快速傅里叶变换、正交变换。
通信原理课课程设计Stbc一、教学目标本节课的教学目标是使学生掌握STBC(Space-Time Block Code,空时块码)的基本原理和应用,提高学生在通信原理领域的知识水平。
1.了解STBC的定义和原理。
2.掌握STBC的编码和解码过程。
3.理解STBC在通信系统中的应用和优势。
4.能够运用STBC进行通信系统的仿真和分析。
5.能够运用STBC解决实际通信问题。
情感态度价值观目标:1.培养学生对通信技术的兴趣和热情。
2.培养学生勇于探索、创新的精神。
二、教学内容本节课的教学内容主要包括STBC的定义、原理、编码解码过程以及在通信系统中的应用。
1.STBC的定义和原理:介绍STBC的基本概念,解释其工作原理。
2.STBC的编码解码过程:详细讲解STBC的编码和解码方法,并通过实例进行分析。
3.STBC在通信系统中的应用:介绍STBC在通信系统中的应用场景,阐述其优势。
三、教学方法为了提高学生的学习兴趣和主动性,本节课将采用多种教学方法相结合的方式。
1.讲授法:教师通过讲解,使学生掌握STBC的基本原理和应用。
2.讨论法:引导学生分组讨论,加深对STBC的理解。
3.案例分析法:通过分析实际案例,使学生了解STBC在通信系统中的应用。
4.实验法:安排课后实验,让学生动手实践,巩固所学知识。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用权威教材,为学生提供系统、科学的学习材料。
2.参考书:提供相关领域的参考书籍,拓展学生的知识视野。
3.多媒体资料:制作精美的PPT,生动的动画和视频,帮助学生形象地理解STBC。
4.实验设备:准备实验器材,为学生提供动手实践的机会。
五、教学评估本节课的评估方式将包括平时表现、作业和考试三个部分,以全面、客观、公正地评估学生的学习成果。
1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估其对STBC的理解和应用能力。
通信原理课程设计书籍一、教学目标本节课的教学目标是使学生掌握通信原理的基本概念、基本原理和基本方法,培养学生运用通信原理分析和解决实际问题的能力。
具体目标如下:1.知识目标:(1)了解通信系统的组成及其工作原理;(2)掌握信号的分类、特点及表示方法;(3)熟悉调制解调的基本原理和方法;(4)理解信息论的基本概念和通信系统的性能评估方法。
2.技能目标:(1)能够运用通信原理分析简单的通信系统;(2)能够运用数学方法对通信系统进行性能分析;(3)能够运用编程软件实现简单的通信算法。
3.情感态度价值观目标:(1)培养学生对通信技术的兴趣和热情,提高学生的人文素养;(2)培养学生团队合作精神,提高学生的实践能力;(3)使学生认识到通信技术在我国经济社会发展中的重要性,提高学生的社会责任感和使命感。
二、教学内容本节课的教学内容主要包括以下几个部分:1.通信系统的组成及其工作原理;2.信号的分类、特点及表示方法;3.调制解调的基本原理和方法;4.信息论的基本概念和通信系统的性能评估方法。
具体安排如下:(1)导入:简要介绍通信系统的基本概念,激发学生兴趣;(2)第一部分:讲解通信系统的组成及其工作原理,引导学生理解各部分的作用;(3)第二部分:讲解信号的分类、特点及表示方法,让学生掌握信号的基本知识;(4)第三部分:讲解调制解调的基本原理和方法,培养学生运用通信原理分析问题;(5)第四部分:讲解信息论的基本概念和通信系统的性能评估方法,使学生能够对通信系统进行性能分析。
三、教学方法本节课采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:讲解基本概念、基本原理和基本方法,使学生掌握通信原理的基本知识;2.讨论法:学生分组讨论,培养学生的团队合作精神和实践能力;3.案例分析法:分析实际案例,使学生能够将通信原理应用于实际问题;4.实验法:安排课后实验,让学生动手实践,巩固所学知识。
四、教学资源本节课的教学资源包括:1.教材:《通信原理》;2.参考书:《现代通信原理》;3.多媒体资料:教学PPT、相关视频资料;4.实验设备:通信实验装置。
东北大学秦皇岛分校计算机与通信工程学院综合课程设计基于Matlab的脉冲编码调制(PCM)系统设计与仿真专业名称通信工程班级学号学生姓名指导教师设计时间2012.12.17~2012.1.4课程设计任务书专业:通信工程学号:学生姓名(签名):设计题目:基于Matlab的脉冲编码调制(PCM)系统设计与仿真一、设计实验条件1.工学馆自习室;2.装有Matlab软件的电脑一台。
二、设计任务及要求1.任务实现脉冲编码调制(PCM)技术的三个过程:采样、量化与编码。
2.要求(1)模拟信号的最高频率限制在4KHz以内;(2)分别实现64级电平的均匀量化和A压缩率的非均匀量化;(3)按照13折线A律特性编成8位码。
三、设计报告的内容1.设计题目与设计任务(设计任务书)2.前言(绪论)(设计的目的、意义等)3.设计主体(各部分设计内容、分析、结论等)4.结束语(设计的收获、体会等)5.参考资料四、设计时间与安排1.设计时间:3周2.设计时间安排:1.熟悉实验设备、收集资料:6 天2.设计图纸、实验、计算、程序编写调试:6 天3.编写课程设计报告:2 天4.答辩:1 天设计报告的内容1.设计题目与设计任务1.1 设计题目:基于Matlab的脉冲编码调制(PCM)系统设计与仿真1.2 设计任务:本设计结合PCM的抽样、量化、编码原理,利用Matlab软件编程和绘图功能,完成了对脉冲编码调制(PCM)系统的建模与仿真分析。
2.前言数字通信作为一种新型的通信手段,早在20世纪30年代就已经提出。
在1937年,英国人里费(A.H.Reeves)提出了脉冲编码调制(PCM)方式。
从此揭开了近代数字传输的序幕。
PCM系统的优点是:抗干扰性强、失真小、传输特性稳定,远距离再生中继时噪声不累积,而且可以采用有效编码、纠错编码和保密编码来提高通信系统的有效性、可靠性和保密性。
另外,由于PCM可以把各种消息(声音、图像、数据等等)都变换成数字信号进行传输,因此可以实现传输和交换一体化的综合通信方式,而且还可以实现数据传输与数据处理一体化的综合信息处理。
故它能较好地适应信息化社会对通信的要求。
PCM的缺点是传输带宽宽、系统较复杂。
但是,随着数字技术的飞跃发展这些缺点也不重要。
因此,PCM是一种极有发展前途的通信方式。
本设计结合PCM的抽样、量化、编码原理,利用Matlab软件编程和绘图功能,完成了对脉冲编码调制(PCM)系统的建模与仿真分析。
课题中主要分为三部分对脉冲编码调制(PCM)系统原理进行建模与仿真分析,分别为采样、量化和编码原理的建模仿真。
同时仿真分析了采样与欠采样的波形、均匀量化与A律13折线非均匀量化的量化性能及其差异。
通过对脉冲编码调制(PCM)系统原理的仿真分析,设计者对PCM原理及性能有了更深刻的认识,并进一步掌握Matlab 软件的使用。
3.设计主体PCM脉冲编码原理及Matlab实现3.1 抽样3.1.1 抽样原理(1)信号的采样离散时间信号通常是由连续时间信号经周期采样得到的。
完成采样功能的器件称为采样器,图3.2为采样器的示意图。
图中Xa(t)表示模拟信号,Xa(nt)表示采样信号,T为采样周期,n=0,1,2,…。
一般可以把采样器视为一个每隔T秒闭合一次的电子开关S。
在理想情况下,开关闭合时间τ满足τ<<T。
实际采样过程可视为脉冲调幅过程,Xa(t)为调制信号,被调脉冲载波p(t)是周期为T、脉宽为τ的周期脉冲串。
当τ→0时的理想采样情况是实际采样的一种科学的、本质的抽象,同时可使数学推导得到简化。
下面主要讨论理想采样。
图3.2 采样器示意图及波形图(2)抽样定理抽样也称取样、采样,是把时间连续的模拟信号变换为时间离散信号的过程。
抽样定理是指:一个频带限制在(0,f H)内的时间连续信号m(t),如果以T≤1/2f H 秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽样值完全确定。
这意味着,若m(t)的频谱在某一角频率ωH上为零,则m(t)中的全部信息完全包含在其间隔不大于1/2f H秒的均匀抽样序列里。
换句话说,在信号最高频率分量的每一个周期内起码应抽样两次。
根据抽样脉冲的特性,抽样分为理想抽样、自然抽样(亦称曲顶取样)、瞬时抽样(亦称平顶抽样);根据被抽样信号的性质,抽样又分为低通抽样和带通抽样。
虽然抽样种类很多,但是间隔一定时间,抽样连续信号的样值把信号从时间上离散,这是各种抽样共同的作用,抽样是模拟信号数字化即时分多路的理论基础。
我们考察一个频带限制在(0,f H)内的信号m(t)。
假定将信号m(t)和周期性冲击函数δ(t)相乘,如图3.3所示,乘积函数便是均匀间隔为T秒的冲激序列,这些冲激序列的强度等于相应瞬时时间上的m(t)值,它表示对函数m(t)的抽样。
我们用m s(t)表示此已抽样的函数,即有m s(t)=m(t)δ(t)上述关系如下图所示。
图3.3 抽样示意图(3)采样信号的频谱分析频谱分析自然要使用快速傅里叶变换FFT了,对应的命令即fft ,简单使用方法为:Y=fft(b,N),其中b即是采样数据,N为fft数据采样个数。
一般不指定N,即简化为Y=fft(b)。
Y即为FFT变换后得到的结果,与b的元素数相等,为复数。
以频率为横坐标,Y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,Y数组每个元素的角度为纵坐标,画图即得数据b的相频特性。
对于现实中的情况,采样频率fs一般都是由采样仪器决定的,即f s为一个给定的常数;另一方面,为了获得一定精度的频谱,对频率分辨率F有一个人为的规定,一般要求F<0.01,即采样时间t s>100秒;由采样时间t s和采样频率f s即可决定采样数据量,即采样总点数N=f s×t s。
这就从理论上对采样时间t s和采样总点数N提出了要求,以保证频谱分析的精准度。
3.1.2 抽样的Matlab实现PCM抽样的Matlab程序设计按如下步骤进行:(1)确定输入的模拟信号为Sa(200t);(2)根据输入的模拟信号,确定抽样频率,对输入信号进行抽样,并将正常抽样和会产生失真的抽样进行对比,对抽样定理加以验证;(3)编写程序,画出满足采样定理和不满足采样定理的时、频域图形。
PCM抽样的Matlab实现源程序如下:function sample()t0=10; %定义时间长度ts=0.001; fs=1/ts;t=[-t0/2:ts:t0/2]; %定义时间序列df=0.5; %定义频率分辨率x=sin(200*t); m=x./(200*t+eps);w=t0/(2*ts)+1; %确定t=0的点m(w)=1; %修正t=0点的信号值m=m.*m;[M,mn,dfy]=fft_seq(m,ts,df); %傅立叶变换M=M/fs;f=[0:dfy:dfy*length(mn)-dfy]-fs/2; %定义频率序列figure(1)subplot(2,1,1); plot(t,m);xlabel('时间');ylabel('幅值');title('原始信号(fh=200/2piHz)的波形');axis([-0.15,0.15,0,1.5]);subplot(2,1,2);plot(f,abs(fftshift(M)));xlabel('频率');ylabel('幅值');axis([-500,500,0,0.03]);title('原始信号的频谱');t0=10; %信号持续的时间ts1=0.005; %满足抽样条件的抽样间隔fs1=1/ts1;t1=[-t0/2:ts1:t0/2]; %定义满足抽样条件的时间序列x1=sin(200*t1); m1=x1./(200*t1+eps); w1=t0/(2*ts1)+1;m1(w1)=1; %修正t=0时的信号值m1=m1.*m1; %定义信号[M1,mn1,df1]=fft_seq(m1,ts1,df); %对满抽样条件的信号进行傅立叶变换M1=M1/fs1;N1=[M1,M1,M1,M1,M1,M1,M1,M1,M1,M1,M1,M1,M1];f1=[-7*df1*length(mn1):df1:6*df1*length(mn1)-df1]-fs1/2;figure(2)subplot(2,1,1); stem(t1,m1);xlabel('时间');ylabel('幅值');title('抽样正常(fs=200Hz)时的信号波形');axis([-0.15,0.15,0,1]);subplot(2,1,2)plot(f1,abs(fftshift(N1)));xlabel('频率');ylabel('幅值');axis([-500,500,0,0.05]);title('抽样正常时的信号频谱');axis([-500,500,-0.01,0.03]);t0=10; %信号持续的时间ts2=0.01; %不满足抽样条件的抽样间隔fs2=1/ts2;t2=[-t0/2:ts2:t0/2]; %定义不满足抽样条件的时间序列x2=sin(200*t2); m2=x2./(200*t2+eps); w2=t0/(2*ts2)+1;m2(w2)=1; %修正t=0时的信号值m2=m2.*m2; %定义信号[M2,mn2,df2]=fft_seq(m2,ts2,df);%对不满足抽样条件的信号进行傅立叶变换M2=M2/fs2;N2=[M2,M2,M2,M2,M2,M2,M2,M2,M2,M2,M2,M2,M2];f2=[-7*df2*length(mn2):df2:6*df2*length(mn2)-df2]-fs2/2;figure(3)subplot(2,1,1); stem(t2,m2);xlabel('时间');ylabel('幅值');title('抽样失真(fs=100Hz)时的信号波形');axis([-0.15,0.15,0,1]);subplot(2,1,2)plot(f2,abs(fftshift(N2)));xlabel('频率');ylabel('幅值');axis([-500,500,0,0.02]);title('抽样失真时的信号频谱');axis([-500,500,0.005,0.02]);function [M,m,df]=fft_seq(m,ts,df)fs=1/ts;if nargin==2n1=0elsen1=fs/dfendn2=length(m);n=2^(max(nextpow2(n1),nextpow2(n2)));M=fft(m,n);m=[m,zeros(1,n-n2)];df=fs/nPCM抽样仿真结果如图3.4、3.5、3.6所示:图3.4 PCM模拟输入信号波形及频谱图3.5 PCM正常抽样时信号的波形及频谱图3.6 PCM抽样失真时信号的波形及频谱3.2 量化3.2.1 量化原理(1)量化定义模拟信号进行抽样以后,其抽样值还是随信号幅度连续变化的,即抽样值m(kT)可以取无穷多个可能值,如果用N个二进制数值信号来代表该样值的大小,以便利用数字传输系统来传输该样值的信息,那么N个二进制信号只能同M=错误!未找到引用源。