13-1简谐运动的动力学特征
- 格式:pdf
- 大小:875.56 KB
- 文档页数:12
简谐运动-高考物理知识点
物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。
2.动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。
简谐运动的动力学特征是判断物体是否为简谐运动的依据。
3.简谐运动的运动学特征a=-kx加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。
4.简谐运动加速度的大小和方向都在变化,是一种变加速运动。
简谐运动的运动学特征也可用来判断物体是否为简谐运动。
5.简谐运动图象:简谐运动的位移—时间图象通常称为振动图象,也叫振动曲线。
简谐运动振动图象的特点所有简谐运动的振动图象都是正弦或余弦曲线。
6.简谐运动图象的物理意义表示振动物体相对于平衡位置的位移随时间的变化情况,或反映位移随时间的变化规律。
振动图象描述的是一个振动质点在各个不同时刻相对于平衡位置的位移,不是反映质点的运动轨迹。
简谐运动的特征简谐运动是物体在恢复力作用下进行周期性往复运动的一种运动状态。
它具有以下几个特征:首先,简谐运动的运动轨迹通常是一条直线,或者是一个圆周。
在直线运动的情况下,物体的位置随时间的推移呈现出正弦曲线的形状;而在圆周运动的情况下,物体处于圆的周围运动,运动轨迹是一个圆。
其次,简谐运动的物体周期性地往复运动。
也就是说,物体在一个周期内经历相同的过程,并且在不同阶段的速度和加速度的变化都是相同的。
这使得简谐运动成为一种非常规律且可预测的物理现象。
第三,简谐运动的物体受到恢复力的作用。
恢复力是指使物体向运动平衡位置恢复的力量,它的大小与物体偏离平衡位置的距离成正比。
当物体偏离平衡位置越大时,恢复力越大;当物体接近平衡位置时,恢复力越小。
这种力量的作用使得物体具有了周期性的往复运动。
第四,简谐运动的物体具有振幅和频率两个重要的物理量。
振幅是指物体在运动过程中离开平衡位置的最大距离,它反映了物体运动的幅度大小;频率是指单位时间内运动的周期数,它反映了物体运动的快慢程度。
振幅和频率之间存在着一种关系:频率越高,振幅越小;频率越低,振幅越大。
简谐运动在生活和科学研究中具有重要的应用价值。
它不仅在机械振动和波动研究中有广泛应用,还在其他领域如电子工程、光学、天文学等方面发挥着重要作用。
例如,在电子工程中,简谐运动的概念被应用于交流电路和振荡器的设计与分析;在天文学中,简谐运动的理论被用来描述行星、卫星等天体的轨道运动。
总之,简谐运动作为一种具有周期性和规律性的运动,具有明显的特征和重要的应用价值。
理解和掌握简谐运动的特点可以帮助我们深入了解自然界中的物理规律,并且为科学技术的发展提供了基础。
一、简谐运动特征
1、动力学特征:,注意k不等同于弹簧的劲度系数,是由振动装置本身决定的常数;动力学特征也是判断某机械运动是否为简谐运动的依据。
2、运动学特征:,此式表明加速度也跟位移大小成正比,并总指向平衡位置。
由此可见,简谐运动是一变加速运动,且加速度和速度都在做周期性的变化。
3、能量特征:机械能守恒,注意振动物体通过平衡位置时势能为零的说法不够确切,应说成此位置势能最小。
4、对称特征:关于平衡位置对称的两点等物理量的大小相等,此外还体现在过程量上的相等,如从某点到平衡位置的时间和从平衡位置到与该点关于平衡位置对称点的时间相同等等。
二、简谐运动的分析方法
1、判断振动是简谐运动的思路:正确受力分析;找出平衡位置
();设物体偏离平衡位置位移为x,找到,即可得证。
2、判断简谐运动的变化的思路:
例、如图所示,一个质点在平衡位置O点附近做简谐运动,若从O点开始计时,经过3s质点第一次经过M点,再继续运动,又经过2s它第二次经过M点;则该质点第三次经过M点所需的时间是_______________。
解析:设图中a、b两点为质点振动过程中的最大位移处,若开始质点从O
点向右运动,O→M历时3s,M→b→M历时2s,则=4s,T=16s,质点第三次经过M点所需时间
t=16s-2s=14s。
若开始计时时刻质点从O点向左运动,O→a→O→M历时3s。
M→b→M历时2s,则,质点第三次经过M点所需时
间
本题的求解关键在于灵活运用简谐运动中的对称性,同时还要注意振动方向的不确定性造成此题的多解;除此之外,对简谐运动过程中各个物理量在四个T/4时段内和五个特殊时刻的情况分析也要清楚。
第1节机械振动一、简谐运动的特征1.简谐运动(1)定义:如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
(2)平衡位置:物体在振动过程中回复力为零的位置。
(3)回复力①定义:使物体返回到平衡位置的力。
②方向:总是指向平衡位置。
③来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力。
2.简谐运动的两种模型1.简谐运动的表达式(1)动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。
(2)运动学表达式:x=A sin(ωt+φ),其中A代表振幅,ω=2πf,表示简谐运动的快慢,ωt+φ代表运动的相位,φ代表初相位。
2.简谐运动的图象(1)从平衡位置开始计时,函数表达式为x=A sin ωt,图象如图甲所示。
甲乙(2)从最大位置开始计时,函数表达式为x=A cos ωt,图象如图乙所示。
三、受迫振动和共振1.受迫振动(1)概念:振动系统在周期性驱动力作用下的振动。
(2)特点:受迫振动的频率等于驱动力的频率,跟系统的固有频率无关。
2.共振(1)现象:当驱动力的频率等于系统的固有频率时,受迫振动的振幅最大。
(2)条件:驱动力的频率等于固有频率。
(3)特征:共振时振幅最大。
(4)共振曲线(如图所示)。
1.思考辨析(正确的画“√”,错误的画“×”)(1)简谐运动的平衡位置就是质点所受合力为零的位置。
(×)(2)做简谐运动的质点先后通过同一点,回复力、速度、加速度、位移都是相同的。
(×)(3)公式x=A sin ωt说明是从平衡位置开始计时。
(√)(4)简谐运动的图象描述的是振动质点的轨迹。
(×)(5)物体做受迫振动时,其振动频率与固有频率无关。
(√)(6)物体受迫振动的频率与驱动力的频率无关。
(×)2.(多选)做简谐运动的物体,当它每次经过同一位置时,相同的物理量是()A.位移B.速度C.加速度D.回复力E.动量ACD[简谐运动的位移是指由平衡位置指向物体所在位置的有向线段,物体经过同一位置时,运动位移一定相同,选项A正确;回复力产生加速度,回复力与位移满足F=-kx的关系,只要位移相同,回复力一定相同,回复力产生的加速度也一定相同,选项C、D正确;经过同一位置,可能远离平衡位置,也可能靠近平衡位置,因此,速度的方向可能相反,选项B、E错误。
课程设计画布一、教学目标本课程的教学目标是让学生掌握第三章:生物的遗传与变异的核心概念和原理。
知识目标包括:•能够描述基因的概念和其在遗传中的作用。
•能够解释DNA的结构和复制过程。
•能够阐述孟德尔遗传定律及其在现代遗传学中的应用。
•能够描述基因突变和其对生物体影响。
技能目标则要求学生:•能够运用遗传学知识解决简单的实际问题。
•能够使用实验数据来验证遗传学假说。
•能够通过绘图或模型制作来解释遗传学过程。
情感态度价值观目标旨在培养学生的:•对生命科学探究的兴趣和好奇心。
•尊重科学探究过程和结果的态度。
•认识生物技术的意义和潜在价值。
二、教学内容本章节的教学内容将依据《高中生物》教材的第三章,详细安排如下:1.基因与遗传:介绍基因的定义,解释基因如何控制生物的特性。
2.DNA的结构与复制:阐述DNA的双螺旋结构,演示DNA复制的过程。
3.孟德尔遗传定律:详细讲解孟德尔的两大遗传定律,并通过实例分析其应用。
4.基因突变:探讨基因突变的类型、原因及对生物体的影响。
5.遗传学实验技术:介绍常见的遗传学实验技术,如杂交实验和基因工程。
三、教学方法为达成上述教学目标,将采用以下教学方法:•讲授法:用于讲解基础理论和概念。
•讨论法:鼓励学生就遗传学案例进行讨论,促进深入理解。
•实验法:指导学生完成遗传学相关实验,增强实践操作能力。
•案例分析法:分析真实或模拟的遗传学案例,培养学生解决问题的能力。
四、教学资源教学资源的准备将包括:•教材《高中生物》及相关辅助阅读材料。
•多媒体教学课件,包括视频和动画资料。
•实验室设备,如显微镜、DNA模型等,用于实验教学。
•在线资源库,提供额外的学习资料和互动平台。
以上课程设计画布内容围绕教学目标、教学内容、教学方法和教学资源展开,旨在为学生提供一个清晰、有序、互动和富有启发性的学习环境。
五、教学评估为全面评估学生对第三章:生物的遗传与变异内容的掌握情况,将采用以下评估方式:1.平时表现:通过课堂提问、讨论参与度等评估学生的理解力和积极性。
简谐运动特征总结在物理学的世界中,简谐运动是一种非常重要的运动形式。
它不仅在理论研究中具有重要地位,还在实际生活中有诸多应用。
接下来,让我们一起深入了解简谐运动的特征。
简谐运动的定义可以简单理解为:如果一个物体所受的力与它偏离平衡位置的位移大小成正比,并且力的方向总是指向平衡位置,那么这个物体的运动就是简谐运动。
首先,从运动学的角度来看,简谐运动具有周期性。
这意味着物体在运动过程中,会按照一定的规律不断重复相同的运动状态。
其周期T 只与振动系统本身的性质有关,比如振子的质量 m 和弹簧的劲度系数 k。
具体来说,周期 T =2π√(m/k) 。
频率 f 则是周期的倒数,即 f = 1/T 。
位移是描述简谐运动的重要物理量之一。
位移 x 随时间 t 的变化规律可以用正弦函数或余弦函数来表示。
假设初始相位为零,位移 x 可以表示为 x =A sin(ωt) ,其中 A 是振幅,ω 是角频率,ω =2πf 。
振幅 A 代表了物体振动的最大位移,它反映了振动的强度。
速度 v 是位移对时间的导数,即 v =ωA cos(ωt) 。
速度的大小和方向都在不断变化,在平衡位置时速度最大,在最大位移处速度为零。
加速度 a 则是速度对时间的导数,a =ω²A sin(ωt) 。
加速度的方向总是指向平衡位置,且在平衡位置加速度为零,在最大位移处加速度最大。
从动力学的角度来分析,简谐运动的物体所受的合力 F 满足 F =kx 。
这表明合力与位移成正比,并且方向总是与位移相反。
这种力被称为回复力,它是使物体回到平衡位置的“动力”。
简谐运动还具有能量特征。
在理想情况下,简谐运动系统的总机械能守恒。
其能量包括动能和势能。
动能 E_k = 1/2 m v²,势能 E_p =1/2 k x²。
在运动过程中,动能和势能不断相互转化,但总能量保持不变。
实际生活中有很多简谐运动的例子。
比如弹簧振子,当弹簧一端固定,另一端连接一个物体,让物体在水平方向上振动,就是一个典型的简谐运动模型。
3.简谐运动的回复力和能量学习目标:1.理解回复力的概念、简谐运动的能量.2.会用动力学方法,分析简谐运动的变化规律.3.能定性地说明弹簧振子系统的机械能守恒.一、简谐运动的回复力1.回复力(1)定义:振动质点受到的总能使其回到平衡位置的力.(2)方向:指向平衡位置.(3)表达式:F=-kx.2.简谐运动的动力学特征如果物体在运动方向上所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动.二、简谐运动的能量1.振动系统(弹簧振子)的状态与能量的对应关系弹簧振子运动的过程就是动能和势能互相转化的过程.(1)在最大位移处,势能最大,动能为零.(2)在平衡位置处,动能最大,势能最小.2.简谐运动的能量特点:在简谐运动中,振动系统的机械能守恒,而在实际运动中都有一定的能量损耗,因此简谐运动是一种理想化的模型.1.思考判断(正确的打“√”,错误的打“×”)(1)简谐运动是一种理想化的振动.(√)(2)水平弹簧振子运动到平衡位置时,回复力为零,因此能量一定为零.(×)(3)弹簧振子位移最大时,势能也最大.(√)2.(多选)弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中()A.振子所受的回复力逐渐增大B.振子的位移逐渐减小C.振子的速度逐渐减小D.振子的加速度逐渐减小BD[该题考查的是回复力、加速度、速度随位移的变化关系,应根据牛顿第二定律进行分析.当振子向平衡位置运动时,位移逐渐减小,而回复力与位移大小成正比,故回复力也减小.由牛顿第二定律a=F得加速度也减小.振子向m着平衡位置运动时,回复力与速度方向一致,即加速度与速度方向一致,故振子的速度逐渐增大.故正确答案为B、D.]3.(多选)把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它围绕平衡位置O在A、B间振动,如图所示,下列结论正确的是()A.小球在O位置时,动能最大,加速度最小B.小球在A、B位置时,动能最小,加速度最大C.小球从A经O到B的过程中,回复力一直做正功D.小球从B到O的过程中,振子振动的能量不断增加AB[小球在平衡位置O时,弹簧处于原长,弹性势能为零,动能最大,位移为零,加速度为零,A项正确;在最大位移A、B处,动能为零,加速度最大,B项正确;由A→O,回复力做正功,由O→B,回复力做负功,C项错误;由B→O,动能增加,弹性势能减少,总能量不变,D项错误.]简谐运动的回复力观察水平弹簧振子的振动.问题1:如图所示,当把振子从静止的位置O拉开一小段距离到A再放开后,它为什么会在A—O—A′之间振动呢?问题2:弹簧振子振动时,回复力与位移有什么关系呢?提示:1.当振子离开平衡位置后,振子受到总是指向平衡位置的回复力作用,这样振子就不断地振动下去.2.振子的回复力跟其偏离平衡位置的位移大小成正比,方向相反.1.回复力的性质回复力是根据力的效果命名的,它可以是一个力,也可以是多个力的合力,还可以由某个力的分力提供.如图甲所示,水平方向的弹簧振子,弹力充当回复力;如图乙所示,竖直方向的弹簧振子,弹力和重力的合力充当回复力;如图丙所示,m随M一起振动,m的回复力是静摩擦力.甲乙丙2.简谐运动的回复力的特点(1)由F=-kx知,简谐运动的回复力大小与振子的位移大小成正比,回复力的方向与位移的方向相反,即回复力的方向总是指向平衡位置.(2)公式F=-kx中的k指的是回复力与位移的比例系数,而不一定是弹簧的劲度系数,系数k由振动系统自身决定.(3)根据牛顿第二定律得,a=Fm=-km x,表明弹簧振子做简谐运动时振子的加速度大小也与位移大小成正比,加速度方向与位移方向相反.名师点睛:因x=A sin(ωt+φ),故回复力F=-kx=-kA sin(ωt+φ),可见回复力随时间按正弦规律变化.【例1】一质量为m的小球,通过一根轻质弹簧悬挂在天花板上,如图所示.(1)小球在振动过程中的回复力实际上是________;(2)该小球的振动是否为简谐运动?[解析](1)此振动过程的回复力实际上是弹簧的弹力与重力的合力.(2)设振子的平衡位置为O,向下方向为正方向,此时弹簧已经有了一个伸长量h,设弹簧的劲度系数为k,由平衡条件得kh=mg①当振子向下偏离平衡位置的距离为x时,回复力即合外力为F回=mg-k(x +h)②将①代入②式得:F回=-kx,可见小球所受合外力与它的位移的关系符合简谐运动的受力特点,该振动系统的振动是简谐运动.[答案](1)弹力和重力的合力(2)是简谐运动判断是否为简谐运动的方法(1)以平衡位置为原点,沿运动方向建立直线坐标系.(2)在振动过程中任选一个位置(平衡位置除外),对振动物体进行受力分析.(3)将力在振动方向上分解,求出振动方向上的合力.(4)判定振动方向上合外力(或加速度)与位移关系是否符合F=-kx(或a=-km x),若符合,则为简谐运动,否则不是简谐运动.[跟进训练]1.(多选)如图所示,弹簧振子在光滑水平杆上的A、B两点之间做往复运动,下列说法正确的是()A.弹簧振子在运动过程中受重力、支持力和弹簧弹力的作用B.弹簧振子在运动过程中受重力、支持力、弹簧弹力和回复力作用C.弹簧振子由A向O运动的过程中,回复力逐渐增大D.弹簧振子由O向B运动的过程中,回复力的方向指向平衡位置AD[回复力是根据力的效果命名的,不是做简谐运动的物体受到的具体的力,它是由物体受到的具体的力提供的,在此情境中弹簧振子受重力、支持力和弹簧弹力的作用,故A正确,B错误;回复力与位移的大小成正比,弹簧振子由A向O运动的过程中位移在减小,则在此过程中回复力逐渐减小,故C错误;回复力的方向总是指向平衡位置,故D正确.]简谐运动的能量教材第42页“做一做”答案位置Q Q→O O O→P P 位移的大小最大↘0↗最大速度的大小0↗最大↘0动能0↗最大↘0弹性势能最大↘0↗最大机械能不变不变不变不变不变如图所示的弹簧振子.观察振子从B→O→C→O→B的一个循环.请思考:(1)振子在振动过程中动能、势能的变化规律.(2)振子在振动过程中机械能守恒吗?提示:(1)振子的动能变化规律:B→O过程动能增大,O点动能最大,O→C 动能减小.振子的势能变化规律:振子在B、C两点势能最大,B→O过程势能减小,O点势能为0,O→C过程势能增大.(2)振子在振动过程中只有弹力做功,故机械能守恒.做简谐运动的物体在振动中经过某一位置时所具有的势能和动能之和,称为简谐运动的能量.2.对简谐运动的能量的理解注意以下几点决定因素简谐运动的能量由振幅决定.能量的获得最初的能量来自外部,通过外力做功获得.能量的转化系统只发生动能和势能的相互转化,机械能守恒.理想化模型(1)力的角度:简谐运动不考虑阻力.(2)能量转化角度:简谐运动不考虑因克服阻力做功带来的能量损耗.振动系统的机械能跟振幅有关,对一个给定的振动系统,振幅越大,振动越强,振动的机械能越大;振幅越小,振动越弱,振动的机械能越小.名师点睛:(1)在振动的一个周期内,动能和势能完成两次周期性变化.(2)振子运动经过平衡位置两侧的对称点时,具有相等的动能和相等的势能.【例2】如图所示,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a、b两个小物块粘在一起组成的.物块在光滑水平面上左右振动,振幅为A0,周期为T0.当物块向右通过平衡位置时,a、b之间的粘胶脱开;以后小物块a振动的振幅和周期分别为A和T,则A________A0(选填“>”“<”或“=”),T________T0(选填“>”“<”或“=”).思路点拨:解答本题注意以下两点:(1)系统的机械能与振幅有关,机械能越大,振幅越大.(2)弹簧振子运动的周期含义.[解析]弹簧振子通过平衡位置时弹性势能为零,动能最大.向右通过平衡位置,a由于受到弹簧弹力做减速运动,b做匀速运动,两者分离.物块a与弹簧组成的系统的机械能小于原来系统的机械能,所以物块a振动的振幅减小,A <A0.由于振子质量减小,物块a的加速度的大小增大,所以周期减小,T<T0.[答案]<<简谐运动的能量同一简谐运动中的能量只由振幅决定,即振幅不变时系统能量不变,当位移最大时系统的能量体现为势能,动能为零,当处于平衡位置时势能最小,动能最大,这两点是解决此类问题的突破口.[跟进训练]训练角度1简谐运动的运动学、动力学特征2.如图所示,一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同.那么,下列说法正确的是()A.振子在M、N两点所受弹簧弹力相同B.振子在M、N两点对平衡位置的位移相同C.振子在M、N两点加速度大小相等D.从M点到N点,振子先做匀加速运动,后做匀减速运动C[由题意和简谐运动的对称性特点知:M、N两点关于平衡位置O对称.因位移、速度、加速度和力都是矢量,它们要相同,必须大小相等、方向相同.M、N两点关于O点对称,振子所受弹力应大小相等,方向相反,振子位移也是大小相等,方向相反,由此可知,A、B选项错误;振子在M、N两点的加速度虽然方向相反,但大小相等,故C选项正确;振子由M到O速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运动,振子由O到N速度越来越小,但加速度越来越大,振子做减速运动,但不是匀减速运动,故D选项错误.]训练角度2简谐运动的能量3.(多选)如图所示,轻质弹簧下面挂一个质量为m的物体,物体在竖直方向做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好为原长.在物体做简谐运动的过程中,弹簧一直处于弹性限度内,重力加速度为g,则在物体振动过程中()A.物体在最低点时的弹力大小为2mgB.弹簧的弹性势能和物体的动能总和不变C.弹簧的最大弹性势能等于2mgAD.物体的最大动能等于mgAAC[由下表分析可知,选项A、C正确.选项选项分析判断A 物体振动的平衡位置是物体静止时所受的重力和弹力相等的位置,由于物体到达最高点时,弹簧正好为原长,所以物体的振幅为A=mgk,当物体在最低点时,弹力大小为2kA=2mg.√B 由于只有重力和弹力做功,所以物体的动能、重力势能、弹簧的弹性势能之和保持不变.×C 从最高点振动到最低点,物体的重力势能全部转化为弹簧的弹性势能,所以弹簧的最大弹性势能等于2mgA.√D 物体在平衡位置时动能最大,由于从最高点到平衡位置物体下降的高度为A,弹簧的弹性势能增大,所以物体的最大动能一定小于mgA.×1.(多选)关于做简谐运动物体的平衡位置,下列叙述正确的是()A.是回复力为零的位置B.是回复力产生的加速度改变方向的位置C.是速度为零的位置D.是回复力产生的加速度为零的位置ABD[平衡位置处,x=0,则回复力F=0,回复力产生的加速度为零,且此处速度最大,势能最小,A、D正确,C错误;在平衡位置两边位移方向相反,回复力方向相反,对应加速度方向相反,B正确.]2.(多选)关于简谐运动,以下说法正确的是()A.回复力可能是物体受到的合外力B.回复力是根据力的作用效果命名的C.振动中位移的方向是不变的D.物体振动到平衡位置时所受合外力一定等于零AB[回复力可以是某个力,可以是某个力的分力,也可以是几个力的合力,A正确;回复力可以由重力、弹力、摩擦力等各种不同性质的力提供,其效果是使物体回到平衡位置,B正确;位移是从平衡位置指向物体所在位置,其方向是变化的,做简谐运动的物体振幅是不变的,C错误;物体振动到平衡位置时,所受回复力为零,但合外力不一定为零,D错误.]3.(多选)如图所示是某一质点做简谐运动的图像,下列说法正确的是()A.在第1 s内,质点速度逐渐增大B.在第2 s内,质点速度逐渐增大C.在第3 s内,动能转化为势能D.在第4 s内,动能转化为势能BC[质点在第1 s内,由平衡位置向正向最大位移处运动,做减速运动,所以选项A错误;在第2 s内,质点由正向最大位移处向平衡位置运动,做加速运动,所以选项B正确;在第3 s内,质点由平衡位置向负向最大位移处运动,动能转化为势能,所以选项C正确;在第4 s内,质点由负向最大位移处向平衡位置运动,加速度减小,速度增大,势能转化为动能,所以选项D错误.]4.如图所示,将弹簧振子从平衡位置拉下一段距离Δx,释放后振子在A、B 间振动,且AB=20 cm,振子由A到B的时间为0.1 s.若使振子在AB=10 cm 间振动,则振子由A到B的时间为________.[解析]由于周期不变,仍为0.2 s,A到B仍用时0.1 s. [答案]0.1 s11/11。
简谐运动的回复力和能量一、知识点梳理1.简谐运动的回复力(1)回复力①定义:振动物体偏离平衡位置后,所受到的使它回到平衡位置的力叫做回复力. ②回复力是根据力的作用效果命名的,它可以是弹力,也可以是其他力(包括摩擦力),或几个力的合力,或是某个力的分力,物体沿直线振动时回复力就是合外力,沿圆弧振动时回复力是合外力在圆弧切线方向上的分力.③回复力的方向总是指向平衡位置,回复力为零的位置就是平衡位置(沿圆弧振动时,物体经平衡位置时回复力为零,但合外力不为零). (2)简谐运动的动力学特征:回复力kx F -=①回复力kx F -=中的k 是比例系数,并非弹簧的劲度系数,其值由振动系统决定,对水平弹簧振子,回复力仅由弹簧弹力提供,k 即为劲度系数,由弹簧决定,与振幅无关,其单位是N/m .②回复力的大小跟位移大小成正比,“—”号表示回复力与位移的方向相反. ③如果质点所受的回复力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,则质点的运动就是简谐运动.(3)简谐运动的运动学特征:加速度m kx a -=①简谐运动是一种变加速的往复运动,“—”号表示加速度a 方向与位移x 方向相反. ②一个物体是否做简谐运动,就是看它是否满足简谐运动的受力的特点或运动特征,即回复力是否满足kx F -=或加速度是否满足mkx a -=.例1、做简谐振动的物体,当振子的位移为负值时,以下说法中正确的是( ) A .速度一定为正值,加速度一定为负值 B .速度一定为负值,加速度一定为正值 C .速度不一定为正值,但加速度一定为正值 D .速度不一定为负值,但加速度一定为负值例2、(多选)关于回复力,下列说法中正确的是( ) A .回复力就是物体所受各力中指向平衡位置的力 B .回复力一定是物体所受的合力C .回复力是从力的效果来命名的,可以是弹力,也可以是摩擦力,还可以是几个力的合力D .回复力与向心力都是以作用效果命名的2.简谐运动的能量(1)定义做简谐运动的物体在振动中经过某一位置时所具有的势能和动能之和,称为简谐运动的能量.(2)公式 :221kA E =,式中k 为回复力F 与位移的比例常数,A 为振动的振幅. (3)关于简谐运动能量的说明①做简谐运动的物体能量的变化规律:只有动能和势能的相互转化,对弹簧振子而言,机械能守恒. 对简谐运动来说,一旦供给系统一定的能量,使它开始振动,它就以一定的振幅永不停息地持续振动,简谐运动是一种理想化的振动.振动过程是一个动能和势能不断转化的过程.②简谐运动中的能量跟振幅有关,振幅越大,振动的能量越大.在简谐运动中,振动的能量保持不变,所以振幅保持不变,只要没有能量损耗,它将永不停息地振动下去,因此简谐运动又称等幅振动.③在振动的一个周期内,动能和势能完成两次周期性变化,经过平衡位置时动能最大,势能最小;经过最大位移处时,势能最大,动能最小.例3、(多选)一质点做简谐运动的图象如图所示,则下列结论中,正确的是( ) A .质点速度最大而加速度为零的时刻分别是0.1 s 、0.3 s B .质点速度为零而加速度为负方向最大值的时刻分别是0、0.4 s C .质点所受的回复力方向由正变负的时刻是0.3 sD .振动系统势能最大而加速度为正方向最大值的时刻是0.3 s二、技巧总结1.简谐运动的判定方法(1)简谐运动的位移一时间图象是正弦曲线或余弦曲线.(2)简谐运动物体所受的力满足kx F -=,即回复力F 与位移x 成正比且方向总相反. 用kx F -=判定振动是否是简谐运动的步骤: ①找出振动的平衡位置;②让物体沿振动方向偏离平衡位置的位移为x ; ③对物体进行受力分析;④规定正方向(一般规定位移的方向为正),求出指向平衡位置的合力(回复力),判断是否符合kx F -=.例4、如图所示,劲度系数为k 的弹簧上端固定在天花板上,下端挂一质量为m 的小球,小球静止后,再向下将弹簧拉长x ,然后放手,小球开始振动.(1)请证明小球的振动为简谐运动; (2)求小球振动的振幅;(3)求小球运动到最高点的加速度 .例5、如图所示,在光滑水平面上,用两根劲度系数分别为1k 、2k 的轻质弹簧系住一个质量为m 的小球. 开始时,两弹簧均处于原长,后使小球向左偏离x 后放手,可以看到小球将在水平面上做往复振动,试问小球是否做简谐运动?2.做简谐运动的物体受力情况的分析方法物体做简谐运动时,其运动的加速度时刻在变化.在分析物体的受力情况时,首先要判断出加速度的方向,然后根据牛顿第二定律ma F 分析出所要求的力.对于连接体问题,可以利用整体法求出加速度,然后根据隔离法求相互作用力;也可以先利用相互作用力求出加速度,然后利用整体法求合外力.例6、在光滑水平面上有一弹簧振子,弹簧的劲度系数为k,振子质量为M, 振动的最大速度为v. 如图所示,当振子在最大位移为A 的时刻把质量为m 的物体轻放其上,假定最大静摩擦力等于滑动摩擦力,则:(1)要保持物体和振子一起振动,二者间动摩擦因数至少是多少? (2)物体和振子一起振动时,二者过平衡位置的速度多大?振幅又是多大?3.简谐运动中位移、回复力、加速度、速度、动能、势能的变化规律(1)位移的变化规律振动中的位移x 都是以平衡位置为起点,因此,方向就是从平衡位置指向末位置的方向,大小就是这两位置间的距离,在两个“端点”时位移最大,在平衡位置位移为零. (2)加速度与回复力的变化规律加速度a 的变化与回复力的变化是一致的,在两个“端点”最大,在平衡位置为零,方向总指向平衡位置. (3)速度变化规律速度大小v 与加速度a 的变化恰好相反,在两个“端点”为零,在平衡位置最大,除两个“端点”外任何一个位置的速度方向都有两种可能. (4)动能变化规律动能大小与速度大小对应,在两端点为零,在平衡位置最大. (5)势能变化规律势能大小变化与动能大小变化恰好相反,在两端点最大,在平衡位置为零.4. 简谐运动的能量曲线做简谐运动的物体在运动的过程中,只有回复力做功,存在着振子动能k E 和系统势能p E 之间的相互转化,振动的总能量等于动能k E 和系统势能p E 之和,即p k E E E +=.简谐运动的振动方程为)cos(αω+=t A x .振动的总能量221kAE = ①其中)(cos 2121222αω+==t kA kx E p ② )(sin 2121212222αω+=-=t kA kx kA E k ③右图甲表示简谐运动动能k E 或势能p E 随时间t 的变化曲线,图乙表示简谐运动的动能k E 或势能p E 随位移x 的变化曲线.由②式可知,势能曲线是通过坐标原点O 、且具有横向对称性的抛物线;而①式则表明,总能量曲线是一条平行于x 轴的水平线,它与势能曲线分别交于坐标为A x +=的点和A x -=的点. 由②③式可知,动能、势能随时间变化的周期都是振动周期的一半. 由于简谐运动的机械能与振幅的二次方成正比,所以对于确定的谐振子,振幅越大,振动越强烈,能量也就越大.振幅的二次方可用来表示简谐运动的强度. 这一结论对于其他形式的简谐运动系统同样适用.三、针对练习1.(多选)在下述各力中,属于根据力的性质命名的是( ) A .弹力 B .回复力C .向心力D .摩擦力2.做简谐运动的物体,通过平衡位置时,其( ) A .合外力为零 B .回复力为零C .加速度为零D .速度为零3.(多选)做简谐运动的振子每次通过同一位置时,相同的物理量是( ) A .速度 B .加速度 C .位移 D .动能4.一个做简谐运动的物体,每次有相同的动能时,下列说法正确的是( ) A .一定具有相同的势能 B .一定具有相同的速度 C .一定具有相同的加速度 D .一定具有相同的位移5.在水平方向上做简谐运动的弹簧振子如图所示,O 为平衡位置,振子在A 、B 之间振动,图示时刻振子所受的力有( )A .重力、支持力和弹簧的弹力B .重力、支持力、弹簧弹力和回复力C .重力、支持力和回复力D .重力、支持力、摩擦力和回复力6.(多选)甲、乙两弹簧振子,振动图象如图所示,则可知( ) A .甲速度为零时,乙加速度最大 B .甲加速度为零时,乙速度最小C .1.25s ~1.5 s 时间内,甲的回复力大小增大,乙的回复力 大小减小D .甲、乙的振动频率之比2:1:=乙甲f fE .甲、乙的振幅之比1:2:=乙甲A A7.一平台竖直方向做简谐运动,一物体置于振动平台上随平台一起运动,当振动 平台处于什么位置时,物体对平台的压力最大( )A .当振动平台运动到最高点时B .当振动平台向下运动过振动中心时C .当振动平台运动到最低点时D .当振动平台向上运动过振动中心时8.(多选)做简谐运动的弹簧振子,振子质量为m ,最大速率为v , 则下列说法中正确的是( )A .从某时刻算起,在半个周期的时间内,回复力做的功一定为零B .从某时刻算起,在半个周期的时间内,回复力做的功可能是零到221mv 之间的某一个值 C .从某时刻算起,在半个周期的时间内,速度变化量一定为零D .从某时刻算起,在半个周期的时间内,速度变化量的大小可能是零到v 2之间的某一个值9.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板. 一段时间内货物在竖直方向的振动可视为简谐运动,周期为T . 取竖直向上为正方向,以某时刻作为计时起点,即0=t , 其振动图象如图所示,则( )A .T t 41=时,货物对车厢底板的压力最大 B .T t 21=时,货物对车厢底板的压力最小C .T t 43=时,货物对车用底板的压力最大D .T t 43=时,货物对车用底板的压力最小10.一个质点以O 为中心做简谐运动,位移随时间变化的图像如图所示,a 、b 、c 、d 表示的原点在不同时刻的相应位置下,下列说法正确的( ) A .质点在位置b 比位置d 时相位超前4π B .质点通过位置b 时,相对平衡位置的位移2A C .质点从位置a 到c 和从位置b 到d 所用时间相等 D .质点从位置a 到b 和从b 到c 的平均速度相等11.一质点做简谐运动. 质点的位移随时间变化的规律如图所示,则从图中可以看出( ) A .质点做简谐运动的周期为5s B .质点做简谐运动的振幅为4cm C .t =2s 时,质点的加速度最大 D .t =3s 时,质点沿y 轴负向运动12.如图甲所示为以O 点为平衡位置. 在A 、B 两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图像,由图可知下列说法中正确的是( )A .在0.2s t =时,弹簧振子一定运动到B 位置B .在0.3s t =与0.7s t =两个时刻,弹簧振子的速度相同C .从0到0.2s t =的时间内,弹簧振子的动能持续地减少D .在0.2s t =与0.6s t =两个时刻,弹簧振子的加速度相同13.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它的平衡位置为O ,在A 、B 间振动,如图所示,下列结论正确的是( ) A .小球在O 位置时,动能最大,加速度最小 B .小球在A 、B 位置时,动能最大,加速度最大 C .小球从A 经O 到B 的过程中,回复力一直做正功 D .小球从A 经O 到B 的过程中,回复力一直做负功14.(多选)某鱼漂的示意图如图所示,O 、M 、N 为鱼漂上的三个点. 当鱼漂静止时,水面恰好过点O . 用手将鱼漂向下压,使点M 到达水面,松手后,鱼漂会上下运动,上升到最高处时,点N 到达水面. 不考虑阻力的影响,下列说法正确的是( ) A .鱼漂的运动是简谐运动B .点O 过水面时,鱼漂的速度最大C .点M 到达水面时,鱼漂具有向下的加速度D .鱼漂由上往下运动时,速度越来越大15.(多选)理论表明:弹簧振子的振动周期2mT kπ=,总机械能与振幅A 的平方成正比,即212E kA =,k 为弹簧的劲度系数,m 为振子的质量. 如图,一劲度系数为k 的轻弹簧一端固定,另一端连接着质量为m 的物块,物块在光滑水平面上往复运动. 当物块运动到最大位移为A 的时刻,把另一质量也为m 的物块轻放在其上,两个物块始终一起振动设最大静摩擦力等于滑动摩擦力,重力加速度为g . 放上质量也为m 的物块后,下列说法正确的是( ) A .物块振动周期变为原来的2倍 B .两物块之间的动摩擦因数至少为2kAmgC .物块经过平衡位置时速度为22kA mD .系统的振幅可能减小16.(多选)如图是一质点做简谐运动的振动图象,关于该质点的运动,下列说法正确的是( )A .0.01s 时质点的运动方向向下B .0.025s 和0.075s 两个时刻的加速度大小和方向都相同C .0.025s 和0.075s 两个时刻的速度大小相等,方向相反D .0.125时刻速度和加速度的方向相同E .0~0.3s 时间内该质点通过的路程为3cm17.(多选)如图所示,两根完全相同的弹簧和一根张紧的细线将甲、乙两物块束缚在光滑水平面上,已知甲的质量是乙的质量的4倍,弹簧振子做简谐运动的周期T =2πmk ,式中m 为振子的质量,k 为弹簧的劲度系数. 当细线突然断开后,两物块都开始做简谐运动,在运动过程中( ) A .甲的振幅是乙的振幅的4倍 B .甲的振幅等于乙的振幅C .甲的最大速度是乙的最大速度的12 D .甲的振动周期是乙的振动周期的2倍 E .甲的振动频率是乙的振动频率的2倍18.如图所示,质量分别为2kg 和3kg 的A 、B 两物块,用劲度系数为k 的轻弹簧相连后竖直放在水平面上,今用大小为F=45N 的力把物块A 向下压而使之静止,突然撤去压力,则( ))/10(2s m g A .物块B 有可能离开水平面 B .物块B 不可能离开水平面C .只要k 足够小,物块B 就可能离开水平面D .只要k 足够大,物块B 就可能离开水平面19.如图所示,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a 、b 两个小物块粘在一起组成的.物块在光滑水平面上左右振动,振幅为0A ,周期为0T . 当物块向右通过平衡位置时,a 、b 之间的粘胶脱开;以后小物块a 振动的振幅和周期分别为A 和T ,则( )A .0A A <;0T T <B .0A A =;0T T =C .0A A >;0T T <D .0A A <;0T T >20.如图所示,A 、B 叠放在光滑水平地面上,B 与自由长度为0L 的轻弹簧相连,当系统振动时,A 、B 始终无相对滑动,已知m m A 3=,m m B =,当振子距平衡位置的位移2L x =时,系统加速度为a ,求A 、B 间摩擦力f F 与位移x 的函数关系.21.如图所示,质量为M 、倾角为α的斜面体(斜面光滑且足够长)放在粗糙的水平地面上,底部与地面的动摩擦因数为μ,斜面顶端与劲度系数为k 、自然长度为L 的轻质弹簧相连,弹簧的另一端连接着质量为m 的物块.压缩弹簧使其长度为L 43时将物块由静止开始释放,且物块在以后的运动中,斜面体始终处于静止状态.重力加速度为g .(1)求物块处于平衡位置时弹簧的长度;(2)选物块的平衡位置为坐标原点,沿斜面向下为正方向建立坐标轴,用x 表示物块相对于平衡位置的位移,证明物块做简谐运动; (3)求弹簧的最大伸长量;(4)为使斜面体始终处于静止状态,动摩擦因数μ应满足什么条件(假设滑动摩擦力等于最大静摩擦力)?答案例题例1.C 例2.CD 例3.ABC 例4.(1)略;(2)x ;(3)mkx,方向竖直向下 例5.x k k F )(21+=,令21k k k +=,因为力与位移反向,所以可以写成kx F -=,得证 例6.(1)最大加速度Mm kAa +=,由ma mg ≥μ,得g M m kA g a )(+=≥μ(2)由机械能守恒,2221)(21Mv v M m =+, 0v mM Mv ⋅+=最大弹性势能不变,所以振幅仍为A针对练习1.AD2.B3.BCD4.A5.A6.CDE7.C8.AD9.C 10.C 11.C 12.C 13.A 14.AB 15.BC 16.BCE 17.BCD 18.B 19.A 20.解析:在距离平衡位置的位移20L x =时,a m m Lk B A )(20+=,得08L ma k = ①当系统位移为x 时,对整体')(a m m kx B A +=- ②对A 有'a m F A f = ③ 联立①②③解得x L maF f 06-= 21.(1)设物块在斜面上平衡时,弹簧伸长量为L ∆,有0sin =∆-L k mg α 解得k mg L αsin =∆,此时弹簧长度为kmg L αsin + (2)当位移为x 时,弹簧伸长量为L x ∆+, )(sin L x k mg F ∆+-=α合 联立以上各式可得kx F -=合, 可知物块做简谐运动(3)振幅k mg L A αsin 4+=,由对称性,最大伸长量为kmg L αsin 24+ (4)设物块位移x 为正,则斜面体受力如图,由于斜面体平衡,所以水平方向0cos sin 1=-+ααF F f N 竖直方向0sin cos 12=---ααF F Mg F N N )(L x k F ∆+=, αcos 1mg F N =11 联立可得αcos kx f =, αsin 2kx Mg mg F N ++= 为使斜面体静止,结合牛三,应有2N F f μ≤所以ααμsin cos 2kx Mg mg x k F f N ++=≥,当A x -=时达到最大值 有ααααμsin 4cos 4cos )sin 4(2kL Mg mg mg kL -++≥。
简谐振动的特点和动力学描述简谐振动是物体在恢复力作用下沿着某个轴线上做往复振动的一种特殊运动形式。
它具有以下几个特点:1. 平衡位置稳定:简谐振动的平衡位置是物体的稳定位置,当物体偏离平衡位置时,会受到一个恢复力的作用,使得物体趋向于返回平衡位置。
2. 振幅固定:简谐振动的振幅是一个固定值,表示物体在振动过程中离开平衡位置的最大距离。
3. 频率恒定:简谐振动的频率与振动系统本身的性质有关,而与振幅无关。
频率是指单位时间内振动的完整周期数,单位为赫兹(Hz)。
4. 正弦函数描述:简谐振动的运动可用正弦函数来描述。
物体在简谐振动过程中,其位置、速度和加速度随时间的变化都可以用正弦函数表示。
根据简谐振动的特点,在动力学上可以进行如下的描述:1. 动力学方程:对于简谐振动,其动力学方程可以由胡克定律得到。
胡克定律指出,弹性力与物体偏离平衡位置的距离成正比,即恢复力F 与位移x的关系为F = -kx,其中k为弹性系数。
2. 牛顿第二定律:根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
对于简谐振动,可以将牛顿第二定律应用于沿轴线的振动,并根据动力学方程得到加速度与位移之间的关系。
3. 振动的能量:在简谐振动中,物体的能量在势能和动能之间不断转换。
当物体通过平衡位置时,其动能最大,而势能最小;当物体运动到最大位移时,其势能最大,而动能最小。
总能量保持不变。
4. 平衡位置的稳定性:简谐振动的平衡位置是稳定的,当物体偏离平衡位置时,会受到恢复力使其回到平衡位置。
这种稳定性是由弹簧的弹性恢复力所决定的。
综上所述,简谐振动具有稳定平衡位置、固定振幅、恒定频率等特点,并可以通过动力学方程和能量转换进行描述和分析。
研究简谐振动有助于理解振动现象的基本规律,对于很多领域如机械、电子、光学等都有重要的应用价值。
如何判定物体作简谐振动田培银 (641418四川省简阳市三岔中学)李良春 (610043四川省成都市武侯高级中学)一、概念和规律1、定义:(象弹簧振子那样)物体在跟位移(相对于平衡位置)大小成正比,并且总是指向平衡位置的力作用下的振动,叫做简谐运动。
2、动力学特点:F回= -kx 。
3、简谐运动的周期:简谐运动的周期可表示为:T=2πm。
k 故:简谐运动的周期与振动物体的质量的平方根成正比,与振动系统的比例常数(回复系数)的平方根成反比,而与振幅无关。
对弹簧振子而言:弹簧振子的周期与振子的质量的平方根成正比,与弹簧的劲度系数的平方根成反比,而与振幅无关。
二、判断简谐运动的方法:例1、如图1和2所示装置中,小球的运动是振动、是简谐运动吗?图中接触面均光滑。
解析:图1中, 从能量角度考虑,小球将在斜面AB与BC上往复运动,是机械振动.小球在AB斜面上的运动.受重力和斜面弹力作用:在垂直斜面方向上,重力的分力G cosα与斜面弹力N平衡;在平行斜面方向上,只有重力的分力Gsinα沿斜面AB向下,为恒力,不随小球相对于B点的位移变化而变化.同理,小球在斜面BC上运动时,其受力Gsinβ沿斜面BC向下,也为恒力,不随小球相对于B点的位移变化而变化.综合小球在ABC斜面上的受力情况.不满足F回= -kx的关系,故不是简谐运动.图2中, 从能量角度考虑,小球将在斜面AB与BC上往复运动,是机械振动.小球在光滑圆弧形凹槽中运动,受重力和凹槽弹力作用:在凹槽半径R方向,弹力N与重力的分力G cosθ提供向心力;在轨道切线方向上,重力的分力Gsinθ提供回复力.即:F 回= Gsinθ,当θ≤5O时,sinθ≈θ.弦=||AB弧││, 小球相对于平衡位置的位移x=≈||AB││=s=Rθ,则F回= Gsinθ≈Gθ≈x R mg.对指定的小求和凹槽轨道,m、R均为定值,故mg为一不变R的常量,再考虑到回复力F回与振动物体相对于平衡位置的位移x方向相反,则F回= -kx 。