第六章 基于MATLAB的小波分析
- 格式:ppt
- 大小:388.00 KB
- 文档页数:24
关于小波分析的matlab程序(个人收集关于小波分析的matlab程序)小波滤波器构造和消噪程序 (2)小波谱分析mallat算法经典程序 (16)小波包变换分析信号的MATLAB程序 (20)利用小波变换实现对电能质量检测的算法实现 (31)基于小波变换的图象去噪Normalshrink算法 (35)小波滤波器构造和消噪程序1.重构% mallet_wavelet.m% 此函数用于研究Mallet算法及滤波器设计% 此函数仅用于消噪a=pi/8; %角度赋初值b=pi/8;%低通重构FIR滤波器h0(n)冲激响应赋值h0=cos(a)*cos(b);h1=sin(a)*cos(b);h2=-sin(a)*sin(b);h3=cos(a)*sin(b);low_construct=[h0,h1,h2,h3];L_fre=4; %滤波器长度low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器if(mod(i_high,2)==0);coefficient=-1;elsecoefficient=1;endhigh_construct(1,i_high)=low_decompose(1,i_hi gh)*coefficient;endhigh_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n)L_signal=100; %信号长度n=1:L_signal; %信号赋值f=10;t=0.001;y=10*cos(2*pi*50*n*t).*exp(-20*n*t);figure(1);plot(y);title('原信号');check1=sum(high_decompose); %h0(n)性质校验check2=sum(low_decompose);check3=norm(high_decompose);check4=norm(low_decompose);l_fre=conv(y,low_decompose); %卷积l_fre_down=dyaddown(l_fre); %抽取,得低频细节h_fre=conv(y,high_decompose);h_fre_down=dyaddown(h_fre); %信号高频细节figure(2);subplot(2,1,1)plot(l_fre_down);title('小波分解的低频系数');subplot(2,1,2);plot(h_fre_down);title('小波分解的高频系数');l_fre_pull=dyadup(l_fre_down); %0差值h_fre_pull=dyadup(h_fre_down);l_fre_denoise=conv(low_construct,l_fre_pull); h_fre_denoise=conv(high_construct,h_fre_pull);l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响h_fre_keep=wkeep(h_fre_denoise,L_signal);sig_denoise=l_fre_keep+h_fre_keep; %信号重构compare=sig_denoise-y; %与原信号比较figure(3);subplot(3,1,1)plot(y);ylabel('y'); %原信号subplot(3,1,2);plot(sig_denoise);ylabel('sig\_denoise'); %重构信号subplot(3,1,3);plot(compare);ylabel('compare'); %原信号与消噪后信号的比较2.消噪、% 此函数用于研究Mallet算法及滤波器设计% 此函数用于消噪处理%角度赋值%此处赋值使滤波器系数恰为db9%分解的高频系数采用db9较好,即它的消失矩较大%分解的有用信号小波高频系数基本趋于零%对于噪声信号高频分解系数很大,便于阈值消噪处理[l,h]=wfilters('db10','d');low_construct=l;L_fre=20; %滤波器长度low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器if(mod(i_high,2)==0);coefficient=-1;elsecoefficient=1;endhigh_construct(1,i_high)=low_decompose(1,i_hi gh)*coefficient;endhigh_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n)L_signal=100; %信号长度n=1:L_signal; %原始信号赋值f=10;t=0.001;y=10*cos(2*pi*50*n*t).*exp(-30*n*t); zero1=zeros(1,60); %信号加噪声信号产生zero2=zeros(1,30);noise=[zero1,3*(randn(1,10)-0.5),zero2]; y_noise=y+noise;figure(1);subplot(2,1,1);plot(y);title('原信号');subplot(2,1,2);plot(y_noise);title('受噪声污染的信号');check1=sum(high_decompose); %h0(n),性质校验check2=sum(low_decompose);check3=norm(high_decompose);check4=norm(low_decompose);l_fre=conv(y_noise,low_decompose); %卷积l_fre_down=dyaddown(l_fre); %抽取,得低频细节h_fre=conv(y_noise,high_decompose);h_fre_down=dyaddown(h_fre); %信号高频细节figure(2);subplot(2,1,1)plot(l_fre_down);title('小波分解的低频系数');subplot(2,1,2);plot(h_fre_down);title('小波分解的高频系数');% 消噪处理for i_decrease=31:44;if abs(h_fre_down(1,i_decrease))>=0.000001 h_fre_down(1,i_decrease)=(10^-7);endendl_fre_pull=dyadup(l_fre_down); %0差值h_fre_pull=dyadup(h_fre_down);l_fre_denoise=conv(low_construct,l_fre_pull); h_fre_denoise=conv(high_construct,h_fre_pull);l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响h_fre_keep=wkeep(h_fre_denoise,L_signal);sig_denoise=l_fre_keep+h_fre_keep; %消噪后信号重构%平滑处理for j=1:2for i=60:70;sig_denoise(i)=sig_denoise(i-2)+sig_denoise(i+2)/ 2;end;end;compare=sig_denoise-y; %与原信号比较figure(3);subplot(3,1,1)plot(y);ylabel('y'); %原信号subplot(3,1,2);plot(sig_denoise);ylabel('sig\_denoise'); %消噪后信号subplot(3,1,3);plot(compare);ylabel('compare'); %原信号与消噪后信号的比较小波谱分析mallat算法经典程序clc;clear;%% 1.正弦波定义f1=50; % 频率1f2=100; % 频率2fs=2*(f1+f2); % 采样频率Ts=1/fs; % 采样间隔N=120; % 采样点数n=1:N;y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合figure(1)plot(y);title('两个正弦信号')figure(2)stem(abs(fft(y)));title('两信号频谱')%% 2.小波滤波器谱分析h=wfilters('db30','l'); % 低通g=wfilters('db30','h'); % 高通h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察)g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察)figure(3);stem(abs(fft(h)));title('低通滤波器图')figure(4);stem(abs(fft(g)));title('高通滤波器图')%% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现)sig1=ifft(fft(y).*fft(h)); % 低通(低频分量) sig2=ifft(fft(y).*fft(g)); % 高通(高频分量) figure(5); % 信号图subplot(2,1,1)plot(real(sig1));title('分解信号1')subplot(2,1,2)plot(real(sig2));title('分解信号2')figure(6); % 频谱图subplot(2,1,1)stem(abs(fft(sig1)));title('分解信号1频谱')subplot(2,1,2)stem(abs(fft(sig2)));title('分解信号2频谱')%% 4.MALLET重构算法sig1=dyaddown(sig1); % 2抽取sig2=dyaddown(sig2); % 2抽取sig1=dyadup(sig1); % 2插值sig2=dyadup(sig2); % 2插值sig1=sig1(1,[1:N]); % 去掉最后一个零sig2=sig2(1,[1:N]); % 去掉最后一个零hr=h(end:-1:1); % 重构低通gr=g(end:-1:1); % 重构高通hr=circshift(hr',1)'; % 位置调整圆周右移一位gr=circshift(gr',1)'; % 位置调整圆周右移一位sig1=ifft(fft(hr).*fft(sig1)); % 低频sig2=ifft(fft(gr).*fft(sig2)); % 高频sig=sig1+sig2; % 源信号%% 5.比较figure(7);subplot(2,1,1)plot(real(sig1));title('重构低频信号');subplot(2,1,2)plot(real(sig2));title('重构高频信号');figure(8);subplot(2,1,1)stem(abs(fft(sig1)));title('重构低频信号频谱');subplot(2,1,2)stem(abs(fft(sig2)));title('重构高频信号频谱');figure(9)plot(real(sig),'r','linewidth',2);hold on;plot(y);legend('重构信号','原始信号')title('重构信号与原始信号比较')小波包变换分析信号的MATLAB程序%t=0.001:0.001:1;t=1:1000;s1=sin(2*pi*50*t*0.001)+sin(2*pi*120*t*0.001)+ rand(1,length(t));for t=1:500;s2(t)=sin(2*pi*50*t*0.001)+sin(2*pi*120*t*0.00 1)+rand(1,length(t));endfor t=501:1000;s2(t)=sin(2*pi*200*t*0.001)+sin(2*pi*120*t*0.001)+rand(1,length(t));endsubplot(9,2,1)plot(s1)title('原始信号')ylabel('S1')subplot(9,2,2)plot(s2)title('故障信号')ylabel('S2')wpt=wpdec(s1,3,'db1','shannon');%plot(wpt);s130=wprcoef(wpt,[3,0]);s131=wprcoef(wpt,[3,1]);s132=wprcoef(wpt,[3,2]);s133=wprcoef(wpt,[3,3]);s134=wprcoef(wpt,[3,4]);s135=wprcoef(wpt,[3,5]);s136=wprcoef(wpt,[3,6]);s137=wprcoef(wpt,[3,7]);s10=norm(s130);s11=norm(s131);s12=norm(s132);s13=norm(s133);s14=norm(s134);s15=norm(s135);s16=norm(s136);s17=norm(s137);st10=std(s130);st11=std(s131);st12=std(s132);st13=std(s133);st14=std(s134);st15=std(s135);st16=std(s136);st17=std(s137);disp('正常信号的特征向量');snorm1=[s10,s11,s12,s13,s14,s15,s16,s17] std1=[st10,st11,st12,st13,st14,st15,st16,st17]subplot(9,2,3);plot(s130);ylabel('S130');subplot(9,2,5);plot(s131);ylabel('S131');subplot(9,2,7);plot(s132);ylabel('S132');subplot(9,2,9);plot(s133);ylabel('S133');subplot(9,2,11);plot(s134);ylabel('S134');subplot(9,2,13);plot(s135);ylabel('S135');subplot(9,2,15);plot(s136);ylabel('S136');subplot(9,2,17);plot(s137);ylabel('S137');wpt=wpdec(s2,3,'db1','shannon');%plot(wpt);s230=wprcoef(wpt,[3,0]); s231=wprcoef(wpt,[3,1]); s232=wprcoef(wpt,[3,2]); s233=wprcoef(wpt,[3,3]); s234=wprcoef(wpt,[3,4]); s235=wprcoef(wpt,[3,5]); s236=wprcoef(wpt,[3,6]); s237=wprcoef(wpt,[3,7]);s20=norm(s230);s21=norm(s231);s22=norm(s232);s23=norm(s233);s24=norm(s234);s25=norm(s235);s26=norm(s236);s27=norm(s237);st20=std(s230);st21=std(s231);st22=std(s232);st23=std(s233);st24=std(s234);st25=std(s235);st26=std(s236);st27=std(s237);disp('故障信号的特征向量');snorm2=[s20,s21,s22,s23,s24,s25,s26,s27] std2=[st20,st21,st22,st23,st24,st25,st26,st27]subplot(9,2,4);plot(s230);ylabel('S230');subplot(9,2,6);plot(s231);ylabel('S231');subplot(9,2,8);plot(s232);ylabel('S232');subplot(9,2,10);plot(s233);ylabel('S233');subplot(9,2,12);plot(s234);ylabel('S234');subplot(9,2,14);plot(s235); ylabel('S235');subplot(9,2,16);plot(s236); ylabel('S236');subplot(9,2,18);plot(s237); ylabel('S237');%fftfigurey1=fft(s1,1024);py1=y1.*conj(y1)/1024;y2=fft(s2,1024);py2=y2.*conj(y2)/1024;y130=fft(s130,1024);py130=y130.*conj(y130)/1024; y131=fft(s131,1024);py131=y131.*conj(y131)/1024; y132=fft(s132,1024);py132=y132.*conj(y132)/1024; y133=fft(s133,1024);py133=y133.*conj(y133)/1024; y134=fft(s134,1024);py134=y134.*conj(y134)/1024; y135=fft(s135,1024);py135=y135.*conj(y135)/1024; y136=fft(s136,1024);py136=y136.*conj(y136)/1024; y137=fft(s137,1024);py137=y137.*conj(y137)/1024;y230=fft(s230,1024);py230=y230.*conj(y230)/1024; y231=fft(s231,1024);py231=y231.*conj(y231)/1024; y232=fft(s232,1024);py232=y232.*conj(y232)/1024; y233=fft(s233,1024);py233=y233.*conj(y233)/1024; y234=fft(s234,1024);py234=y234.*conj(y234)/1024; y235=fft(s235,1024);py235=y235.*conj(y235)/1024;y236=fft(s236,1024);py236=y236.*conj(y236)/1024; y237=fft(s237,1024);py237=y237.*conj(y237)/1024;f=1000*(0:511)/1024;subplot(1,2,1);plot(f,py1(1:512));ylabel('P1');title('原始信号的功率谱') subplot(1,2,2);plot(f,py2(1:512));ylabel('P2');title('故障信号的功率谱') figuresubplot(4,2,1);plot(f,py130(1:512));ylabel('P130');title('S130的功率谱') subplot(4,2,2);plot(f,py131(1:512)); ylabel('P131');title('S131的功率谱') subplot(4,2,3);plot(f,py132(1:512)); ylabel('P132'); subplot(4,2,4);plot(f,py133(1:512)); ylabel('P133'); subplot(4,2,5);plot(f,py134(1:512)); ylabel('P134'); subplot(4,2,6);plot(f,py135(1:512)); ylabel('P135'); subplot(4,2,7);plot(f,py136(1:512)); ylabel('P136'); subplot(4,2,8);plot(f,py137(1:512)); ylabel('P137'); figuresubplot(4,2,1);plot(f,py230(1:512)); ylabel('P230');title('S230的功率谱') subplot(4,2,2);plot(f,py231(1:512)); ylabel('P231');title('S231的功率谱') subplot(4,2,3);plot(f,py232(1:512)); ylabel('P232'); subplot(4,2,4);plot(f,py233(1:512)); ylabel('P233'); subplot(4,2,5);plot(f,py234(1:512)); ylabel('P234'); subplot(4,2,6);plot(f,py235(1:512)); ylabel('P235'); subplot(4,2,7);plot(f,py236(1:512));ylabel('P236');subplot(4,2,8);plot(f,py237(1:512));ylabel('P237');figure%plottree(wpt)利用小波变换实现对电能质量检测的算法实现N=10000;s=zeros(1,N);for n=1:Nif n<0.4*N||n>0.8*Ns(n)=31.1*sin(2*pi*50/10000*n);elses(n)=22.5*sin(2*pi*50/10000*n);endendl=length(s);[c,l]=wavedec(s,6,'db5'); %用db5小波分解信号到第六层subplot(8,1,1);plot(s);title('用db5小波分解六层:s=a6+d6+d5+d4+d3+d2+d1');Ylabel('s');%对分解结构【c,l】中第六层低频部分进行重构a6=wrcoef('a',c,l,'db5',6);subplot(8,1,2);plot(a6);Ylabel('a6');%对分解结构【c,l】中各层高频部分进行重构for i=1:6decmp=wrcoef('d',c,l,'db5',7-i);subplot(8,1,i+2);plot(decmp);Ylabel(['d',num2str(7-i)]);end%----------------------------------------------------------- rec=zeros(1,300);rect=zeros(1,300);ke=1;u=0;d1=wrcoef('d',c,l,'db5',1);figure(2);plot(d1);si=0;N1=0;N0=0;sce=0;for n=20:N-30rect(ke)=s(n);ke=ke+1;if(ke>=301)if(si==2)rec=rect;u=2;end;si=0;ke=1;end;if(d1(n)>0.01) % the condition of abnormal append.N1=n;if(N0==0)N0=n;si=si+1;end;if(N1>N0+30)Nlen=N1-N0;Tab=Nlen/10000;end;end;if(si==1)fork=N0:N0+99 %testin g of 1/4 period signals tosce=sce+s(k)*s(k)/10000;end;re=sqrt(sce*200) %re indicate the pike value of .sce=0;si=si+1;end;end;NlenN0n=1:300;figure(3)plot(n,rec);基于小波变换的图象去噪Normalshrink算法function[T_img,Sub_T]=threshold_2_N(img,levels)% reference :image denoising using wavelet thresholding[xx,yy]=size(img);HH=img((xx/2+1):xx,(yy/2+1):yy);delt_2=(std(HH(:)))^2;%(median(abs(HH(:)))/0. 6745)^2;%T_img=img;for i=1:levelstemp_x=xx/2^i;temp_y=yy/2^i;% belt=1.0*(log(temp_x/(2*levels)))^0.5;belt=1.0*(log(temp_x/(2*levels)))^0.5; %2.5 0.8%HLHL=img(1:temp_x,(temp_y+1):2*temp_y);delt_y=std(HL(:));T_1=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%T_HL=sign(HL).*max(0,abs(HL)-T_1);%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%T_img(1:temp_x,(temp_y+1):2*temp_y)=T_HL;Sub_T(3*(i-1)+1)=T_1;%LHLH=img((temp_x+1):2*temp_x,1:temp_y);delt_y=std(LH(:));T_2=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%T_LH=sign(LH).*max(0,abs(LH)-T_2);%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%T_img((temp_x+1):2*temp_x,1:temp_y)=T_LH;Sub_T(3*(i-1)+2)=T_2;%HHHH=img((temp_x+1):2*temp_x,(temp_y+1):2*te mp_y);delt_y=std(HH(:));T_3=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%T_HH=sign(HH).*max(0,abs(HH)-T_3);%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%T_img((temp_x+1):2*temp_x,(temp_y+1):2*tem p_y)=T_HH;Sub_T(3*(i-1)+3)=T_3;end。
基于MATLAB的小波变换在信号分析中应用的实现院系:应用技术学院专业:电子信息工程*名:***指导教师单位:应用技术学院指导教师姓名:王庆平指导教师职称:讲师二零一一年六月The application of wavelet transform based on MTLAB in signalanalysisFaculty:Application and Technology InstituteProfession:Electronic information engeeringName:Li ChengyunTutor’s Unit:Application and Technology InstituteTutor:Wang QingpingTutor’s Title:LecturerJune 2011目录摘要 (1)ABSTRACT (2)前言 (3)第1章绪论 (4)1.1本文的研究背景意义 (4)1.2国内外研究现状 (5)1.3本文的研究内容 (7)第2章 MATLAB简介 (8)2.1MATLAB的概况 (8)2.2MATLAB6.1的功能 (8)2.3MATLAB的主要组成部分 (9)2.4MATLAB的语言特点 (10)第3章基本理论 (12)3.1从傅里叶变换到小波变换 (12)3.1.1 傅里叶变换 (12)3.1.2 短时傅里叶变换 (13)3.1.3 小波变换 (14)3.2连续小波变换 (15)3.3离散小波变换 (17)3.4小波包分析 (18)3.5多分辨率分析与M ALLAT算法 (19)3.5.1 多分辨率分析 (19)3.5.2 Mallat算法 (19)3.6本章小结 (20)第4章小波阈值法图像去噪 (21)4.1图像去噪 (21)4.1.1 邻域平均法 (22)4.1.2 中值滤波法 (24)4.2小波阈值去噪 (27)4.2.1 阈值去噪原理 (28)4.2.2 选取阈值函数 (28)4.2.3 几种阈值选取方法 (29)4.3小波阈值仿真 (31)第5章小波变换在图像边缘检测中的应用 (33)5.1图像边缘检测概述 (33)5.2常见的边缘检测算法。
目录摘要 (1)ABSTRACT (3)前言 (3)1概述 (3)1.1研究背景 (3)1.2研究内容 (4)1.3 MA TLAB的概况 (4)1.4 MA TLAB的语言特点 (5)2小波分析的基本理论 (6)2.1傅里叶变换 (6)2.2小波变换 (7)2.2.1连续小波变换 (7)2.2.2离散小波变换 (8)2.2.3小波包分析 (9)3小波分析在图像处理中的应用 (9)3.1小波分析用于图像压缩 (9)3.2小波分析用于图像去噪 (13)3.3小波分析用于图像增强 (18)3.3.1图像钝化 (20)3.3.2图像锐化 (23)3.4小波分析用于图像融合 (25)4 总结 (29)致谢 (29)基于Matlab的小波分析与设计学生:王磊指导老师:贾群淮南师范学院电气信息工程学院摘要:小波分析是指用有限长或快速衰减的、称为母小波的振荡波形来表示信号。
该波形被缩放和平移以匹配输入的信号。
小波变换分成两个大类:离散小波变换和连续小波变换。
两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。
小波分析理论作为新的时频分析工具,在信号分析和处理中得到了很好的应用。
平面图像可以看成是二维信号,因此,小波分析很自然地应用到了图像处理领域。
图像压缩、去噪、、增强、融合是图像预处理中应用非常广泛的技术,小波变换由于其自身的优良特性而在图像处理中得到了越来越多的应用。
本文从基本理论出发,首先对小波变换进行了详尽而深刻的阐述。
循序渐进地介绍了从概念到小波分析等一系列相关内容,包括连续小波变换、离散小波变换和小波包分析。
最终引出小波分析在Matlab中的应用的方法。
对小波变换在图像处理中的应用本文作了重点研究。
关键词:小波分析;图像压缩;图像去噪;图像增强;图像融合;matlabWavelet analysis and design based on MATLABNane:wangleiTutor:jiaqunHuainan Normal University School of electrical and Information Engineering ABSTRACT:Wavelet analysis is the use of limited length or fast attenuation, known as mother wavelet representation of a signal waveform. The waveform is zooming and panning to match the input signal. Wavelet transform is divided into two categories: discrete wavelet transform and continuous wavelet transform. The essential difference between both is, continuous transformation in all possible zooming and panning operation, and discrete transform using all values of a specific subset of zooming and panning. The theory of wavelet analysis as a new time-frequency analysis tool in signal analysis and processing, has a very good application. Planar image can be viewed as a two-dimensional signal, therefore, wavelet analysis naturally is applied to the image processing field. Image compression, denoising, enhancement, fusion, image pre-processing is very extensive application of the technology of wavelet transform, because of itsexcellent characteristics in image processing has been applied more and more. In this paper, starting from the basic theory of wavelet transform, the first detailed and profound development. Gradual introduction from concept to the wavelet analysis and a series of related content, including continuous wavelet transform, discrete wavelet transform and wavelet packet analysis. Eventually lead to wavelet analysis application in Matlab method. The wavelet transform application in image processing this paper focuses on the study of.Keywords: wavelet analysis; image compression; image denoising; image enhancement; image fusion; Matlab前言传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。
小波分析MATLAB工具箱简介MATLAB的小波分析一、小波分析用于降噪的基本过程1、分解过程:选定一种小波,对信号进行N层分解;2、作用阈值过程:对分解得到的各层系数选择一个阈值,并对细节系数进行软阈值处理;3、重建过程:降处理后的系数通过小波重建恢复原始信号;二、基本降噪模型函数一维离散小波分解命令Dwt [cA cD] = dwt(X,’wname’)使用小波’wname’对型号X 进行单层分解,求得的近似系数存放于数组cA中,细节系数存放在数组cD 中;[cA cD] = dwt(X,’wname’,’mode’,MODE) 利用MODE方式进行扩展[cA cD] = dwt(X,Lo_D,Hi_D) 利用指定滤波器进行小波分解Wanedec [C, L] = wavedec(X,N,’wname’) 使用wname的小波进行N层分解,C为层数,L为各层系数Idwt X= idwt(cA,cD,’wname’) 利用小波wname把近似系数CA和CD重建为上一层近似系数XX= idwt(cA,cD,’wname’,L) 重建至L层Waverec X= waverec(C,L,‘wname‘)重建为原始信号Wrcoef X = wrcoef(‘type’,C,L,’wname’,N) 通过分解系数重构指定的数,type为a 或者dX= wrcoef(‘type’,C,L,’wname’) 把分解系数重建至最高层Upcoef Y= upcoef(O,X,’wname’,N)用适当的滤波器作用在X上N次,求得重建系数Y,O为a表示低通滤波器,d表示高通滤波器Detcofe D= detcoef(C,L,N)从分解系数中提取第N层近似系数D= detcoef(C,L,N)提取至最后一层Appcoef A= appcoef(C,L,’wname’,N) 用小波从分解系数中提取第N层系数Wnoisest stdc = woisest(c,l,s)根据传入的小波分解系数[c,l]对s中标识的小波层数求得其标准差,作为对噪声强度的估计;Ddencmp [THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,IN2,X) 根据传入的参数IN1 和IN2所指定的方式,对输入信号X求得其降噪或压缩的各级阈值。
第六章基于MATLAB的小波分析小波分析是一种用来分析和处理信号的数学方法,其基本原理是通过将信号分解成不同频率范围的小波基函数来揭示信号的特征。
MATLAB是一种功能强大的科学计算和数据分析软件,提供了丰富的工具箱和函数,可以方便地进行小波分析。
在MATLAB中,小波分析可以通过使用Wavelet Toolbox来实现。
该工具箱提供了几种常用的小波基函数,如Daubechies、Coiflets、Symlets等,同时还包括了一系列小波分析的函数。
下面将介绍基于MATLAB的小波分析的基本步骤。
首先,需要导入待分析的信号数据。
可以使用MATLAB的数据导入和处理工具来加载信号数据,如load函数、importdata函数等。
加载数据后,可以使用plot函数将信号数据可视化,以便直观地了解信号的特点。
接下来,需要选择合适的小波基函数进行分析。
小波基函数的选择与信号的特征和分析目标相关。
可以使用waveinfo函数来查看Wavelet Toolbox提供的小波基函数的特性和参数,并选择适合的小波基函数。
然后,使用wavedec函数对信号进行小波分解。
wavedec函数可以将信号分解成多个尺度的小波系数。
分解得到的小波系数包括近似系数和细节系数,近似系数反映了信号在低频范围的特征,而细节系数则反映了信号在高频范围的细节特征。
分解后,可以使用可视化函数如plot、imshow等来展示小波系数的分布和变化情况。
通过观察小波系数的变化,可以得到信号的频率特征和局部特征。
除了观察小波系数,还可以根据需要进行小波系数的处理和分析。
例如,可以使用细节系数来提取信号中的细节特征,如边缘、尖峰等,也可以使用近似系数来提取信号的整体趋势。
最后,可以使用waverec函数将处理过的小波系数重构成原始信号。
重构得到的信号可以与原始信号进行对比,以验证分析的结果和提取的特征。
综上所述,MATLAB提供了丰富的工具和函数来实现小波分析,可以方便地进行信号的频率分析和特征提取。
基于Matlab 的小波分析在图像处理中的应用摘要:本文先介绍了小波分析得基本理论,包括连续小波变换、离散小波变换和小波包分析。
小波变换具有时频局部化的特点,因此不但能对图像提供较精确的时域定位,也能提供较精确的频域定位。
经过小波变换的图像具有频谱划、方向选择、多分辨率分析和天然塔式数据结构特点。
基于小波变换这些特性,讨论了MATLAB 语言环境下图像压缩,图像去噪,图像融合,图像分解,图像增强的基本方法。
关键词:小波分析;图像压缩;图像去噪;图像融合;图像分解;图像增强1 引言小波分析诞生于20世纪80年代, 被认为是调和分析即现代Fourier 分析发展的一个崭新阶段。
众多高新技术以数学为基础,而小波分析被誉为“数学显微镜”,这就决定了它在高科技研究领域重要的地位。
目前, 它在模式识别、图像处理、语音处理、故障诊断、地球物理勘探、分形理论、空气动力学与流体力学上的应用都得到了广泛深入的研究,甚至在金融、证券、股票等社会科学方面都有小波分析的应用研究。
在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。
但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor 变换,时频分析,小波变换等。
其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。
换言之,短时傅立叶分析只能在一个分辨率上进行。
所以对很多应用来说不够精确,存在很大的缺陷。
而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。
Matlab中的小波分析与小波变换方法引言在数字信号处理领域中,小波分析和小波变换方法是一种重要的技术,被广泛应用于图像处理、语音识别、生物医学工程等领域。
Matlab作为一种强大的数值计算和数据分析工具,提供了丰富的小波函数和工具箱,使得小波分析和小波变换方法可以轻松地在Matlab环境中实现。
本文将介绍Matlab中的小波分析与小波变换方法,并探讨其在实际应用中的一些技巧和注意事项。
1. 小波分析基础小波分析是一种时频分析方法,可以将信号分解成不同频率、不同时间尺度的小波基函数。
在Matlab中,可以利用小波函数如Mexh、Mexh3、Morl等来生成小波基函数,并通过调整参数来控制其频率和时间尺度。
小波分析的核心思想是将信号分解成一组尺度和位置不同的小波基函数,然后对每个小波基函数进行相关运算,从而得到信号在不同频率和时间尺度上的分量。
2. 小波变换方法Matlab提供了多种小波变换方法,包括连续小波变换(CWT)、离散小波变换(DWT)和小波包变换(WPT)。
连续小波变换是将信号与连续小波基函数进行卷积,从而得到信号在不同频率和时间尺度上的系数。
离散小波变换是将信号分解为不同尺度的近似系数和细节系数,通过迭代的方式对信号进行多尺度分解。
小波包变换是对信号进行一种更细致的分解,可以提取更多频率信息。
3. Matlab中的小波工具箱Matlab提供了丰富的小波工具箱,包括Wavelet Toolbox和Wavelet Multiresolution Analysis Toolbox等。
这些工具箱提供了小波函数、小波变换方法以及相关的工具函数,方便用户进行小波分析和小波变换的实现。
用户可以根据自己的需求选择适合的小波函数和变换方法,并借助工具箱中的函数进行信号处理和结果展示。
4. 实际应用中的技巧和注意事项在实际应用中,小波分析和小波变换方法的选择非常重要。
用户需要根据信号的特点和需求选择适合的小波函数和变换方法。
目录摘要 (1)ABSTRACT (3)前言 (3)1概述 (3)1.1研究背景 (3)1.2研究内容 (4)1.3 MA TLAB的概况 (4)1.4 MA TLAB的语言特点 (5)2小波分析的基本理论 (6)2.1傅里叶变换 (6)2.2小波变换 (7)2.2.1连续小波变换 (7)2.2.2离散小波变换 (8)2.2.3小波包分析 (9)3小波分析在图像处理中的应用 (9)3.1小波分析用于图像压缩 (9)3.2小波分析用于图像去噪 (13)3.3小波分析用于图像增强 (17)3.3.1图像钝化 (19)3.3.2图像锐化 (22)3.4小波分析用于图像融合 (24)4 总结 (28)致谢 (28)基于Matlab的小波分析与设计摘要:小波分析是指用有限长或快速衰减的、称为母小波的振荡波形来表示信号。
该波形被缩放和平移以匹配输入的信号。
小波变换分成两个大类:离散小波变换和连续小波变换。
两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。
小波分析理论作为新的时频分析工具,在信号分析和处理中得到了很好的应用。
平面图像可以看成是二维信号,因此,小波分析很自然地应用到了图像处理领域。
图像压缩、去噪、、增强、融合是图像预处理中应用非常广泛的技术,小波变换由于其自身的优良特性而在图像处理中得到了越来越多的应用。
本文从基本理论出发,首先对小波变换进行了详尽而深刻的阐述。
循序渐进地介绍了从概念到小波分析等一系列相关内容,包括连续小波变换、离散小波变换和小波包分析。
最终引出小波分析在Matlab中的应用的方法。
对小波变换在图像处理中的应用本文作了重点研究。
关键词:小波分析;图像压缩;图像去噪;图像增强;图像融合;matlabWavelet analysis and design based on MATLABNane:wangleiTutor:jiaqunHuainan Normal University School of electrical and Information Engineering ABSTRACT:Wavelet analysis is the use of limited length or fast attenuation, known as mother wavelet representation of a signal waveform. The waveform is zooming and panning to match the input signal. Wavelet transform is divided into two categories: discrete wavelet transform and continuous wavelet transform. The essential difference between both is, continuous transformation in all possible zooming and panning operation, and discrete transform using all values of a specific subset of zooming and panning. The theory of wavelet analysis as a new time-frequency analysis tool in signal analysis and processing, has a very good application. Planar image can be viewed as a two-dimensional signal, therefore, wavelet analysis naturally is applied to the image processing field. Image compression, denoising, enhancement, fusion, image pre-processing is very extensive application of the technology of wavelet transform, because of its excellent characteristics in image processing has been applied more and more. In this paper, starting from the basic theory of wavelet transform, the first detailed and profound development. Gradual introductionfrom concept to the wavelet analysis and a series of related content, including continuous wavelet transform, discrete wavelet transform and wavelet packet analysis. Eventually lead to wavelet analysis application in Matlab method. The wavelet transform application in image processing this paper focuses on the study of.Keywords: wavelet analysis; image compression; image denoising; image enhancement; image fusion; Matlab前言传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。
基于MATLAB的系统方析与设计――小波分析胡昌华张军波夏军张伟编著第3章小波分析的应用技术随着小波理论的日益成熟,人们对小波分析的实际应用越来越重视.它已经广泛地应用于信号处理、图像处理、量子场沦、地震勘探、话音识别与合成、音乐、雷达、CT成像、彩色复印、流体湍流、天体识别、机器视觉、机械故障诊断与监控、分形以及数字电视等科技领域。
在本章,主要介绍如何利用小波分析函数处理一些实际的工程问题。
在上一章,我们知道,MATLAB所提供的小波分析工具有两种:第一种提供的是命令行形式的函数,用户可通过这些函数,根据实际分析的需要,在调试状态下、编写自己的MATLAB程序。
这种方式虽不直观,但它可以按照用户自己的思维.编写出功能强大的MATLAB程序,完成各种信号的小波分析。
第二种提供的是图形用户接口(Graphic User Interface:GUI)工具,这种方式简单直观,不需要进行复杂的编程,并且将计算结果直接以图形方式显示出来,用户可以立即评价自己分析的结果是否正确,但是GUI方式的处理模式比较固定,且它所提供的小波函数种类教少,在进行复杂的信号分析时,有些功能无法实现。
从思维角度来讲,利用MATLAB提供的命令行形式的函数编程,可以领会小波分析中的许多细节部分,因此在本章中,我们只讲解第一种方式的应用。
3.1 一维小波分析的应用首先,我们将用于一维小波图像分析的主要函数作一个简要介绍,这些函数在第2章中已做过详细说明,在此.为了方便读者的使用而作一个归纳总结,具体每个函数的用法,请参阅第2章的有关内容。
用于一维信号分析的函数主要有:(1)小波分解函数(2)小波重建函数(3)分解结构应用函数(4)噪声函数(5)消噪和压缩函数3.1.I 小按分析的一些数学计算在这里,我们以小波分析这—数学工具处理一些数学问题,从某种意义上讲,这种应用是帮助读者对小波分析理论本身有进一步的理解。
例3-1:对于一给定的正弦信号请利用多分辨分析对该信号进行分解与重构。
关于小波分析的matlab程序小波分析是一种在信号处理和数据分析领域中广泛应用的方法。
它可以帮助我们更好地理解信号的时域和频域特性,并提供一种有效的信号处理工具。
在本文中,我将介绍小波分析的基本原理和如何使用MATLAB编写小波分析程序。
一、小波分析的基本原理小波分析是一种基于窗口函数的信号分析方法。
它使用一组称为小波函数的基函数,将信号分解成不同频率和不同时间尺度的成分。
与傅里叶分析相比,小波分析具有更好的时频局部化性质,可以更好地捕捉信号的瞬时特征。
小波函数是一种具有局部化特性的函数,它在时域上具有有限长度,并且在频域上具有有限带宽。
常用的小波函数有Morlet小波、Haar小波、Daubechies小波等。
这些小波函数可以通过数学运算得到,也可以通过MATLAB的小波函数库直接调用。
小波分析的基本步骤如下:1. 选择合适的小波函数作为基函数。
2. 将信号与小波函数进行卷积运算,得到小波系数。
3. 根据小波系数的大小和位置,可以分析信号的时频特性。
4. 根据需要,可以对小波系数进行阈值处理,实现信号的去噪和压缩。
二、MATLAB中的小波分析工具MATLAB提供了丰富的小波分析工具箱,可以方便地进行小波分析的计算和可视化。
下面介绍几个常用的MATLAB函数和工具箱:1. `waveinfo`函数:用于查看和了解MATLAB中可用的小波函数的信息,如小波函数的名称、支持的尺度范围等。
2. `wavedec`函数:用于对信号进行小波分解,得到小波系数。
3. `waverec`函数:用于根据小波系数重构原始信号。
4. `wdenoise`函数:用于对小波系数进行阈值处理,实现信号的去噪。
5. 小波分析工具箱(Wavelet Toolbox):提供了更多的小波分析函数和工具,如小波变换、小波包分析、小波阈值处理等。
可以通过`help wavelet`命令查看工具箱中的函数列表。
三、编写小波分析程序在MATLAB中编写小波分析程序可以按照以下步骤进行:1. 导入信号数据:首先需要导入待分析的信号数据。
使用MATLAB小波工具箱进行小波分析:如上图所示的小波分解过程,可以调用wfilters 来获得指定小波的分解和综合滤波器系数,例如:% Set wavelet name.wname = 'db5';% Compute the four filters associated with wavelet name given% by the input string wname.[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname);subplot(221); stem(Lo_D);title('Decomposition low-pass filter');subplot(222); stem(Hi_D);title('Decomposition high-pass filter');subplot(223); stem(Lo_R);title('Reconstruction low-pass filter');subplot(224); stem(Hi_R);title('Reconstruction high-pass filter');xlabel('The four filters for db5')% Editing some graphical properties,% the following figure is generated.以上例子,得到’db5’小波的分解和综合滤波器系数,并显示出来。
下面是wfilters的具体用法:Wname 可指定为列表中的任意一种小波,直接调用[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname')会返回分解和综合滤波器系数。
如果只想返回其中的一些而不是全部,可以调用[F1,F2] = wfilters('wname','type')其中’type’可指定为4种类型,每种类型的具体意义详见matlab wfilters帮助。