概率统计模型概论
- 格式:ppt
- 大小:4.07 MB
- 文档页数:114
概率与统计的模型与应用在概率与统计领域,模型是一种描述随机事件或现象的数学工具,而应用则是利用模型对实际问题进行分析、预测和决策的过程。
本文将探讨概率与统计的模型以及其在实际应用中的重要性和效果。
一、概率与统计模型的概述概率与统计模型是对随机变量和概率分布的数学描述,它们可以从数学角度上表达随机性、不确定性和变异性。
概率模型通常用来描述随机事件的可能性,例如掷硬币的结果、骰子的点数等;而统计模型则用来描述数据的变化和规律,例如人口增长、气温变化等。
这些模型可以是离散的或连续的,可以是简单的或复杂的,但它们的核心目标都是对现实世界进行建模和分析。
二、常见的概率与统计模型1. 随机变量模型随机变量模型是概率与统计中最基础的模型之一,它描述了随机事件的可能取值和相应的概率分布。
随机变量可以分为离散和连续两种类型。
离散随机变量的取值是有限或可数的,例如扔一个硬币的结果只有正面和反面两种可能;而连续随机变量的取值是无限的,例如人的身高、温度等。
通过对随机变量的建模,可以进行各种概率计算和预测。
2. 假设检验模型假设检验模型是统计推断的一种重要工具,用于验证关于总体参数的假设。
它将问题划分为一个原假设和一个备择假设,并通过对样本数据的分析来判断是否拒绝原假设。
假设检验模型广泛应用于医学、社会科学、市场调研等领域,帮助研究人员做出科学的决策。
3. 回归分析模型回归分析模型是统计学中一种常见的分析方法,用于研究变量之间的关系。
它通过建立一个线性或非线性回归模型来描述自变量与因变量之间的关系,并通过求解最小二乘法来确定模型参数。
回归分析模型可以用来预测和解释变量之间的关系,广泛应用于经济学、金融学、市场营销等领域。
三、概率与统计模型的应用概率与统计模型在各个领域中都有广泛的应用,下面以几个具体的例子来说明。
1. 风险评估与管理概率与统计模型可以用于风险评估与管理。
通过对历史数据的分析和建模,可以预测各种风险事件的概率和可能的影响程度,以便采取相应的措施进行应对和管理。
概率统计数学模型在数学领域,概率统计是一个非常重要的分支,它涉及到各种随机现象的数学描述和统计分析。
概率统计数学模型则是这些分析的基础,它能够准确地描述和预测各种随机现象的结果。
一、概率统计数学模型的基本概念概率统计数学模型是建立在随机试验基础上的数据分析方法。
在概率论中,随机试验的结果通常被视为不可预测的,但可以通过概率分布来描述它们。
而统计方法则是对数据进行收集、整理、分析和推断的方法,它依赖于概率论的知识。
二、概率统计数学模型的应用概率统计数学模型在各个领域都有广泛的应用,例如在金融领域中,它可以帮助我们预测股票价格的波动;在医学领域中,它可以帮助我们理解疾病的传播方式;在工程领域中,它可以帮助我们优化设计方案。
三、概率统计数学模型的建立过程建立概率统计数学模型通常包括以下几个步骤:1、确定研究问题:首先需要明确研究的问题是什么,以及我们想要从中获得什么样的信息。
2、设计随机试验:针对研究问题,设计合适的随机试验,以便收集数据。
3、收集数据:通过试验或调查等方式收集数据,并确保数据的准确性和可靠性。
4、分析数据:利用统计分析方法对收集到的数据进行处理和分析,提取有用的信息。
5、建立模型:根据分析结果,建立合适的概率统计模型,以描述数据的分布规律和预测未来的趋势。
6、验证模型:对建立的模型进行验证,确保其准确性和适用性。
7、应用模型:将建立的模型应用于实际问题的解决和预测中。
概率统计数学模型是处理和分析随机现象的重要工具,它在各个领域都有广泛的应用前景。
通过建立合适的概率统计模型,我们可以更好地理解和预测各种随机现象的结果,从而为实际问题的解决提供有力的支持。
概率统计数学模型在投资决策中的应用在投资决策的制定过程中,准确理解和应用概率统计数学模型是至关重要的。
概率统计数学模型为投资者提供了定量分析工具,帮助他们更准确地预测投资结果,从而做出更合理的决策。
一、概率模型的应用概率模型在投资决策中的应用广泛。
概率与统计的数学模型概率与统计是数学中两个重要的分支,它们在现代科学和实际生活中都起着至关重要的作用。
概率是研究随机现象发生的规律性,而统计是用数据推断总体特征的方法。
它们的数学模型在研究和应用中具有广泛的应用和意义。
一、概率的数学模型概率的数学模型主要有概率空间和概率分布两个方面。
1. 概率空间概率空间是指由样本空间和样本空间中的事件组成的数学模型。
样本空间是指所有可能结果的集合,事件是指样本空间的某些子集。
概率空间由三个元素组成:样本空间Ω,事件的集合F和概率函数P。
概率函数P定义了事件在样本空间中的概率,它满足三个条件:非负性、规范性和可列可加性。
2. 概率分布概率分布是指随机变量在各取值上的概率分布情况。
随机变量是样本空间到实数集的映射,它描述了随机现象的数值特征。
概率分布可以分为离散型和连续型两种。
离散型概率分布可以用概率质量函数(probability mass function,PMF)来描述。
例如,二项分布是描述n重伯努利试验的概率分布,其PMF可以用来计算在n次试验中成功的次数。
连续型概率分布可以用概率密度函数(probability density function,PDF)来描述。
例如,正态分布是一种常见的连续型概率分布,它在自然界和社会科学中有广泛应用。
二、统计的数学模型统计的数学模型主要有样本和总体两个方面。
1. 样本样本是指从总体中获取的部分观察结果。
样本可以是随机抽样或非随机抽样得到的,它用来代表总体并推断总体的特征。
样本是统计推断的基础。
2. 总体总体是指研究对象的整体集合。
总体可以是有限总体或无限总体,它包含了研究对象的所有可能结果。
总体的特征可以用参数来描述,例如总体的均值、方差等。
统计的数学模型主要是通过样本推断总体的特征。
统计推断包括点估计和区间估计两个方面。
点估计是利用样本数据来估计总体参数的值,常用的点估计方法有最大似然估计和矩估计等。
区间估计是利用样本数据给出总体参数的区间范围,常用的区间估计方法有置信区间和预测区间等。
概率模型知识点总结概率模型是一种用来描述随机现象的模型,通常用来预测或计算某个事件发生的概率。
在统计学和机器学习领域,概率模型被广泛应用于数据分析、模式识别、预测和决策等领域。
本文将从概率基础、贝叶斯网络、隐马尔可夫模型等方面对概率模型进行详细介绍和总结。
一、概率基础1. 概率的定义概率是描述随机事件发生可能性的数学概念。
在统计学中,概率通常用P(A)来表示,表示事件A发生的可能性。
概率的范围是0≤P(A)≤1,即事件发生的概率介于0和1之间。
2. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率,用P(A|B)表示。
条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)。
3. 贝叶斯定理贝叶斯定理是指在已知事件B发生的条件下,事件A发生的概率,用P(A|B)表示。
贝叶斯定理的公式为:P(A|B) = P(B|A) * P(A) / P(B)。
4. 随机变量随机变量是指在试验中可能出现并且有可能取得不同值的量。
随机变量分为离散型随机变量和连续型随机变量两种。
5. 概率分布概率分布是描述随机变量取值概率的分布情况。
常见的概率分布包括伯努利分布、二项分布、泊松分布、均匀分布、正态分布等。
二、贝叶斯网络1. 贝叶斯网络的概念贝叶斯网络是一种用图模型表示随机变量间依赖关系的概率模型。
贝叶斯网络由有向无环图(DAG)和条件概率分布组成。
2. 贝叶斯网络的表示贝叶斯网络由节点和有向边组成,节点表示随机变量,有向边表示变量之间的依赖关系。
每个节点都有一个条件概率分布,表示给定父节点的情况下,节点的取值概率。
3. 贝叶斯网络的推理贝叶斯网络可以用来进行概率推理,即在已知部分变量的情况下,推断其他变量的取值概率。
常见的推理方法包括变量消除、动态规划等。
4. 贝叶斯网络的应用贝叶斯网络被广泛应用于机器学习、模式识别、数据挖掘等领域,常见的应用包括故障诊断、风险评估、信息检索、智能决策等。
三、隐马尔可夫模型1. 隐马尔可夫模型的概念隐马尔可夫模型是一种用于建模时序数据的统计模型,它假设观察数据和状态之间存在概率关系。
概率统计模型的原理和应用前言概率统计模型是一种基于概率论和统计学原理建立的数学模型,用于描述和推断随机现象的规律。
在实际应用中,概率统计模型被广泛应用于各个领域,包括金融、医学、工程等。
本文将介绍概率统计模型的原理和应用,并以列点的方式呈现相关内容。
概率统计模型的基本概念•概率:指事件发生的可能性或程度,用数值表示。
•统计:指通过对样本数据的观察和分析,对总体特征进行推断。
•随机变量:指表示随机现象结果的数值化变量,在概率统计模型中起重要作用。
•概率分布:指随机变量所有可能取值及其对应概率的分布情况,常见的概率分布包括正态分布、均匀分布等。
概率统计模型的原理1.概率论基础:概率统计模型建立在概率论的基础上,概率论提供了描述随机现象的理论框架和推断方法。
概率论中的公理系统和概率推断方法为概率统计模型的构建和分析提供了理论基础。
2.参数估计:参数估计是概率统计模型中的一个重要步骤,用于通过样本数据来估计总体参数。
常见的参数估计方法包括极大似然估计、最小二乘估计等。
3.假设检验:假设检验是通过观察样本数据,判断总体参数是否符合某个假设的一种推断方法。
假设检验在概率统计模型中应用广泛,用于验证模型的有效性和检测变量之间的相关性。
4.相关性分析:概率统计模型可以通过相关性分析来探索变量之间的关系。
常见的相关性分析方法包括相关系数分析和回归分析等。
概率统计模型的应用概率统计模型在各个领域有广泛的应用,以下是一些常见的应用场景: 1. 金融领域:通过概率统计模型可以对股票价格、汇率变动等金融现象进行建模和预测,帮助投资者做出决策。
2. 医学领域:概率统计模型在医学研究和临床实践中有重要应用,例如用于分析疾病的发病机制、评估疗效等。
3. 工程领域:在工程项目中,概率统计模型可以用于风险评估、质量控制等方面。
例如,建筑工程中的结构安全分析。
4. 社会科学领域:概率统计模型可以用于社会调查、数据分析等方面,帮助研究人员理解社会现象和预测社会趋势。
第四章 概率统计模型本章的目的不是系统地介绍概率论和统计分析的内容,而是利用概率论和统计分析的知识建立和分析实际问题,从而建立数学模型。
§4.1 古典随机模型 一、古典概型设E 是随机试验,Ω是E 的样本空间,若○1Ω只含有有限个基本事件——有限性; ○2每个基本事件发生的可能性相同——等可能性。
则称E 为古典概型。
在古典概型中,如果事件A 是由全部n 个基本事件中的某m 个基本事件复合而成的,则事件A 的概率可用下式来计算:nm A P =)(例1 配对问题某人先写了n 封投向不同地址的信,在写n 个标有这n 个地址的信封,然后随意的在每个信封内装入一封信。
试求信与地址配对的个数的数学期望。
解:用i A 表示“第i 封信与地址配对”这一事件,则)(110i ni A P q ⋃=-=为求)(1i ni A P ⋃=,可利用一般加法公式)()1()()()()(2113211n n nk j i k j inj i j ini ii ni A A A P A A AP A AP A P A P -=<<=<==-+++-=∑∑∑来计算。
第i 封信可装入n 个信封,恰好和地址配对的概率nA P i 1)(=,故1)(1=∑=ni iA P如i A 出现,第j 封信共有n -1个信封可以选择,故,111)()()(,11)(-⋅==-=n n A A P A P A A P n A A P ij i j i i j从而,!21)1(/)(22=-=∑=<n n C A A P n nj i j i类似地可得到!1)(,!31)2)(1(/)(2133n A A A P n n n C A A A P n n nk j i k j i ==--=∑=<<于是∑∑==-=-=--=-=nk nk kk i ni k k A P q 1110!)1(!)1(1)(1q 0与n 有关,如记q 0=q 0(n),则利用q 0不难求出q r 。
第五章 概率统计模型本章重点: 初等概率模型 随机性决策模型 随机型存储模型 排队模型复习要求:1.会建立简单的初等概率模型。
2.掌握随机性决策模型的建立与求解方法,了解随机性存储模型。
3.了解排队模型,会用排队模型中的简单结论求解相关问题。
一、初等概率模型初等概率模型主要介绍了可靠性模型、传染病流行估计、常染色体遗传模型等三类问题,下面复习遗传模型1.问题分析所谓常染色体遗传,是指后代从每个亲体的基因中各继承一个基因从而形成自己的基因型.如果所考虑的遗传特征是由两个基因A 和B 控制的,那么就有三种可能的基因型:AA ,AB 和BB .例如,金鱼草是由两个遗传基因决定它开花的颜色,AA 型开红花,AB 型的开粉花,而BB 型的开白花.这里的AA 型和AB 型表示了同一外部特征(红色),则人们认为基因A 支配基因B ,也说成基因B 对于A 是隐性的.当一个亲体的基因型为AB ,另一个亲体的基因型为BB ,那么后代便可从BB 型中得到基因B ,从AB 型中得到A 或B ,且是等可能性地得到.问题:某植物园中一种植物的基因型为AA ,AB 和BB .现计划采用AA 型植物与每种基因型植物相结合的方案培育植物后代,试预测,若干年后,这种植物的任一代的三种基因型分布情况.2.模型假设(1)按问题分析,后代从上一代亲体中继承基因A 或B 是等可能的,即有双亲体基因型的所有可能结合使其后代形成每种基因型的概率分布情况如表5-1.表5-1(2) 以n n b a ,和n c 分别表示第n 代植物中基因型为AA ,AB 和BB 的植物总数的百分率,)(n x 表示第n 代植物的基因型分布,即有,)(⎪⎪⎪⎭⎫ ⎝⎛=nnn n c b a x,2,1,0=n (5 .1) 特别当n =0时,Tc b a x),,(000)0(=表示植物基因型的初始分布(培育开始时所选取各种基因型分布),显然有.1000=++c b a3.模型建立注意到原问题是采用AA 型与每种基因型相结合,因此这里只考虑遗传分布表的前三列. 首先考虑第n 代中的AA 型,按上表所给数据,第n 代AA 型所占百分率为1110211---⋅+⋅+⋅=n n n n c b a a即第n-1代的AA 与AA 型结合全部进入第n 代的AA 型,第n -1代的AB 型与AA 型结合只有一半进入第n 代AA 型,第n -1代的BB 型与AA 型结合没有一个成为AA 型而进入第n 代AA 型,故有1121--+=n n n b a a (5 .2)同理,第n 代的AB 型和BB 型所占有比率分别为1121--+=n n n c b b (5 .3)0=n c (5 .4)将(5.2)、(5.3)、(5.4) 式联立,并用矩阵形式表示,得到,)1()(-=n n Mxx,2,1( =n (5 .5)其中⎪⎪⎪⎭⎫ ⎝⎛=00012/1002/11M 利用(5 .5)进行递推,便可获得第n 代基因型分布的数学模型)0()2(2)1()(xM xM Mxxn n n n ====-- (5 .6)(5.6)式明确表示了历代基因型分布均可由初始分布)0(x 与矩阵M 确定.4.模型求解这里的关键是计算n M .为计算简便,将M 对角化,即求出可逆阵P ,使Λ=-MP P 1,即有1-Λ=PP M从而可计算 1-Λ=P P Mn n),2,1( =n其中Λ为对角阵,其对角元素为M 的特征值,P 为M 的特征值所对应的特征向量.分别为,11=λ 212=λ,03=λ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=121,011,001321p p p故有1100210111,0211-=⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎭⎫⎝⎛=ΛP P 即得⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=1002101110211100210111nnM⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=--0021210211211111n nn n于是 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛=--00011)(0021212112111c b a c b a x n n n nn n n n 或写为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=--=--0)21()21()21()21(101010n n n n n n nc c b b c b a 由上式可见,当∞→n 时,有0,0,1→→→n n n c b a即当繁殖代数很大时,所培育出的植物基本上呈现的是AA 型,AB 型的极少,BB 型不存在.5.模型分析(1)完全类似地,可以选用AB 型和BB 型植物与每一个其它基因型植物相结合从而给出类似的结果.特别是将具有相同基因植物相结合,并利用前表的第1、4、6列数据使用类似模型及解法而得到以下结果:000021,0,,21b c c b b a a n n n +→→+→这就是说,如果用基因型相同的植物培育后代,在极限情形下,后代仅具有基因AA 与BB ,而AB 消失了.(2)本例巧妙地利用了矩阵来表示概率分布,从而充分利用特征值与特征向量,通过对角化方法解决了矩阵n 次幂的计算问题,可算得上高等代数方法应用于解决实际的一个范例.例2 血友病也是一种遗传疾病,得这种病的人由于体内没有能力生产血凝块因子而不能使出血停止.很有意思的是,虽然男人及女人都会得这种病,但只有女人才有通过遗传传递这种缺损的能力.若已知某时刻的男人和女人的比例为1:1.2,试建立一个预测这种遗传疾病逐代扩散的数学模型.解 假设有α%的人患有血友病,并假设下一代与上一代虽人数可能不等,但所生男女比例一样.基于这样一个假设,不妨设下一代男女与上一代相同,设初始第一代男女分别占总人数的比例占总人数的比例为 a 0,b 0,由题设,a 0:b 0=1:1.2.注意到只有女人遗传血友病,由此,第一代将有%210αb 个女人及%210αb 个男人有血友病,血友病占总人数的百分比为%2.22.1%0001αα=+=b a b c同理,第二代将有%21210αb ⋅个女人及%21210αb ⋅个男人有血友病,血友病占总人数的百分比为 %2.22.121%210002αα⋅=+=b a b c依次类推,第n 代将有%)21(0αb n个女人及%)21(0αb n个男人有血友病,血友病占总人数的百分比为%2.22.1)21(%)21(10001αα⋅=+=--n n n b a b c令∞→n ,则0→n c .二、随机性决策模型决策是人们在政治、经济、军事和日常生活等多方面普遍存在的一种选择方案的行为. 决策按环境而言,可以分为确定型,不确定型和风险型,其中风险型决策的决策类型是最常见的,.所谓风险型决策是指在作出决策时,往往有某些随机性的因素影响,而决策者对于这些因素的了解不足,但是对各种因素发生的概率已知或者可估算出来,因此这种决策因存在一定的风险.1.风险决策模型的基本要素(1) 决策者 进行决策的个人、委员会或某个组织.在问题比较重大和严肃时,通常应以后者形式出现.(2) 方案或策略 参谋人员为决策者提供的各种可行计划和谋略. 如渔民要决定出海打鱼与否便是两个方案或称两个策略.(3) 准则 衡量所选方案正确性的标准.作为风险型决策,采用的比较多的准则是期望效益值准则,也即根据每个方案的数学期望值作出判断.对收益讲,期望效益值越大的方案越好;反之对于损失来讲,期望效益值越小的方案越好.(4) 事件或状态 不为决策者可控制的客观存在的且将发生的自然状态称为状态(事件),如下小雨,下大雨和下暴雨即为三个事件或称三种状态,均为人所不可控因素.(5) 结果 某事件(状态)发生带来的收益或损失值. 2.风险决策方法(1)利用树形图法表示决策过程具有直观简便的特点,将其称为决策树的方法. (2) 充分利用灵敏度分析(即优化后分析)方法对决策结果作进一步的推广和分析. 其中的决策树概念先以一实例说明如下:例3 某渔船要对下个月是否出海打鱼作出决策.如果出海后是好天,可获收益5000元,若出海后天气变坏,将损失2000元;若不出海,无论天气好坏都要承担1000元损失费.据预测下月好天的概率为0.6,天气变坏的概率为0.4,应如何选择最佳方案?这里使用决策树方法进行决策. 先来说明决策树的画法 .先画一方块“囗”称为决策结点,由决策结点向右引出若干条直线表示不同的策略(方案)--称为策略分枝,策略分枝的右端画一个圆圈“○”称为状态结点,由它引出表示不同状态及其发生的概率的分枝称为概率分枝,最后在概率分枝的终点画“△”符号表示这一分枝的最终结果的效益值(期望值),正值表收益,负值表示损失.本例对应的决策树如图5-1.图5-1值得指出的是,画决策树是从左向右画出,画的过程中将各种已知数据标于相应的位置上. 但在决策树上进行决策计算却是从右向左进行的:先计算最右端每个状态结点的期望值. 由于本例仅有两个从决策结点A 发出的状态结点——称为一级决策问题,故只需利用结果点效益值计算各状态结点的期望效益值即可. 当有两级以上决策时则需从右向左逐级计算.2200)4.0()2000(6.05000=⨯-+⨯=-X将此结果标记在状态结点B 的上方.同理,将不出海的效益值作为随机变量,可算得期望值为-1000,将其标记在结点C 的上方,便得到图5-2.图5-2比较这两个值,显然出海收益的数学期望值大.从而剪去不出海决策枝(见图5-2)而选择出海作为最终决策,效益期望值为2200元. 实际中常会遇到多阶段决策.例4 假设有一笔1000万元的资金于依次三年年初分别用于工程A 和B 的投资.每年初如果投资工程A ,则年末以0.4的概率回收本利2000万元或以0.6的概率分文不收;如果投资工程B ,则年末以0.1的概率回收2000万元或以0.9的概率回收1000万元.假定每年只允许投资一次,每次只投1000万元;试确定第3年末期望资金总数为最大的投资策略. 解 建立决策树(如图3).图3在投资A 的决策树中,第一年投资A ,第二年投资B ,第三年投资B 的期望值最大. 在投资B 的决策树中(只在A 的决策树中②节点中的0.4,0.6分别换成0.1,0.9即可),可算得第一年投资B ,第二年投资B ,第三年投资B 的期望值是两个决策树中的最大者.三、随机型存储模型存储问题的数学模型涉及以下的主要经济变量:1.需求量:某种物资在单位时间内的需求量,以D 表示,如年需求量、月需求量、日需求量.需求量有时是常量,而在许多情况下则是随机变量,这时它的变化规律应当是能够掌握的.对需求量进行科学地预测和估计是解决存储问题的重要依据.2.批量:为补充存储而供应一批物资的数量称为批量,以Q 表示.由外部订货供应的批量称为订货批量;由内部生产供应的批量称为生产批量.3. 货点;为补充存储而发生订货时的存储水平,以R 表示.4.备运期:发生订货的时间与实际收到订货入库的时间的间隔.5.存储费:保管存货的费用,包括存储所占用资金的利息、仓库和场地费用、物资的存储损耗2000 0 20001000 2000 4000 4000 3000 1000 30003000 2000费用、物资的税金、保险费用等,以1C表示.6.订货费:为补充存储而订货所支付的费用,包括准备和发出订货单的费用、货物的堆放和装运的费用等,以K表示.7.缺货损失费:发生需求时,存储不能提供而引起的费用,包括利润的损失、信誉的损失、停工待料的损失以及没有履行交货合同的罚款等,以2C表示.存储费、订货费和缺货损失费构成了库存的总费用,即总费用=存储费+订货费+缺货损失费. 使总费用最小是建立和求解存储模型的主要目标.为实现该目标,需要确定批量和订货点,这就是所谓存储决策.批量与订货点即决策变量.因而存储模型的主要形式有:总费用=f(批量)或总费用=f(批量,订货点),即F=f(Q)或F=f(Q,R).为了更具体理解随机性存储模型,先来看一个具体实例.例5 考察报童问题.报童每日早晨从报社以每份报纸0.30元的批发价购得当日的日报,然后以每份0.45元的零售价售出.若卖不完,则每份报纸的积压损失费为0.30元;若不够卖,则缺一份报纸造成潜在损失的缺货损失费为0.15元.该报童对以往的销量作了连续一个月的统计,其记录如表5-2所示.表5-2那么,报童每日应订多少份报纸,才能使总损失费最小?假定报童每日订报Q份,并设当日需求量为D,则当DQ≥时,积压损失费为)(30.0DQF-=;当DQ<时,缺货损失费为)(15.0QDF-=.于是可以将报童订报的决策与相应的总费用如表5-3所示表5-32.1元.下面建立这一报童问题模型的数学解析式,用求极值的方法求解最小损失总费用.设平均总费用为)(QTF,则∑∑≤>-+-=QD QDDPQDDPDQQTF)()(15.0)()(30.0)(.(5.41)为求使)(QTF最小的Q值,解下列不等式组:⎪⎩⎪⎨⎧≤+-≤--.0)()(0)()(d Q TF Q TF d Q TF Q TF 其中 ,10|}{|min =-=≠D Q d DQ 且 }.160,150,140,130,120{=∈±S d Q上式等价于⎪⎩⎪⎨⎧≥-≤-∑∑∑∑≤>-≤->QD Q D d Q D d Q D D P D P D P D P .0)(15.0)(30.00)(15.0)(30.0即⎪⎩⎪⎨⎧≥-⋅+≤-⋅+∑∑≤-≤Q D dQ D D P D P .015.0)()15.030.0(015.0)()15.030.0( 故∑∑≤-≤≤≤QD dQ D D P D P ).(31)( (5.7)亦即).()120(3333.0)()120(Q P P d Q P P ++≤≤-++由于 130,35.0)130()120(15.0)120(==+=Q P P P 因此且. 可以看到,上述结果与通过列表得到的结果是一致的.报童问题是一个离散型问题.若考虑相应的连续型问题,则类似于(5.7)式的总费用公式为⎰⎰+∞---=QQx d x P Q x x d x P x Q Q TF 0).()()(15.0)()()(30.0)(这里,)(x P 为一定时期内销售量的概率密度.为求总费用的最小值,令.0)(=dQQ dTF得⎰=-+Qx d x P 0.015.0)()()15.030.0(于是.31)()(*⎰=Qx d x P问题的关键成为如何从这个积分等式中求出*Q ,其求法通常用迭代法利用求极值的数学方法求解存储模型,这是解决存储问题的主要思路.尤其对于连续型存储模型,用求极值的方法求解模型就显得更为有效和更为重要.存储问题中的随机性主要由以下两个因素产生;第一,对物资的需求量经常发生随机波动;第二,订货的到达时间经常发生随机性的提前或推迟.下面将给出需求不确定的随机性存储模型.(一)允许缺货情形由于需求量是随机的,所以,可考虑其平均需求量,而且不允许缺货也只是指在一定置信度下的不允许缺货.设D 为年平均需求,则类似于确定性存储的EOQ 模型,可得到相应的最佳批量*Q 如下:.21*C KD Q =(5.8)这里,K 为一次定购费,1C 为该种物资一个单位存储一年的费用.为在一定置信度下对不缺货提供安全保证,可将安全库存量加到正常存货中以提供所希望达到的服务水平(即不缺货的概率).这时,有βσ+=l R . (5.9)式中,R 为订货点,σ和l 分别为备运期内的销售量L 的均值与均方差,β为安全库存系数,βσ为安全库存量.安全库存系数β即为给定置信度α-1下的上100α百分位点,其值满足等式αβ=>)(X P ,可通过查概率分布表得到.因此,订货策略为,当备运期大于零时,若存储量降低到R ,则以*Q 为订货量进行订货. 例6. 设某公司订购一种备件,一次订货费为60元,年平均需求量为500件,每件年存储费为40元,备运期8天,备运期中的销售量服从均值为15、均方差为2的正态分布.为使不缺货的概率达到99.9%且总费用最小,问订货点是多少,每次订多少件?注意到 D=500件/年,K=60元,1C =40元,则3940500602*≈⨯⨯=Q 件.根据不缺货的概率达到99.9%,查正态分布表得β=3,订货点为212315=⨯+=R 件.故订货点为21件,每次订货39件. (二)允许缺货情形设1,,C K D 同前,2C 为单位缺货损失费,并设存储量降到R 时订货,订货数量为Q ,备运期中的需求量x 服从密度为)(x f 的分布函数)(x F ,则在缺货要补的情况下,订货刚到之前的平均存储量(平均最小存储量)与订货刚到之后的平均存储量(平均最大存储量)分别为⎰⎰-+-RRdx x f x R Q dx x f x R 0)()()()(与,则年平均存储量为⎰-+Rdx x f x R Q 0)()(2.年平均存储费为 ⎪⎭⎫⎝⎛-+⎰Rdx x f x R Q C 01)()(2.年平均订货费为KD/Q.当备运期中的需求量超过订货点R 时,就发生缺货,因此,缺货量的均值为⎰∞-Rdx x f R x )()(.故年平均缺货损失费为⎰∞-Rdx x f R x QD C )()(2.于是年总费用),(Q R TF 为⎰⎰∞-+⎪⎭⎫⎝⎛-++=RRdx x f R x QD C dx x f x R Q C Q KDQ R TF .)()()()(2),(201 (5.10)为求),(Q R TF 的最小值,令⎰⎰∞=-=∂∂RRdx x f QD C dx x f C RQ R TF 0210)()(),(. (5.11)可得⎰-=RDC Q C dx x f 0211)(. (5.12)由(5.12)得12)()(2C dx x f R x C K D Q R ⎪⎭⎫ ⎝⎛-+=⎰∞.故解得最佳批量*Q 与订货点*R 满足如下方程组:{}())14.5()13.5()](1[)(21)(1221⎪⎪⎩⎪⎪⎨⎧--+=-=⎰∞C R F R dx x xf C KD Q DC Q C R F R最佳批量*Q 和订货点*R 可按以下步骤解出:(1)取112C KD Q =;(2) 将1Q Q =代入(5.13)求R 1; (3) 将R =1R 代入(5.14)求2Q ; (4) 将2Q 代入(5.13)。