中科大电磁学(全套课件)
- 格式:ppt
- 大小:30.70 MB
- 文档页数:606
第三章静电能§3.1 真空中点电荷间的相互作用能§3.2 连续电荷分布的静电能§3.3 电荷体系在外电场中的静电能§3.4 电场的能量和能量密度§3.5 非线性介质及电滞损耗§3.6 利用静电能求静电力能量的基本概念一、引入的目的:1. 能量是物质的共同属性;2. 能量是物质运动的普遍量度;3. 便于研究不同形式能量的转换。
二、特点:1. 是状态的单值函数, 属于整个系统;2. 能量差才有意义;3. 用做功来量度能量。
三、描述的方法:要引入状态参量,规定零点能,然后用做功来计算能量。
对一个带电系统而言,其带电过程总伴随着电荷相对运动。
在这个过程中,外力必须克服电荷间的相互作用而作功。
外界作功所消耗的能量将转换为带电系统的能量,该能量定义为带电系统的静电能。
显然,静电能应由系统的电荷分布决定。
点电荷在外电场中的电势能就是静电能。
定义§3.1 真空中点电荷间的相互作用能设想空间中有多个点电荷, 其带电量用q i 表示, 相应的位置用ri表示, 任意两个点电荷间的距离可以由rij=|rij|=|ri-rj|给出,所谓点电荷之间的相互作用能,指的是与点电荷间的相对位置有关的静电能。
状态量取为rij(i, j = 1,2,…,N),时,它们之间的静电相互作用消失,很自然地取这时的相互作用能为零。
我们用一种类似于数学归纳法的办法来计算由N个点电荷组成的静电体系的静电能.ijr→∞一个点电荷q在电场U中的电势能W=qU当两个点电荷12212,4W q U r πε==W=3122113312332 2,24N i i i ji W q U U U rπε===∑∑∑其中§意味着电场空间中只允许导体和介电常量恒等元,ρ= a。
可求得电荷密度为、半径为a的均匀带电e2. 为荷元,它在自身产生的电势不会大于σ()dS σr3. 线电荷分布的情况1()()e W l U l dl λ=∫或11()()e e W l U l dl λ=∫N个带电体,体积分别为间的总电势U(r)分为两部分可写成:其中,例3.1]球的静电能(带电体的介电常量设为[解]0θϕ5. 对带电导体导体的特点是势体。
§2-2 电容与电容器A capacitor can be "charged" and can store charge.⇨电荷在导体表面的分布必须保证满足导体的静电平衡条件。
⇨对于孤立导体,电荷在导体表面的相对分布情况由导体的几何形状唯一确定,因而带一定电量的导体外部空间的电场称为孤立导体的电容。
由半径决定.若把地球作为一个孤立导体球,其电容也可由上式决定。
对于两个导体组成的导体组,当周围不存在其它导体或带电体,这两导体间的当这两导体附近存在其它带电体或导体时,电量与电势差之间的正比关系将被破坏。
可以采用静电屏空腔导体的屏蔽作用可以使带电物体不影响周围其它带电体,即势差。
C 导体成正比,与导体这种特殊的导体组称为电容器,组成电容器的两个导体分别称为电容器的两个极板。
电容器的电容值为:电容器的电容与电容器的带电状态无关,与周围的带电体也无关,完全由电容器的几何结构决定。
电容的大小反映了当电容器两极间存在广义电容器:多个导体任意放置,构成广义电容器,各个导体的表面是极板。
1.平行板电容器由两块平行放置的金属板组成,极板的面积S大,两极板间的距离d小,两极板均匀带电,带电量为 Q,极板间的电场由极板上的电荷分布唯一确定。
忽略极板的边缘效应,两板之间的电势差为故平行板电容器的电容为:由此可见,增大极板面积,减少两极板间的距离可使电容器的电容量增大。
其电容为:若R B >>R A ,即外球壳B 远离球,则回到孤立导体球的电容公式;若R A 和R B 都很大,而比R A =d 很小,则R A ⨯R B =R 2, 则回到平板电容器的公式。
由于电容器每个电极上的电量q =,复杂电容器电容的计算C=Q/U 是一个普遍适用的公式,对Q 1≠Q 2的两导体,公式中的Q 应理解为用导线将两导体接通时所交换的电荷量。
符号相反,则接通两极板,转移的电荷量为两极板都不接地的情况,两极板的内侧电荷面密度σ2内,外侧电荷面密度分别为2外,两极板侧面积均为S用导线连接两极板后,因为两极板的几何性质完全一样,静电平衡时它们所带的电量相等,即:所以转移的电量为可见,尽管两极板所带的C=?四、电容器的联结1.电容器串联但实际电容器很少串联使用,因为一旦一只电容器被击穿,会使其他电容器相继被击穿。
第五章真空中的静磁场§5.1 磁现象与磁场§5.2 毕奥-萨伐尔定律§5.3 安培定律§5.4 静磁场的基本定理§5.5 带电粒子在磁场中的运动§5.1 磁现象与磁场一、磁现象与磁学二、磁的库仑定律及磁场线引入三、电流的磁效应---奥斯特实验四、磁场的定量表述与洛仑兹力五、安培力公式与洛伦兹力公式一、磁现象与磁学磁现象的研究与应用(即磁学)是一门古老而又年轻的学科。
说她古老,是因为关于磁现象的发现和应用的历史悠久;司南勺、指南针。
“magnet”名词来源于古希腊语(magnes),一地名“Magnesia”。
说她年轻,是因为磁的应用目前越来越广泛,已形成了许多与磁学有关的边缘学科。
磁现象是一种普遍现象,即一切物质都具有磁性,任何空间都存在磁场。
磁学犹如一棵根深叶茂的参天大树尽管人们对物质磁性的认识已有两千多年,但直至19世纪20年代才出现采用经典电磁理论解释物质磁性的代表----安培分子环流假说;而真正符合实际的物质磁性理论却是在19世纪末发现电子、20世纪初有了正确的原子结构模型和建立了量子力学以后才出现。
基本磁现象对基本磁现象的认识可以分成三个阶段:1、早期阶段(磁铁⇔磁铁)2、电流⇔磁铁电流⇔电流3、电流⇔磁场⇔电流早期阶段(磁铁⇔磁铁)天然磁铁(吸铁石)能吸引铁、镍、钴等物质。
条形磁铁的两端称作磁极,中部称作中性区。
将条形磁铁的中心支撑或悬挂起来使它能够在水平面内运动,则两极总是指向南北方向分别称作S极和N极。
这是因为地球本身是一个磁体,所以条形磁铁(指南针)可以与地磁体发生相互作用。
铁与地球磁将一磁铁可以一直细分成很小很小的磁铁,而每一个小磁铁都具有N、S极(上图)。
自然界中有独立存在的正电荷或负电荷,但迄今却未发现独立的N、S极,尽管在近代理论中有人认为可能存在磁单极子。
二、磁的库仑定律及磁场线引入1、磁的库仑定律(讨论!?)2、磁场线引入r2、磁场线的引入与电场中引入电场线相似,磁场中可引入磁场线(又称磁力线、磁感应线)。
电磁学与电动力学(上册:电磁学部分)程福臻中国科技大学理学院fzhen@3606844下载“电磁学pdf”网址:/~fzhen/dcx绪论1、什么是电磁学:是研究电磁现象、电磁相互作用规律及其应用的学科。
2、研究的对象:电磁场,与力学、热学区别。
3、适用范围:尺度(1%的原子尺度)∞速度低速高速4、重要性:四大相互作用之一;物质结构的基础;高新技术的基础;其它学科的基础。
1010cm −章次8一真空中的静电场静电场中的导体和电介质课堂教学、课外教学相结合课堂教学:讲授、笔记、讨论、小练习课外教学:教师讲座、参观、小论文竞赛教“物理学不应该教成一堆技术,而应教成思想概念的诗剧。
应该强调思想概念的演变,强调我们企图了解物理世界的历史,以使学生具备洞察未来的能力。
”——爱因斯坦学“学问”:学一半、问一半“学习”:预习、复习、练习“学而不思则罔”“如切如磋、如琢如磨”—交流、求精总成绩计算作业:8分;(双周星期4交)课堂小练习:2分;小论文:10分;期中考试:30分;期末考试:50分。
第一章真空中的静电场§1-1 电荷守恒§1-2 库仑定律§1-3 叠加原理§1-4 电场强度§1-5 高斯定理§1-6 环路定理§1-7 电势§1-1 电荷守恒1. 电荷:电荷是电学中最基本的概念。
早期人们是通过物质的力效应来定义它的。
他们发现许多物质,如琥珀、玻璃棒、硬橡胶棒……等,经过毛皮或丝绸摩擦后,能吸引轻小物质,便说这些物质带了电荷。
吉尔伯特(1544-1603)为了把这种作用与磁作用加以区别,造出“Electricity(电)”,它源自希腊文“琥珀”音译“electron”。
近代物理学的实验揭示了电荷的物理本质。
电荷是基本粒子,如电子、质子、μ子等等的一种属性,离开了这些基本粒子它便不能存在。
也就是说,电荷是物质的基本属性,不存在不依附物质的“单独电荷”。