1766年德国得腓特烈大帝向拉格朗日发出邀请说,在“欧洲最 大得王”得宫廷中应有“欧洲最大得数学家”。于就是她应邀 去柏林,居住达二十年之久。在此期间她完成了《分析力学》一 书,建立起完整与谐得力学体系。
1786年,她接受法王路易十六得邀请,定居巴黎,直至去世。近 百余年来,数学领域得许多新成就都可以直接或间接地溯源于拉 格朗日得工作。
vx t
vx
vx x
vy
vx y
vz
vx z
ay
vy t
vx
vy x
vy
vy y
vz
vy z
az
vz t
vx
vz x
vy
vz y
vz
vz z
矢量形式
一、 Euler法(欧拉法)
质点加速度:
a dv v (v )v dt t
当地加速度
迁移加速度
第一部分:就是由于某一空间点上得流体质点得速度 随时间得变化而产生得,称为当地加速度
✓2、 欧拉变数:对于三元流动,各运动要素就是空 间点得坐标(x,y,z)与时间t得函数,不同得(x,y,z)即 表示空间中不同得点,通常称(x,y,z)为欧拉变数。
一、Euler法(欧拉法)
3、 物理量方程: 研究表征流场内流体流动得各种物理量得
矢量场与标量场。
压强、密度、温度为: p p(x, y, z, t)
(1) 在定常流动中,流线不 随时间改变其位置与形状, 流线与迹线重合。在非定 常流动中,由于各空间点上 速度随时间变化,流线得形 状与位置就是在不停地变 化得。
(2) 通过某一空间点在给定瞬间只能有一条流线, 一般情况流线不能相交与分支。
(3) 流线不能突然折转,就是一条光滑得连续曲线。