ANSYS第3章 网格划分技术及技巧(完全版)
- 格式:doc
- 大小:3.81 MB
- 文档页数:44
ANSYS第3章网格划分技术及技巧(完全版)ansys第3章网格划分技术及技巧(完全版)ANSYS简介(5)——网格生成技术与技巧网格划分技术及技巧、网格划分控制及网格划分高级技术第三章网格生成技术与技巧3.1定义单元属性几何模型3.2网格控制的元素类型/实常数/材料属性/梁截面/集合元素属性单元形状控制及网格类型选择/单元尺寸控制/内部网格划分控制/划分网格3.3网格划分高级技术面映射网格划分/体映射网格划分/扫描体网格生成/单元有效性检查/网格修改3.4网格划分实例基本模型网格生成/复杂曲面模型网格生成/复杂体积模型网格生成创建几何模型后,必须生成有限元模型才能分析计算,生成有限元模型的方法就是对几何模型进行网格划分,网格划分主要过程包括三个步骤:(1)定义单位属性单元属性包括:单元类型、实常数、材料特性、单元坐标系和截面号等。
⑵定义网格控制选项★ 设置网格的大小和数量除以几何像素边界;★ 没有固定的网格密度可供参考;★可通过评估结果来评价网格的密度是否合理。
⑶生成网格★ 进行网格生成,生成有限元模型;★ 可以分割和清除的网格;★ 局部优化。
3.1定义单元属性I.定义单元类型1定义单元类型命令:et,itype,ename,kop1,kop2,kop3,kop4,kop5,kop6,inopritype-用户定义的单元类型的参考号。
ename-ansys单元库中给定的单元名或编号,它由一个类别前缀和惟一的编号组成,类别前缀可以省略,而仅使用单元编号。
kop1~kop6-单元描述选项,此值在单元库中有明确的定义,可参考单元手册。
也可通过命令keyopt进行设置。
不工作-如果该值为1,则不会输出该类型装置的所有结果。
例如:et,1,link8!定义参考号为1的link8单元;你也可以用et,1,8来定义et,3,4!用参考号3定义beam4单元;它也可以用ET,3,4来定义2.单元类型的keyopt命令:keyopt、itype、knum、valueitype-由et命令定义的单元类型参考号。
第 3章 ANSYS 13.0 Workbench网格划分及操作案例网格是计算机辅助工程(CAE)模拟过程中不可分割的一部分。
网格直接影响到求解精 度、求解收敛性和求解速度。
此外,建立网格模型所花费的时间往往是取得 CAE 解决方案所 耗费时间中的一个重要部分。
因此,一个越好的自动化网格工具,越能得到好的解决方案。
3.1 ANSYS 13.0 Workbench 网格划分概述ANSYS 13.0 提供了强大的自动化能力,通过实用智能的默认设置简化一个新几何体的网 格初始化,从而使得网格在第一次使用时就能生成。
此外,变化参数可以得到即时更新的网 格。
ANSYS 13.0 的网格技术提供了生成网格的灵活性,可以把正确的网格用于正确的地方, 并确保在物理模型上进行精确有效的数值模拟。
网格的节点和单元参与有限元求解,ANSYS 13.0在求解开始时会自动生成默认的网格。
可以通过预览网格,检查有限元模型是否满足要求,细化网格可以使结果更精确,但是会增 加 CPU 计算时间和需要更大的存储空间,因此需要权衡计算成本和细化网格之间的矛盾。
在 理想情况下,我们所需要的网格密度是结果随着网格细化而收敛,但要注意:细化网格不能 弥补不准确的假设和错误的输入条件。
ANSYS 13.0 的网格技术通过 ANSYS Workbench的【Mesh】组件实现。
作为下一代网格 划分平台, ANSYS 13.0 的网格技术集成 ANSYS 强大的前处理功能, 集成 ICEM CFD、 TGRID、 CFXMESH、GAMBIT网格划分功能,并计划在 ANSYS 15.0 中完全整合。
【Mesh】中可以根 据不同的物理场和求解器生成网格,物理场有流场、结构场和电磁场,流场求解可采用 【Fluent】、【CFX】、【POLYFLOW】,结构场求解可以采用显式动力算法和隐式算法。
不同的 物理场对网格的要求不一样,通常流场的网格比结构场要细密得多,因此选择不同的物理场, 也会有不同的网格划分。
转载——ansys网格划分及控制1、首先确定单元形状:Mshape,key,dimensionDimension:2D or 3D,对与2D(3D)来说,key=0,四边形(六面体)单元,key=1,三角形(四面体)单元。
2、确定单元的划分方式(free or mapped)Mshkey, value,其中value=1,mapped划分方式,value=0,free,value=2,尽量mapped,如果不可以,进行free.3、中节点的设置:mshmid对与mapped的划分方式是大家最喜欢的,优点不比多说。
首先说一下(area)的mapped的划分方式:●基本条件:(1)面有三条或四条线组成(2)对边划分相等的等份,或者符合过度模式(transition pattern).(3)若是三条线组成的面,所有边必须等份。
满足三者之一,可以采用mapped方式,进行area网格划分。
若面有多余四条的线组成:可以采用:lcomb(推荐首先采用)或lccat变成四条。
对于线、面、体上的keypoint,ansys在划分网格时,将有节点设置。
●Transition pattern(过度模式)对于面来说,有两种过度模式可选(以有四条线组成的面为例):第一种:满足条件:对边的等分份数之差必须相等。
第二种:满足条件:一组对边等分份数相等,另一组对边等分份数之差为偶数(even number)其次,体(volume)的mapped方式划分方法(单元形状只能采用六面体形状):●基本条件:(1)体必须有六个面、五个面、或者四个面构成(2)若是六个面,必须是对边等分份数相等(3)五面体的边(edge)必须等分,上下底面的边必须偶数等分(4)四面体上所有的边必须偶数等分。
若不满足上述条件,可以采用aadd或accat将面连接,若有线需要连接,先对面进行,然后对线进行lccat.●体的过渡模式主要把面的过度模式理解清楚,可以很容易的理解体的过度模式。
第3章Workbench网格划分3.1 网格划分平台ANSYS Workbench中提供ANSYS Meshing应用程序(网格划分平台)的目标是提供通用的网格划分格局。
网格划分工具可以在任何分析类型中使用。
●FEA仿真:包括结构动力学分析、显示动力学分析(AUTODYN、ANSYS LS/DYNA)、电磁场分析等。
●CFD分析:包括ANSYS CFX、ANSYS FLUENT等。
3.1.1 网格划分特点在ANSYS Workbench中进行网格划分,具有以下特点:●ANSYS网格划分的应用程序采用的是Divide & Conquer(分解克服)方法。
●几何体的各部件可以使用不同的网格划分方法,亦即不同部件的体网格可以不匹配或不一致。
●所有网格数据需要写入共同的中心数据库。
●3D和2D几何拥有各种不同的网格划分方法。
ANSYS Workbench 15.0从入门到精通3.1.2 网格划分方法ANSYS Workbench中提供的网格划分法可以在几何体的不同部位运用不同的方法。
1.对于三维几何体对于三维几何体(3D)有如图3-1所示的几种不同的网格划分方法。
图3-1 3D几何体的网格划分法(1)自动划分法(Automatic)自动设置四面体或扫掠网格划分,如果体是可扫掠的,则体将被扫掠划分网格,否则将使用Tetrahedrons下的Patch Conforming网格划分器划分网格。
同一部件的体具有一致的网格单元。
(2)四面体划分法(Tetrahedrons)四面体划分法包括Patch Conforming划分法(Workbench自带功能)及Patch Independent划分法(依靠ICEM CFD Tetra Algorithm软件包实现)。
四面体划分法的参数设置如图3-2所示。
图3-2 四面体划分法的参数设置Patch Independent网格划分时可能会忽略面及其边界,若在面上施加了边界条件,便不能忽略。
(1) 网格划分定义:实体模型是无法直接用来进行有限元计算得,故需对它进行网格划分以生成有限元模型.有限元模型是实际结构和物质的数学表示方法。
在ANSYS中,可以用单元来对实体模型进行划分,以产生有限元模型,这个过程称作实体模型的网格化.本质上对实体模型进行网格划分也就是用一个个单元将实体模型划分成众多子区域.这些子区域(单元),是有属性的,也就是前面设置的单元属性.另外也可以直接利用单元和节点生成有限元模型.实体模型进行网格划分就是用一个个单元将实体模型划分成众多子区域(单元)。
(2)为什么我选用plane55这个四边形单元后,仍可以把实体模型划分成三角形区域集合???答案:ansys为面模型的划分只提供三角形单元和四边形单元,为体单元只提供四面体单元和六面体单元。
不管你选择的单元是多少个节点,只要是2D单元,肯定构成一个四边形或者是三角形,绝对没有五、六边形等特殊形状.网格划分也就是用所选单元将实体模型划分成众多三角形单元和四边形子区域。
见下面的plane77/78/55都是节点数目大于4的,但都是通过各种插值或者是合并的方式形成一个四边形或者三角形。
所以不管你选择什么单元,只要是对面的划分,meshtool上的划分类型设置就只有tri和quad两种选择.如果这个单元只构成三角形,例如plane35,则无论你在meshtool上划分设置时tri还是quad,划分出的结果都是三角形。
所以在选用plane55单元,而划分的是采用tri划分时,就会把两个点合并为一个点。
如上图的plane55,下面是plane单元的节点组成,可见每一个单元上都有两个节点标号相同,表明两个节点是重合的..同样在采用plane77 单元,进行tri划分时,会有三个节点重合。
这里不再一一列出。
(3)如何使用在线帮助:点击对话框中的help,例如你想了解plane35的相关属性,你可以点击上右图中的help,亦可以,点击help->help topic弹出下面的对话康,点击索引按钮,输入你想查询的关键词.(4)对于矩形的网格划分方法整理:当圆柱体具有圆周对称性时,可以使用plane 55 (是一个2D,4节点的平面四边形单元,自由度是温度)单元作为有限元单元,设置为轴对称性(Axisymmetric)。
关于ansys软件的网格划分技术众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。
在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。
在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。
一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。
通常情况下,可利用ANSYS的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。
对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。
同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。
如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG 命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。
在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。
对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。
ANSYS的建模方法和网格划分ANSYS的建模方法和网格划分ANSYS是一种广泛应用于工程领域的数值分析软件,它的建模方法和网格划分是进行仿真分析的关键步骤。
本文将介绍ANSYS的建模方法和网格划分的基本原理和常用技术。
一、建模方法1.1 几何建模在ANSYS中,几何建模是将实际物体转化为计算机能够识别和处理的几何形状,是进行仿真分析的基础。
几何建模可以通过直接绘制几何形状、导入CAD模型或利用几何操作进行创建。
直接绘制几何形状是最简单的建模方法,可以通过ANSYS的几何绘制工具直接绘制点、线、面、体等几何形状。
这种方法适用于几何形状较简单的情况。
导入CAD模型是将已有的CAD文件导入到ANSYS中进行分析。
导入的CAD文件可以是各种格式,如IGES、STEP、SAT等。
通过导入CAD模型,可以方便地利用已有的CAD设计进行分析。
几何操作是通过几何操作工具进行模型的创建和修改。
几何操作工具包括旋转、缩放、挤压、倒角等操作。
利用几何操作可以对模型进行非常灵活的设计和修改。
1.2 材料属性定义在进行仿真分析前,需要定义材料的物理性质和力学性能。
在ANSYS中,可以通过在建模环境中定义材料属性的方法进行。
定义材料属性包括确定材料的密度、弹性模量、泊松比、热膨胀系数等物理性质。
这些属性对于仿真分析的准确性和可靠性起到重要作用。
定义材料的力学性能包括确定材料的材料模型和本构关系,如线弹性、非线弹性、塑性、强化塑性等。
这些性能可以根据实际需要进行选择和确定。
1.3 界面条件设置界面条件设置是定义与外部环境或其他系统之间的边界条件和加载条件。
在ANSYS中,可以通过多种方式进行界面条件设置。
界面条件设置包括确定材料与外界的热传导、流体传输、气固反应、接触等边界条件。
这些条件对于模拟实际工程问题的边界反应至关重要。
加载条件设置包括定义外加力、固定边界、压力加载、温度加载等力学和热力加载条件。
通过加载条件设置,可以模拟实际工程中的载荷和边界约束。
Ansys划分网格第一节基本知识几何实体模型并不参与有限元分析,所有施加在有限元边界上的载荷或约束,必须最终传递到有限元模型上(节点和单元)进行求解。
因此,在完成实体建模之后,要进行有限元分析,需对模型进行网格划分——将实体模型转化为能够直接计算的网格,生成节点和单元。
一、有限元网格概述1.网格类型总的来说,ANSYS的网格划分有两种:自由网格划分(Free meshing)和映射网格划分(Mapped meshing),如图3—1所示。
自由网格划分主要用于划分边界形状不规则的区域,它所生成的网格相互之间是呈不规则排列的。
对于复杂形状的边界常常选择自由网格划分。
自由网格对于单元形状没有限制,也没有特别的应用模式。
缺点是分析精度往往不够高。
与自由网格划分相比较,映射网格划分对于单元形状有限制,并要符合一定的网格模式。
映射面网格只包含四边形或三角形单元,映射体网格只包含六面体单元。
映射网格的特点是具有规则的形状,肆元明显地成行排列。
一般来说映射网格往往比自由网格划分得到的结果要更加精确,而且在求解时对CPL和内存的需求也相对要低些。
如果用户希望用映射网格划分模型,创建模型的几何结构必须由一系列规则的体或面组成,这样才能应用于映射网格划分。
因此,如果确定选择映射网格,需要从建立几何模型开始就对模型进行比较详尽的规划,以使生成的模型满足生成映射网格的规则要求。
ANSYS支持的单元形状与网格类型见表3-1。
2.划分网格的过程在ANSYS程序当中,有限元的网格是由程序自己来完成的,用户所要做的就是通过给出一些参数和命令来对程序实行“宏观调控”。
网格划分过程的3个步骤如下:①定义单元属性定义单元属性的操作主要包括定义单元类型、定义实常数和定义材第46页料参数等。
②定义网格划分控制 ANSYS程序提供了大量的网格生成控制,用户可以根据模型的形状和单元特点选用。
③生成网格其中第②步的设置有时是不需要的,因为默认网格控制对许多模型都是适用的。
ANSYS中网格划分知识总结一、步骤(1)、设置单元属性(2)、为实体模型分配单元属性(3)、通过网格划分工具设置网格划分属性(4)、对实体模型进行网格划分1)、设置单元属性1、单元类型路径:main menu —preprocessor—element—add/edit/delete经常使用的单元类型有以下几类:A:杆单元----用于弹簧、螺杆及桁架等模型B:梁单元-----用于螺栓、管件及钢架等模型C:面单元-----用于各种二维模型或简化为二维的模型D:壳单元-----用于薄板或曲面模型(板面厚度小于其板面尺寸的1/10)E:实体单元---用于各种三维实体模型说明:选择单元的基本原则是在满足求解精度的前提下尽量采用低维的单元,即优先选择单元优先级从高到底的点、线、面、壳、实体。
2、设置单元实常数路径:mainmenu-preprocessor-realconstants单元实常数通常包括杆、梁单元的横截面面积;板、壳单元的厚度、惯性矩,平板单元的轴对称特性、单元的初始预应力条件等。
注意:1、实常数与单元关键选项密切相关,不同单元关键选项值对应不同实常数设置。
2、并不是没一个单元要实常数,一般查看help选项。
3、设置材料属性路径:main menu —preprocessor—materialsprops—materials models4、设置单元坐标系统路径:utility menu—workplane—localcoordinate systems—create local CS2)、为实体模型分配单元属性1、直接方式直接方式分配单元属性在网格化的过程中会转换到有限元模型上;默认反方式为有限元模型分配属性实际上是为模型中的单元分配单元类型、材料、实常数及单元坐标等属性。
采用直接方法为实体模型分配属性,原来的实体模型的属性不会因为有限元模型的修改而变化,也就是说,如果用户第一次网格化效果不好,需要重新网格化,那么取消第一次划分产生的网格时,转换到有限元模型上的属性将自动删除,但分配到实体模型的属性仍保持在实体模型上。
ANSYS 网格划分详细介绍2008-09-27 18:01众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。
在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。
在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。
一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。
通常情况下,可利用ANSYS的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。
对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。
同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。
如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。
在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。
对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。
关于ansys软件的网格划分技术众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。
在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。
在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。
一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。
通常情况下,可利用ANSYS的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。
对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。
同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。
如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG 命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。
在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。
对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。
众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。
在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。
在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。
一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。
通常情况下,可利用ANSYS的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。
对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。
同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。
如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG 命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。
在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。
对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。
ANSYS 入门教程(5) - 网格划分技术及技巧之网格划分技术及技巧、网格划分控制及网格划分高级技术第 3 章网格划分技术及技巧3。
1 定义单元属性单元类型 / 实常数 / 材料属性 / 梁截面 / 设置几何模型的单元属性3。
2 网格划分控制单元形状控制及网格类型选择 / 单元尺寸控制 / 内部网格划分控制 / 划分网格3。
3 网格划分高级技术面映射网格划分 / 体映射网格划分 / 扫掠生成体网格 / 单元有效性检查 / 网格修改3.4 网格划分实例基本模型的网格划分 / 复杂面模型的网格划分 / 复杂体模型的网格划分创建几何模型后,必须生成有限元模型才能分析计算,生成有限元模型的方法就是对几何模型进行网格划分,网格划分主要过程包括三个步骤:⑴定义单元属性单元属性包括:单元类型、实常数、材料特性、单元坐标系和截面号等。
⑵定义网格控制选项★对几何图素边界划分网格的大小和数目进行设置;★没有固定的网格密度可供参考;★可通过评估结果来评价网格的密度是否合理。
⑶生成网格★执行网格划分,生成有限元模型;★可清除已经生成的网格并重新划分;★局部进行细化。
3。
1 定义单元属性一、定义单元类型1。
定义单元类型命令:ET, ITYPE, Ename, KOP1, KOP2, KOP3, KOP4, KOP5, KOP6, INOPR ITYPE —用户定义的单元类型的参考号。
Ename —ANSYS 单元库中给定的单元名或编号,它由一个类别前缀和惟一的编号组成,类别前缀可以省略,而仅使用单元编号。
KOP1~KOP6 - 单元描述选项,此值在单元库中有明确的定义,可参考单元手册。
也可通过命令KEYOPT进行设置。
INOPR —如果此值为 1 则不输出该类单元的所有结果。
例如:et,1,link8 !定义 LINK8 单元,其参考号为 1;也可用 ET,1,8 定义et,3,beam4 ! 定义 BEAM4 单元,其参考号为 3;也可用 ET,3,4 定义2. 单元类型的 KEYOPT命令:KEYOPT, ITYPE, KNUM, VALUEITYPE - 由ET命令定义的单元类型参考号。
KNUM —要定义的 KEYOPT 顺序号。
VALUE - KEYOPT 值。
该命令可在定义单元类型后,分别设置各类单元的 KEYOPT 参数。
例如:et,1,beam4 ! 定义 BEAM4 单元的参考号为 1et,3,beam189 ! 定义 BEAM189 单元的参考号为 3keyopt,1,2,1 ! BEAM4 单元考虑应力刚度时关闭一致切线刚度矩阵keyopt,3,1,1 !考虑 BEAM189 的第 7 个自由度,即翘曲自由度! 当然这些参数也可在 ET 命令中一并定义,如上述四条命令与下列两条命令等效:et,1,beam4,,1et,3,beam189,13。
自由度集命令:DOF, Lab1, Lab2, Lab3, Lab4, Lab5, Lab6, Lab7, Lab8, Lab9, Lab104. 改变单元类型命令:ETCHG, Cnv5。
单元类型的删除与列表删除命令:ETDELE, ITYP1, ITYP2, INC列表命令:ETLIST, ITYP1, ITYP2, INC二、定义实常数1. 定义实常数命令:R,NSET,R1,R2,R3,R4,R5,R6续:RMORE,R7,R8,R9,R10,R11,R12...。
.其中:NSET —实常数组号(任意),如果与既有组号相同,则覆盖既有组号定义的实常数。
R1~R12 —该组实常数的值。
使用 R 命令只能一次定义 6 个值,如果多于 6 个值则采用续行命令 RMORE 增加另外的值。
每重复执行 RMORE 一次,则该组实常数增加 6 个值,如 7~12、13~18、19~24 等。
★各类单元有不同的实常数值,其值的输入必须按单元说明中的顺序;★如果实常数值多于单元所需要的,则仅使用需要的值;如果少于所需要的,则以零值补充。
★一种单元可有多组实常数,也有一些单元不需要实常数(如实体单元)。
例如 BEAM4 单元,需要的实常数值有 12 个:AREA、IZZ、IYY、TKZ、TKY、THETA 和 ISTRN、IXX、SHEARZ、SHEARY、SPIN、ADDMAS设采用直径为 0.1m 的圆杆,其实常数可定义为:D=0.1PI=acos(-1)a0=pi*d*d/4I0=pi*D**4/64IX=pi*D**4/32R,3,a0,i0,i0,d,d,0 !定义第 3 组实常数的 AREA、IZZ、IYY、TKZ、TKY、THETARmore,0,ix,0,0,0,2.0 !定义第 3 组实常数的其它实常数值2。
变厚度壳实常数定义命令:RTHICK,Par,ILOC,JLOC,KLOC,LLOCPar —节点厚度的数组参数(以节点号引用),如 mythick(19) 表示在节点 19 的壳体厚度。
ILOC —单元I节点的厚度在实常数组中的位置,缺省为 1.JLOC—--单元J节点的厚度在实常数组中的位置,缺省为 2。
KLOC—--单元K节点的厚度在实常数组中的位置,缺省为 3。
LLOC———单元L节点的厚度在实常数组中的位置,缺省为 4。
该命令后面的四个参数顺序与节点厚度的关系比较复杂,例如设某个单元:节点厚度数组为 MYTH;单元节点顺序: I J K L;节点编号: NI NJ NK NL; RTHICK 命令参数: 3 2 4 1;IJKL 节点厚度: MYTH(NL)、MYTH(NJ)、MYTH(NI)、MYTH(NK).典型的如壳厚度为位置的函数,其命令流如下:finish $ /clear $ /PREP7ET,1,63 $ blc4,,,10,10 $ ESIZE,0。
5 $ AMESH,1MXNODE = NDINQR(0,14) ! 得到最大节点号*DIM,THICK,,MXNODE !定义数组,以存放节点厚度*DO,i,1,MXNODE !以节点号循环对厚度数组赋值THICK(i) = 0.5 + 0。
2*NX(i) + 0。
02*NY(i)**2*ENDDO!结束循环RTHICK,THICK(1),1,2,3,4 !赋壳厚度/ESHAPE,1。
0 $ eplot !带厚度显示壳单元3. 实常数组的删除与列表删除命令:RDELE, NSET1, NSET2, NINC列表命令:RLIST, NSET1, NSET2, NINC其中 NSET1,NSET2,NINC - 实常数组编号范围和编号增量,缺省时 NSET2 等于 NSET1 且 NINC=1。
NSET1 也可为 ALL。
三、材料属性每一组材料属性有一个材料参考号,用于识别各个材料特性组.一个模型中可有多种材料特性组。
1。
定义线性材料属性命令:MP,Lab,MAT,C0,C1,C2,C3,C4Lab —材料性能标识,其值可取:EX:弹性模量(也可为 EY、EZ)。
ALPX:线膨胀系数(也可为 ALPY、ALPZ)。
PRXY:主泊松比(也可为 PRYZ、PRXZ)。
NUXY:次泊松比(也可为 NUYZ、NUXZ)。
GXY:剪切模量(也可为 GYZ、GXZ).DAMP:用于阻尼的K矩阵乘子,即阻尼比。
DMPR:均质材料阻尼系数.MU:摩擦系数。
DENS:质量密度。
MAT - 材料参考号,缺省为当前的 MAT 号(由 MAT 命令确定).C0 —材料属性值,如果该属性是温度的多项式函数,则此值为多项式的常数项。
C1~C4 —分别为多项式中的一次、二次、三次、四次项系数,如为 0 或空,则定义一个常数的材料性能。
2. 定义线性材料属性的温度表命令:MPTEMP, STLOC, T1, T2, T3, T4, T5, T63. 定义与温度对应的线性材料特性命令:MPDATA, Lab, MAT, STLOC, C1, C2, C3, C4, C5, C64。
复制线性材料属性组命令:MPCOPY,——, MATF, MATT5. 改变指定单元的材料参考号命令:MPCHG, MAT, ELEM6。
线性材料属性列表和删除列表命令:MPLIST, MAT1, MAT2, INC, Lab, TEVL删除命令:MPDELE, Lab, MAT1, MAT2,I NC7。
修改与线胀系数相关的温度命令:MPAMOD, MAT, DEFTEMP8。
计算生成线性材料温度表命令:MPTGEN, STLOC, NUM, TSTRT, TINC9. 绘制线性材料特性曲线命令:MPPLOT, Lab, MAT, TMIN, TMAX, PMIN, PMAX10. 设置材料库读写的缺省路径命令:/MPLIB, R—W_opt, PATH11. 读入材料库文件命令:MPREAD, Fname, Ext,—-, LIB12. 将材料属性写入文件命令:MPWRITE, Fname, Ext,——, LIB, MAT13。
激活非线性材料属性的数据表命令:TB, Lab, MAT, NTEMP, NPTS, TBOPT, EOSOPT14。
定义 TB 温度值命令:TBTEMP, TEMP, KMOD15. 定义 TB 数据表中的数据命令:TBDATA, STLOC, C1, C2, C3, C4, C5, C616。
定义非线性数据曲线上的一个点命令:TBPT, Oper, X, Y17. 非线性材料数据表的删除和列表删除命令:TBDELE, Lab, MAT1, MAT2, INC列表命令:TBLIST, Lab, MAT18. 非线性材料数据表的绘图命令:TBPLOT, Lab, MAT, TBOPT, TEMP, SEGN四、梁截面★ BEAM18x 单元,需定义单元的横截面(称为梁截面);★ BEAM44也可使用梁截面也可输入截面特性实常数;★仅 BEAM18x 可使用多种材料组成的截面;★仅 BEAM18x 可使用变截面梁截面,而 BEAM44 可输入实常数。
1. 定义截面类型和截面 ID命令:SECTYPE,SECID,Type,Subtype,Name,REFINEKEYSECID - 截面识别号,也称为截面 ID 号.Type —截面用途类型,其值可取:BEAM:定义梁截面,应用于等截面时,见下文。
TAPER:定义渐变梁截面(变截面梁)。
SHELL:定义壳PRETENSION:定义预紧截面JOINT:连接截面,如万向铰.Subtype —截面类型,对于不同的 Type 该截面类型不同,如:当 Type=BEAM 时,Subtype 可取:RECT:矩形截面; QUAD:四边形截面; CSOLID:实心圆形截面; CTUBE:圆管截面;CHAN:槽形截面; I:工字形截面; Z:Z形截面; L:L形截面; T:T形截面; HATS:帽形截面; HREC:空心矩形或箱形; ASEC:任意截面;MESH:自定义截面当 Type=JOINT(有刚度可大角度旋转)时,Subtype 可取:UNIV:万向铰; REVO:销铰或单向铰;Name — 8 个字符的截面名,字符可包含字母和数字.REFINEKEY - 设置薄壁梁截面网格的精细水平,有 0(缺省)~5(最精细)六个水平。