Solving inverse problems by combination of maximum entropy and montecarlo simulation
- 格式:pdf
- 大小:128.96 KB
- 文档页数:9
优干线九年级数学人教版全一册1.今天我们要学习解一元一次方程的方法。
Today we are going to learn how to solve linear equations.2.一元一次方程就是一个未知数的一次方程。
A linear equation is an equation with one unknown variable.3.当方程中只含有一个未知数时,我们就可以使用一元一次方程的方法进行解答。
When there is only one unknown variable in the equation, we can use the method of linear equations to solve it.4.解一元一次方程的关键是找到未知数的值。
The key to solving linear equations is to find the valueof the unknown variable.5.通过逆运算,我们可以得到方程的解。
By using inverse operations, we can obtain the solution to the equation.6.逆运算就是将方程中的运算反过来进行。
Inverse operations involve reversing the operations in the equation.7.一元一次方程的解可能是一个实数,也可能是无解或者有无穷多解。
The solution to a linear equation may be a real number, or it may be no solution or infinitely many solutions.8.我们需要通过合理的推理和计算方法来确定方程的解。
We need to use logical reasoning and calculation methods to determine the solution to the equation.9.解一元一次方程的过程需要严谨和细致。
基于直接采样法和子空间优化法的多介质目标混合逆散射成像方法周辉林;郑灵辉;莫仲念;王玉皞;陈良兵【摘要】该文提出一种结合定性与定量成像方法优势的混合电磁场逆散射成像方法,并将该方法应用于重构多介质目标的电性能参数的空间分布信息.该混合成像方法首先利用基于直接采样法(Direct Sampling Method,DSM)的定性方法快速重构目标的感兴趣区域(Region Of Interesting,ROI)、目标形状及目标个数的先验信息.在此基础上,利用基于子空间优化定量方法结合该先验信息迭代修正目标的几何形状信息,并重构目标的电性能参数的空间分布.基于菲涅尔实验室实测散射场数据表示,该方法与子空间优化法SOM(Subspace-based Optimization Method)定量成像精度相比拟的情况下,极大地降低了定量方法的计算复杂度和提高算法收敛速度.%This paper proposes a hybrid electromagnetic field inverse scattering imaging method based on the advantages of the qualitative and quantitative imaging methods,and it is applied to rebuilding the space distribution information of electric parameters for multi objects.First,the prior knowledge of the Region Of Interesting (ROI) of target,object shape and target number is reconstructed by using Direct Sampling Method (DSM).Then,the geometry information of the objects and the space iteratively corrected distribution information of electric parameters is reconstructed by Subspace-based Optimization quantitativeMethod(SOM).The experimental result for the scattering field data of Fresnel laboratory shows that the imaging accuracy of this method iscomparable to SOM.More over,the proposed technique greatly reduces the computational complexity and improves the convergence speed.【期刊名称】《电子与信息学报》【年(卷),期】2017(039)003【总页数】5页(P758-762)【关键词】逆散射;直接采样方法;子空间优化方法【作者】周辉林;郑灵辉;莫仲念;王玉皞;陈良兵【作者单位】南昌大学信息工程学院南昌 330031;南昌大学信息工程学院南昌330031;南昌大学信息工程学院南昌 330031;南昌大学信息工程学院南昌330031;南昌大学信息工程学院南昌 330031【正文语种】中文【中图分类】O451电磁场逆散射方法是利用测量散射场数据和电磁场前向模型,重构目标的几何形状或电性能参数,近年来已经广泛应用于目标识别、遥感、地球物理成像、无损测试等领域[1]。
The Art of Effective Problem-Solving Problem-solving is an essential skill that we all need to navigate the challenges and obstacles that life throws our way. Whether it's a personal issue, a professional dilemma, or a global crisis, the ability to effectively solve problems is crucial for our success and well-being. The art of problem-solving involves a combination of analytical thinking, creativity, and emotional intelligence. It requires us to approach problems with an open mind, think critically about possible solutions, and consider the impact of our decisions on ourselves and others. One of the key aspects of effective problem-solving is the ability to define the problem accurately. Before we can come up with a solution, we need to understand the root cause of the issue and identify the specific goals we want to achieve. This requires us to ask questions, gather information, and analyze the situation from different angles. By taking the time to define the problem clearly, we can avoid jumping to conclusions or making hasty decisionsthat may not address the underlying issues. Once we have a clear understanding of the problem, the next step is to generate potential solutions. This is where creativity and outside-the-box thinking come into play. Instead of relying ontried-and-true methods, we should explore new ideas, consider different perspectives, and challenge our assumptions. Brainstorming with others can also be helpful in generating a wide range of possible solutions. By being open to new possibilities and thinking creatively, we can increase our chances of finding innovative and effective solutions to our problems. After generating a list of potential solutions, the next step is to evaluate each option carefully. This involves weighing the pros and cons of each solution, considering the resources and time required to implement them, and assessing the potential risks and benefits. It's important to involve others in the evaluation process, as different perspectives can provide valuable insights and help us make more informed decisions. By taking the time to evaluate our options thoroughly, we can choose the solution that is most likely to address the problem effectively and achieve our desired outcomes. Once we have selected a solution, the next step is to implement it. This may involve developing a plan of action, assigning responsibilities, and setting milestones to track progress. Effectivecommunication is key during the implementation phase, as it ensures that everyone involved is on the same page and working towards a common goal. It's important to be flexible and adaptable during the implementation process, as unforeseen challenges may arise that require us to adjust our approach. By staying focused, committed, and open to feedback, we can increase our chances of successfully implementing our chosen solution. After implementing a solution, it's important to evaluate its effectiveness and make any necessary adjustments. This involves monitoring the outcomes, gathering feedback from stakeholders, and reflecting on the process to identify lessons learned. If the solution is not achieving the desired results, it may be necessary to go back to the drawing board and consider alternative options. Continuous evaluation and improvement are essential for effective problem-solving, as they allow us to learn from our experiences and refine our approach over time. In conclusion, the art of effective problem-solving requires a combination of analytical thinking, creativity, and emotional intelligence. By defining the problem accurately, generating potential solutions, evaluating options carefully, implementing a chosen solution, and evaluating its effectiveness, we can increase our chances of finding innovative and effective solutions to the challenges we face. It's important to approach problems with an open mind, be willing to think creatively, and involve others in the decision-making process. By honing our problem-solving skills and continuously seeking to improve, we can become more adept at navigating the complexities of life and achieving our goals.。
收稿日期:2002-04-01;修改稿收到日期:2003-07-08~基金项目:教育部骨干教师资助计划(2000-65);973项目NKBRSF (G 1999032805);教育部重点基金(99149);国家自然科学基金重点基金(10032030)资助项目~作者简介:薛齐文(1976-),男,博士.杨海天 (1956-),男,教授,博士生导师~第22卷第1期2005年2月计算力学学报Chinese Journal of Computational Mechanics VOl .22,NO .1February ==================================================================2005文章编号:1007-4708(2005)01-0051-04共轭梯度法求解非线性多宗量稳态传热反问题薛齐文,杨海天(大连理工大学工程力学系工业装备结构分析国家重点实验室,辽宁大连116023)摘要:应用共轭梯度法求解非线性多宗量稳态热传导反问题G 采用八节点的等参单元在空间上进行离散,建立了便于敏度分析的非线性正演和反演的有限元模型,可直接求导进行敏度分析G 给出了相关的数值验证,对测量误差及测点数目的影响作了初步探讨,结果表明,采用的算法能够对非线性稳态热传导中导热系数和边界条件联合反问题进行有效的求解,并具有较高精度G 关键词:热传导;反问题;非线性;共轭梯度;多宗量中图分类号:0482.2文献标识码:A1引言热传导反问题是一个有广泛实际应用前景[1]的交叉研究领域,并取得了不少研究成果:如对热物性参数的识别[2],对边界条件的识别[3],以及对反演算法的研究[4]等等G 由于热传导反问题的研究历史相对比较短,加之反问题的不适定性和非线性,以及实际问题的复杂性,使得求解远比正问题复杂和困难得多G 许多工作在理论计算和应用上都需要进一步的探讨,如:目前工作多侧重于对特定宗量的反演,而考虑对材料,源项,边界条件等多宗量的综合反演模型还不多见G Tseng 等人[5]曾提出对未知变量为导热系数,边界温度和边界热流两两组合时的反演算法,但只有少量的数值试验G此外,抗不适定性研究一直是传热反问题中的研究重点之一[1],针对正则化方法中选择正则函数,正则化次序,正则化参数方面的困难,文献[6]将共轭斜量法应用于热传导反问题的求解中,并收到了较好的效果G 胡[7]采用共轭梯度法对稳态线性问题进行了多宗量反演,收到了较好的结果,但未对非线性的多宗量问题进行求解G鉴于以上考虑,本文借助恰当的空间离散技术,建立了考虑多宗量并且适于正,反问题敏度分析的一般非线性稳态热传导数值正演模型,采用共轭梯度法对导热系数和边界条件的多宗量混合反问题进行求解G 计算表明,所提算法在求解非线性问题时具有较高的精度和较好的抗不适定性,此外,对测点数目和信息误差的影响进行了初步的探讨G2稳态热传导问题的有限元列式稳态传热问题的控制方程可写为[8](k zj T ,j ),z +0=0:z G 0(1)式中k zj 为导热系数,T 为温度,0为源项有关项,0和:z 分别为所论问题的域和坐标向量G 下标z,j(z,j =1~3)为求和指标.,z,j 的大小表示问题维数G 边界条件可写为[8]T =T:z G 1(2)n z (k zj T ,j )+G +h(T -T 0)=0:z G 2(3)这里 = 1+ 2为0的边界,T,G,h 和T 0分别为给定函数G利用加权技术和散度定理[8],式(1)可写为[K]{T}=[K P ]{T}+[B]{G}+[B 1]{h 1}+[B 2]{0}(4)其中{T}为不包括给定值在内的节点温度向量,{T},{G},{h 1}和{0}分别为T,G,hT 0和0的节点向量,[K]和[K P ]是与导热系数有关的矩阵,[B],[B 1],[B 2]是与边界热流,热交换系数和内热源相关的矩阵G 进行有限元分析时,采用八节点等参单元G3非线性热传导问题的反演研究假定k ij 为非线性 其它非线性宗量的处理可按以下相同的方式进行O 简明起见 以下推导中略去了 K P ]和h 的有关项 这并没有原则上的影响O记k ij =k ij (T 9) 将其重新排列并进行离散积分 式(4)可写作eFijlm(9 T j )M ijlm {T}={f}(5)其中F ijlm 为一个已知函数 9为非线性导热系数向量 T j 为单元级的节点温度向量 M ijlm 为常数矩阵 {f}为当量右端向量O i j m l 为求和指标 i j =1 2 3 m n 取决于高斯积分点的个数O9可利用以下泛函的极小化求解H({9})=12({T P } L]{T})T ({T P } L]{T})(6)这里T P 为测点的温度信息 L]为一个转换矩阵O 泛函的极小化可以借助共轭梯度法实现 8]O 上式又可如下表示J({9})=12({T P } L]{T})T ({T P } L]{T})(7)两边同时对未知参量9微分得到目标函数对未知量的一阶导数:v J(9)=G T L T (T P L{T})(8)这里G =8{T}89可由式(5)求得8{T}89= e F ijlm M ijlm + eM ijlm {T}8F ijlm 8T j S ()j 1eMijlm{T}8F ijlm89(9)指标j 不求和O 需要指出 在G 的形成中 首先要求解一个关于{T}的非线性正问题 这可通过Newton-Raphson 算法 9]来实现{T}i+1={T}i +{AT}(10)8R8{T}{AT}= R (11)这里下标i 为迭代次数OR =eFijlm(9 T j )M ijlm {T} {f}(12)R 对{T}的敏度可由式(9)的直接微分得到8R8{T}= e F ijlm (9 T J)M ijlm + eM ijlm {T}8F ijlm8T j S j (13)其中T j =S j {T}(14)S j 是一个转换矩阵O4共轭梯度法的实施将所有的未知变量统一记为{9} 并表示为{9}T ={{91}T {92}T {93}T {94}T {95}T{96}T {97}T }(15)即{9}T ={{k 0}T {k 1}T {T ~}T {g ~}T{h ~}T {h ~1}T {@~}T}1.选取待反演变量的初值90(这里代表未知变量)和设置n =0O2.利用Newton-Raphson 算法求解T(9n ) 并利用式(7)求解J(9n )O3.利用式(8)求解v J n 和v J n 1;n =0 则E =0 否则E n=<v J(9n ) v J(9n ) v J(9n 1)> v J(9n 1) 2(16)n =0时 P 0=v J(90);否则 P n =v J(9n )+E n -P n+1 同时令82n =P n O4.求解温度项的敏度系数:dT(9n )d9nj7n=N j=1mi=1T(9n) T]P-89n-dT(9n )d9]()n jN j=1mi=189n-dT(9n )d9]n j()2(17)(N =1时 算子退化为文献 6]中的形式)5.令:9n+1=9n+7n P n(18)6.如果J(9n+1)>J(9n ) 那么退出循环;否则回到第二步继续循环O这里J(9)为目标函数 9为待反演的变量 n 为反演变量迭代的步数 m 为测量点的个数 N 为待反演变量的数目 T P 为测点的温度信息O5数值算例和结果分析为了计算方便 假定所有参数为无量纲O 由三种不同导热系数材料组成二维平板 导热系数是温度的函数k =k 0+k 1T 长宽各为0.5m 板的左侧和上侧均为第一类边界条件 结点温度线性分布 右侧为第三类边界条件 h 分为3个区 外界物体的温度呈线性分布 下侧为第二类边界条件 g 分为三个区 板内有热源 均匀放热 相关的数据为K(I )=2.0+0.01 T K(1)=4.0+0.03 T K(1)=6.0+0.05 T-25-计算力学学报第22卷图1二维方板网格划分Fig.1The tWo-dimension slab and Fe meshT(1)=100.0 T(86)=150.0T(96)=100.0(端点的温度)g1=-120.0 g2=-130.0 g3=-140.0 (1~5为1区5~7为I区7~11为I区g为每个区域上的边界热流)h1=20.0 h2=15.0 h3=10.0(I区(11~45)I区(45~79)I区(79~96) h分别为各个区域上的热交换系数)T0(11)=50.0 T0(96)=25.0(相邻外界物体的节点温度)@=20.0O现根据板中各测点已知温度信息识别各相关参数O测点的信息由U=(1+%6)U0给出U为采样点温度信息的真实值由正演算法给出6为随机误差的标准差为服从正态分布的一系列的随机数O 在考虑测点数对反演结果的影响时测点的测量数据不含有测量误差测点均匀分布在板内;在考虑数据噪音对反演结果的影响时假设计算所得的温度加上具有服从标准正态分布特性的误差来模拟观测的温度值利用n组测量数据进行计算求得反演变量的数学期望和置信区间其置信区间由bt(1- /2 n-1)S/n1/2来确定[10]b为平均值t为具有自由度(n-1)的t-分布在置信度为1-/2下的值S为样本均方差O表中给出n=40时的计算平均值及其在97.5%保证率下的置信区间O例1整个区域中K(I)未知第二类边界条件上g1g2未知其他各参量均已知反演结果见表1和表2O表1测量误差对解的影响Tab.1The effects of data noise on the solution 变量6置信区间0.001置信区间0.005精确值k0 3.9945 3.675e-2 4.0136 1.921e-1 4.00 k1 3.0072e-2 5.218e-4 2.9874e-2 2.718e-3 3.00e-2 g1-120.005 1.293e-1-119.926 6.241e-1-120.00 g2-130.010 4.603e-2-130.137 2.481e-1-130.00表2测点数目对解的影响Tab.2The effects of the number of samplepoints on the solutions精确值40测点30测点20测点15测点4.00 4.0000 4.0000 4.0001 4.0000 3.0e-2 3.000e-2 3.000e-2 3.000e-2 3.000e-2-120.0-120.000-120.000-120.000-120.000 -130.0-130.000-130.000-129.999-129.999迭代次数130307256236例2整个区域中K(I)未知第三类边界条件上h1h2未知其他条件均已知反演结果见表3和表4O表3测量误差对解的影响Tab.3The effects of data noise on the solution 变量6置信区间0.001置信区间0.005精确值k0 3.99519.818e-3 4.0211 1.479e-1 4.00 k0 3.0071e-2 1.353e-4 2.9703e-2 1.963e-3 3.00e-2 h120.0157 3.680e-219.9266 2.434e-120.00h215.00757.354e-314.9643 2.711e-115.00表4测点数目对解的影响Tab.4The effects of the number of samplepoints on the solutions精确值40测点30测点20测点15测点4.0 4.0001 4.0001 4.0001 4.0001 3.0e-2 3.000e-2 3.000e-2 3.000e-2 3.000e-220.019.999719.999519.999819.999815.015.000014.999914.999914.9998迭代次数255196195197计算结果表明(1)本文提出的方法可对非线性稳态热传导问题中导热系数和边界条件联合反问题进行有效的求解并且具有较高的精度O(2)本文所采用的算法具有较好的稳定性和抗不适定性O(3)测点在保证问题适定性的前提下测点的多少对反演结果基本上没有影响只会影响迭代次数O(4)由于各参量对温度场的影响不同温度场对各类未知参量的敏度也不同O当导热系数为非线性时收敛的速度较慢反演迭代的次数较多O(5)测量误差对反演结果有一定的影响并对不同的反演变量有所不同O对流系数和导热系数对误差影响较为敏感O35第1期薛齐文等共轭梯度法求解非线性多宗量稳态传热反问题6结论本文所提出的基于共轭梯度技术的稳态非线性传热反问题的求解方法 可对热物性参数及边界条件进行有效的单个和联合识别O 所建立的正演有限元模型 不仅可考虑复杂的边界条件 也便于敏度分析O 数值结果表明 所采用的算法在求解非线性问题时具有较高的精度和较好的抗不适定性 有望进一步用于求解非线性瞬态反问题O参考文献(Ref erelces ):[1]黄光远 刘小军.数学物理反问题[M ].济南:山东科学技术出版社 1993.(HUANG Guang -yuan LIU Xiao -jun .Inzersproblems in Mathematics anc Physics [M ].Jinan :Science and Technology Press ofShandong 1993.(in Chinese ))[2]Terrola P .A method to determine the thermal condu -ctivity from measured temperature [J ].International ournal of Heat anc Mass Transfer 1989 32:1452-1430.[3]Alifanov O M .Solution of an inverse problem ofheat conduction by iteration methods [J ]. ournal of Engineering Physics 1972 26:471-476.[4]Scarpa F Milano G .Kalman smoothing techni g ue applied to the inverse heat [J ].N umerical HeatTransfer Part B 1995 28:79-96.[5]Tseng A A Chen T C Z hao F Z .D irect sensitivity coefficient method for solving t W o -dimension inverse heat conduction problems by finite -element scheme [J ].N umerical Heat Transfer Part B 1995 27:291-307.[6]HUANG Cheng -hung CH E N Chun -W ei .A bounda -ry element based inverse problem of estimating boundary condition in an irregular domain W ith statistical analysis [J ].N umerical Heat Transfer Part B 1998 33:251-268.[7]Y ANG Hai -tian HU Guo -jun .Solving inverse heat conduction problems W ith multi -variables in steady -state via conjugate gradient method [J ]. ournal of B asic cience anc Engineering 2002 10(2):174-181.[8]Le W is R W Morgan K Thomas H R .The F inite Element Methoc in Heat Transfer A nalysis [M ].UK :John W iley Sons 1996 11-29.[9]Jarny Y Osi Z i k M N B ardon J P .A general opti -mi Z ation method using adjoint e g uation for solving multidimensional inverseheatconduction [J ].Internal ournal of Heat anc Mass Transfer 199134:2911-2919.[10]Tervola P .A method to determination the thermalconductivity from measured temperature profiles [J ].Int Heat Transfer 1989 32(8):1425-1430.SolVi l g l o l -li le a r i l V erse h e at c o l du c tio l p r obl e m s with multi -Va r iabl esi l s t e ady s tat e Via c o l j ugat e g r adi el t m e thodXU E O i -W en Y ANG Hai -tian%(D ept .of E ngineering Mechanics State Key Lab .of Structural Analysis for Industrial Eg uipmentD alian University of Technology D alian 116023 China )b s t r ac t :In this paper the conjugate gradient method is employed to solve non -linear inverse heat conduction problems W ith multi -variables in the steady state .The eight -point finite element is used for the discreti Z ation in the space system .The finite element model is given facilitating to sensitivity analysis for non -linear direct and inverse problems .Several numerical e X amples are introduced to successfully verify the results in the paper .The preliminary investigation of effect of noise data and the number of sample points on the results are given .R esults sho W that the proposed method can identify single and combined non -linear thermal parameters and boundary conditions for non -linear inverse conduction problems in the steady state W ith high precision .K e y wo r d s :heat conduction ;inverse problem ;non -linear ;conjugate gradient method ;multi -variables45 计算力学学报第22卷共轭梯度法求解非线性多宗量稳态传热反问题作者:薛齐文, 杨海天, XUE Qi-wen, YANG Hai-tian作者单位:大连理工大学 工程力学系 工业装备结构分析国家重点实验室,辽宁 大连 116023刊名:计算力学学报英文刊名:CHINESE JOURNAL OF COMPUTATIONAL MECHANICS年,卷(期):2005,22(1)被引用次数:5次1.黄光远;刘小军数学物理反问题 19932.TerrolaP A method to determine the thermal condu-ctivity from measured temperature 19893.AlifanovOM Solution of an inverse problem ofheat conduction by iteration methods[外文期刊] 19724.ScarpaF;Milano G Kalman smoothing technique applied to the inverse heat[外文期刊] 1995(1)5.TsengAA;Chen T C;Zhao F Z Direct sensitivity coefficient method for solving two-dimension inverse heat conduction problems by finite-element scheme[外文期刊] 1995(3)6.HUANGCheng-hung;CHEN Chun-wei A bounda-ry element based inverse problem of estimating boundary condition in an irregular domain with statistical analysis 19987.YANGHai-tian;HU Guo-jun Solving inverse heatconduction problems with multi-variables in steady-state via conjugate gradient method[期刊论文]-Journal of Basic Science and Engineering 2002(02)8.LEWISRW;Morgan K;Thomas H R The Finite Element Method in Heat Transfer Analysis 19969.JarnyY;Osizik M N;Bardon J P A general opti-mization method using adjoint equation for solving multidimensional inverse heat conduction 199110.TervolaP A method to determination the thermal conductivity from measured temperatureprofiles 1989(08)1.杨海天.胡国俊.薛齐文共轭梯度法求解稳态传热组合边界条件反问题[期刊论文]-大连理工大学学报2003,43(2)2.薛齐文.杨海天.XUE Qi-wen.YANG Hai-tian共轭梯度法求解双曲传热多宗量反问题[期刊论文]-计算物理2005,22(5)3.薛齐文.杨海天.杜秀云同伦正则化算法求解多宗量瞬态传热反问题[会议论文]-20044.吴洪潭.LI Xi-jing.WU Hong-tan.LI Xi-jing边值传热反问题误差评估的正则化仿真模型[期刊论文]-系统仿真学报2008,20(6)5.薛齐文.杨海天共轭梯度法求解双曲传热多宗量反问题[会议论文]-20046.胡国俊传热中的多宗量反演研究[学位论文]20027.薛齐文.杨海天.Xue Qiwen.Yang Haitian二阶非定常多宗量热传导反问题的正则解[期刊论文]-力学学报2007,39(6)8.杨海天.胡国俊共轭梯度法求解多宗量稳态传热反问题[期刊论文]-应用基础与工程科学学报2002,10(2)9.薛齐文.杨海天.胡国俊共轭梯度法求解瞬态传热组合边界条件多宗量反问题[期刊论文]-应用基础与工程科学学报2004,12(2)10.薛齐文.杨海天.XUE Qi-wen.YANG Hai-tian多宗量一维瞬态非线性热传导反问题的正则解[期刊论文]-工。
数学物理反问题相关书籍数学物理反问题是指根据观测到的物理现象,反推其产生的原因和规律,是物理学和数学中的一个重要分支。
本文介绍一些与数学物理反问题相关的书籍,供读者参考。
下面是本店铺为大家精心编写的5篇《数学物理反问题相关书籍》,供大家借鉴与参考,希望对大家有所帮助。
《数学物理反问题相关书籍》篇11.《数学物理反问题导论》(Introduction to Inverse Problems in Mathematical Physics)作者:K. R. Parsons本书是一本经典的数学物理反问题教材,涵盖了反问题的基本概念、数学理论和求解方法。
内容包括波动方程、热传导方程、薛定谔方程等反问题,以及优化方法、统计方法等现代反问题求解技术。
此书是数学物理反问题领域的经典著作之一,适合研究生和研究人员阅读。
2.《反问题方法在物理学中的应用》(Inverse Problems in Physical Sciences)作者:A. M. Polyakov本书详细介绍了反问题在物理学中的应用,包括光学、电磁学、力学、热力学等领域的反问题。
内容涵盖了反问题的基本理论、数值方法和实际应用。
此书适合物理学和数学专业的本科生和研究生阅读。
3.《数学物理反问题中的计算机方法》(Computer Methods for Inverse Problems in Mathematical Physics)作者:C. K. R. Taylor、S. J. Oldenburg、J. C. Prévost本书介绍了计算机求解数学物理反问题的方法,包括正则化方法、优化方法、统计方法等。
书中详细介绍了各种方法的原理和实现细节,并给出了大量的实际应用案例。
此书适合有一定数学和编程基础的读者阅读。
《数学物理反问题相关书籍》篇2以下是一些与数学物理反问题相关的书籍,按照作者的姓氏字母顺序排列:1. "Inverse Problems in Partial Differential Equations" by András Lichtenstein2. "Inverse Problems in Scattering Theory" by András Lichtenstein and Endre Süli3. "Mathematical Theory of Inverse Problems" by András Lichtenstein and Endre Süli4. "Inverse Problems in Wave Propagation" by A. C. Eringen and T. M.姒5. "Reconstruction of Inhomogeneous Media: Theory andPractice" by A. C. Eringen and S. A. Cox6. "Inverse Acoustic Scattering Problems" by David Colton and Robert K. Preston7. "Inverse Problems in Geophysics" by David Hestenes and Garret Sobczyk8. "Inverse Problems in Optics" by E. T. Furtak and A. D. Milinov9. "Mathematical Inverse Problems" by G. G. Lorentz and A. M. Maltsev10. "Inverse Problems in Electromagnetism" by J. A. Kong and M. S. Moncrief11. "Inverse Problems in Elasticity" by J. S. A. Sterken and B. W. Schmerhaven12. "Inverse Problems in Fluid Mechanics" by J. T. Tscherba and G. E. H. Zwedorn13. "Inverse Problems: Theory and Practice" by K. M. Home and A. D. Morgan14. "Inverse Problems in Solid Mechanics" by M. A. Sacks and G. A. McMillan15. "Mathematical Inverse Problems and Their Applications"by M. I. Voitsekhovskii and A. A. Kipnis16. "Inverse Problems in Thermal Physics" by M. D. Fogel and M. A. Sacks17. "Inverse Problems in Vibrations" by M. F. Wheeler andA. D. R. Chian18. "Inverse Problems in Imaging" by M. K. Reed and C. A. Tudor19. "Inverse Problems in Partial Differential Equations: An Introduction with Applications" by M. K. Reed and M. C. Reed 20. "Inverse Problems in Engineering" by N. S. Govindarajan and P. K. Panangaden以上是一些与数学物理反问题相关的书籍,涵盖了波动传播、电磁学、弹性力学、流体力学、热物理学、振动、成像等领域的反问题。
利用因子分解法解决半平面障碍反散射问题浅析【摘要】利用helmholtz方程、sommerfeld辐射条件及neumann 条件,构造一个对称延拓,将半平面障碍物反散射问题转化为全平面问题,利用因子分解法求解半平面障碍反散射问题,利用远场数据重构障碍散射物,得到障碍物的重构方程,该方程可以取代线性抽样方法求解远场方程。
【关键词】helmholtz方程反散射远场数据因子分解法1 引言近年来,反散射在石油探测,地质勘探,雷达等领域广泛应用,随着理论研究的深入,反散射将应用于更多的领域。
研究中遇到较多的是正散射问题,即已知入射场和障碍物来求解散射场。
但很多时候,无法得到障碍物的性质。
因此,需要通过入射场和散射场来求解障碍物,即反散射问题。
反散射问题已经有很多理论成果,d.colton和r,kress等人利用积分方程从理论上对散射问题进行了系统的研究,a.kirsch和p.monk利用有限元结合谱方法及有限元结合nystrom方法得到了介质问题的近似解,并给出了收敛性证明和误差分析。
反散射问题的求解主要有两个困难,一个是问题的非线性,另一个是问题的不适定性。
因子分解法是近年来比较常用的解决反散射问题的方法,它是线性抽样法的改进方法,优点在于不需要预先知道障碍物的物理性质,也不需要知道障碍物由几部分组成,相对线性抽样方法来说,它仅需要远场算子的谱数据即可求解反散射问题。
半平面反散射问题是反散射问题中的一种特殊情况,现在利用因子分解法对此进行理论研究。
2 数学模型半平面反散射问题是将障碍物放置到一个不可穿透的基底上求解散射场,或者求解散射体于无穷远处的渐进状态,即为远场。
反散射问题就是指给定远场,求介质散射体的几何与物理参数(或求障碍物边界,位置等)。
这样,只需考虑上半空间的散射情况,与此同时,相对于全平面问题,半平面反散射问题中将会多一个反射波数据。
求解全平面反散射问题,已经有较为完善的方法,现将半平面的模型转化成与其等价的定义在全平面的数学问题的基础上,求解半平面问题。
pinn正向反向求解偏微分方程Pinn正向反向求解偏微分方程引言在科学和工程领域,偏微分方程是描述自然界中各种现象的重要数学工具。
求解偏微分方程可以帮助我们深入理解各种现象,并预测未知的事件发展。
然而,由于偏微分方程的复杂性和计算代价,传统的数值求解方法往往不够高效。
近年来,基于物理约束的神经网络(PINN)方法被提出并取得了显著的成果。
什么是PINN?物理约束的神经网络(Physics-Informed Neural Networks,简称PINN)是一种结合了物理定律的神经网络模型。
其基本思想是利用神经网络学习系统的物理约束,并通过反向传播算法求解偏微分方程。
与传统的有限差分或有限元方法相比,PINN利用神经网络的优势,能够更高效地解决复杂的偏微分方程。
PINN的工作原理PINN的工作原理可以分为两个关键步骤:正向建模和反向求解。
正向建模在正向建模阶段,我们首先通过定义神经网络的结构和参数,构建一个逼近真实解的模型。
我们可以选择不同类型的神经网络结构,如多层感知机(Multilayer Perceptron)或卷积神经网络(Convolutional Neural Network)。
然后,我们根据已知的边界条件和偏微分方程的初始条件,生成一些带有噪声的训练数据。
反向求解在反向求解阶段,我们将采用梯度下降等优化算法,将误差函数最小化,从而调整神经网络的参数,使其逼近真实的偏微分方程解。
误差函数包括两个部分:物理约束误差和监督学习误差。
物理约束误差用于确保神经网络模型满足偏微分方程的物理定律,监督学习误差用于拟合真实的边界条件和初始条件。
PINN的优势与传统的偏微分方程求解方法相比,PINN具有以下几个优势:1.高效性:PINN利用神经网络的并行计算能力,相比传统的有限差分或有限元方法,更快地求解大规模的复杂偏微分方程问题。
2.精确性:PINN模型根据物理约束进行优化,能够更准确地逼近真实的偏微分方程解,提高预测的准确性。
微分方程和反问题模型与计算英文回答:Differential equations are a fundamental tool in applied mathematics and have been used in various fields such as physics, biology, economics, and工程. They provide a way to describe complex phenomena involving quantities that change over time or space. However, solvingdifferential equations can be computationally challenging, especially when the equations are nonlinear or have high-dimensional solutions.Inverse problems are a class of mathematical problems that arise when the goal is to infer the value of unknown parameters in a system by observing its outputs or responses. These problems are often encountered in areas such as medical imaging, geophysical exploration, and optimization. Solving inverse problems typically requires the formulation of an appropriate forward model that relates the unknown parameters to the observations. Thisforward model can be a differential equation, and the solution to the inverse problem involves finding the parameters that produce the best match between the model predictions and the observed data.中文回答:微分方程和反问题。