五年级奥数基础教程-数字谜小学
- 格式:doc
- 大小:360.50 KB
- 文档页数:7
小学数学奥数基础教程(五年级)数字谜(二)这一讲主要讲数字谜的代数解法及小数的除法竖式问题。
例1 在下面的算式中,不同的字母代表不同的数字,相同的字母代表相分析与解:这道题可以从个位开始,比较等式两边的数,逐个确定各个(100000+x)×3=10x+1,300000+3x=10x+1,7x=299999,x=42857。
这种代数方法干净利落,比用传统方法解简洁。
我们再看几个例子。
例2 在□内填入适当的数字,使左下方的乘法竖式成立。
求竖式。
例3 左下方的除法竖式中只有一个8,请在□内填入适当的数字,使除法竖式成立。
解:竖式中除数与8的积是三位数,而与商的百位和个位的积都是四位数,所以x=112,被除数为989×112=110768。
右上式为所求竖式。
代数解法虽然简洁,但只适用于一些特殊情况,大多数情况还要用传统的方法。
例4 在□内填入适当数字,使下页左上方的小数除法竖式成立。
分析与解:先将小数除法竖式化为我们较熟悉的整数除法竖式(见下页右上方竖式)。
可以看出,除数与商的后三位数的乘积是1000=23×53的倍数,即除数和商的后三位数一个是23=8的倍数,另一个是53=125的奇数倍,因为除数是两位数,所以除数是8的倍数。
又由竖式特点知a=9,从而除数应是96的两位数的约数,可能的取值有96,48,32,24和16。
因为,c=5,5与除数的乘积仍是两位数,所以除数只能是16,进而推知b=6。
因为商的后三位数是125的奇数倍,只能是125,375,625和875之一,经试验只能取375。
至此,已求出除数为16,商为6.375,故被除数为6.375×16=102。
右式即为所求竖式。
求解此类小数除法竖式题,应先将其化为整数除法竖式,如果被除数的末尾出现n个0,则在除数和商中,一个含有因子2n(不含因子5),另一个含有因子5n(不含因子2),以此为突破口即可求解。
例5 一个五位数被一个一位数除得到下页的竖式(1),这个五位数被另一个一位数除得到下页的竖式(2),求这个五位数。
1. 掌握最值中的数字谜的技巧2. 能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。
模块一、横式数字谜【例 1】 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.12345□□□□【考点】混合计算中的数字谜 【难度】2星 【题型】填空 【关键词】希望杯,六年级,初赛,第3题,6分 【解析】 为了得到最大结果必须用“×”连接4和5,那么4和5前边一定是“+”,通过尝试得到:112345203-÷+⨯=.【答案】1203【例 2】 将+,-,×,÷四个运算符号分别填入下面的四个框中使该式的值最大。
1111123456□□□□【考点】混合计算中的数字谜 【难度】3星 【题型】填空 【关键词】华杯赛,初赛,第9题 【解析】 题目给出5个数,乘、除之后成3个数,其中减数应尽量小,由两个数合成(相乘或相除)的加数与另一个分数相加应尽量大,,,,;,例题精讲知识点拨教学目标5-1-2-5.最值中的数字谜(二),,;而,,,;其中最小的是,而,,所以最大【答案】最大【例3】将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数.这个结果最大为.÷++=÷+【考点】混合计算中的数字谜【难度】3星【题型】填空【解析】等号左边相当于三个奇数相加,其结果为奇数,而等号右边的计算结果为奇数时,最大为628487÷+=,又3157987÷++=满足条件(情况不唯一),所以结果的最大值为87.【答案】87【例4】一个电子表用5个两位数(包括首位为0的两位数)表示时间,如15:23:45/06/18表示6月18日15点23分45秒.有一些时刻这个电子表上十个数字都不同,在这些时刻中,表示时间的5个两位数之和最大是.【考点】【难度】星【题型】填空【关键词】迎春杯,高年级,决赛,8题【解析】假设五个两位数的十位数上的数字之和为x,那么个位数上的数字之和为45x-,则五个两位数上的数字之和为1045459x x x+-=+,所以十位数上的数字之和越大,则五个两位数之和越大.显然,五个两位数的十位数字都不超过5,只能是012345,,,,,这五个数字中的五个.如果五个数字是54321,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,1只能在“月份”的十位上,此时“日期”的个位、“月份”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54320,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,此时“日期”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54310,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,则“日期”的个位无法满足情况.如果五个数字是54210,,,,,那么54,只能在“分”、“秒”两个两位数的十位,210,,依次在“日期”的十位上、“时”的十位上、“月份”的十位上容易满足条件.所以最大值为()45954210153+⨯++++=.【答案】153【例5】0.2.0080.A BCC A B∙∙=∙∙,三位数ABC的最大值是多少?【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】走美杯,六年级,初赛,第4题【解析】 2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC的最大值为753.【答案】753模块二、乘除法中的最值问题【例6】已知一个五位回文数等于45与一个四位回文数的乘积(即45abcba deed=⨯),那么这个五位回文数最大的可能值是________.【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】迎春杯,五年级,初赛,第7题【解析】 根据题意,45abcba deed =,则abcba 为45的倍数,所以a 应为0或5,又a 还在首位,所以a =5,现在要让abcba 尽可能的大,首先需要位数高的尽可能的大,所以令9b =,8c =,则a b c b a++++=5+9+8+9+5=36是9的倍数,用59895÷45=1331符合条件,所以这个五位回文数最大的可能值是59895.【答案】59895【例 7】 在下面乘法竖式的每个方格中填入一个非零数字,使算式成立。
数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题一、数字迷加减法1.个位数字分析法2.加减法中的进位与退位3.奇偶性分析法二、数字谜问题解题技巧1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;2.要根据不同的情况逐步缩小范围,并进行适当的估算;3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;4.注意结合进位及退位来考虑;模块一、加法数字谜【例 1】 “华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?0191杯华24+【考点】加法数字谜 【难度】1星 【题型】填空 【关键词】华杯赛,初赛,第1题 【解析】 由0+“杯”=4,知“杯”代表4(不进位加法);再由191+“华”=200,知“华”代表9.因此,“华杯”代表的两位数是94.【答案】94【例 2】 下面的算式里,四个小纸片各盖住了一个数字。
被盖住的四个数字的总和是多少?例题精讲知识点拨教学目标5-1-2-1.加减法数字谜1+49【考点】加法数字谜 【难度】2星 【题型】填空 【关键词】华杯赛,初赛,第5题 【解析】 149的个位数是9,说明两个个位数相加没有进位,因此,9是两个个位数的和,14是两个十位数的和。
于是,四个数字的总和是14+9=23。
【答案】23【例 3】 在下边的算式中,被加数的数字和是和数的数字和的三倍。
问:被加数至少是多少?【考点】加法数字谜 【难度】3星 【题型】填空 【关键词】第四届,华杯赛,初赛,第2题 【解析】 从“被加数的数字和是和的数字和的三倍”这句话,可以推断出两点:①被加数可以被3整除。
学科培优 数学 “数字谜初步” 学生姓名授课日期 教师姓名授课时长 知识定位 数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题。
知识梳理数字谜加减法(1)个位数字分析法(如图)加法各位数规律;减法个位数规律;乘法个位数规律;(2)加减法中的进位与错位(3)奇偶性分析法数字谜乘除法(1)解题方法:数字乘法个位数字的规律--最大值最小值的考量--加减法进位规律--合数分解质因数性质--奇偶数性质规律--余数性质数阵图1、从整体和局部两种方向入手,单和与总和2、区分数阵图中的普通点(或方格),和关键点(方格)3、在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些 关键点与相关点的数量关系,得到关键点上所填数的范围4、运用已经得到的信息进行尝试(试数)429+7例题精讲 【试题来源】 【题目】有一个五位数,在某一位数字后加上一个小数点,得到一个小数,再把这个小数和原来的五位数相加,得数十79358.73,求这个五位数? 【试题来源】 【题目】希1+望1+杯1=1,不同的汉字表示不同的自然数,则“希+望+杯”=【试题来源】【题目】在每个方框内填入一个数字,要求所填数字都是质数,并使竖式成立【试题来源】【题目】迎杯×春杯=好好好在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字。
那么“迎+春+杯+好”之和等于多少?【试题来源】【题目】由3个不同数字能组成6个互异的三位数,这6个三位数的和是2886.求所有这样的6个三位数中最小的三位数.【试题来源】【题目】下面算式(1)是一个残缺的乘法竖式,其中□≠2,那么乘积是 .x7【试题来源】【题目】下面残缺的算式中,只写出了3个数字1,其余的数字都不是1,那么这个算式的乘积是.【试题来源】【题目】下面的除法算式(1)是一个小数的除法竖式,其中所注明的两个字母要求:A<B,那么满足这个竖式的除数与商的和是.【试题来源】【题目】在下面的算式中,只有四个4是已知的,则被除数为【试题来源】【题目】把1,2,3,…,13这13个数分别填在如图所示的3个圆圈内,使得同一个圆圈内任意两个数相减,所得的差不在这个圆圈内.现在已经把1,4,7填在第一个圆圈内,3填在第三个圆圈内,请将其余9个数填好.【试题来源】 【题目】将I,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍,那么最小的和是多少?【试题来源】【题目】红、黄、蓝和白色卡片各一张,每张上写有一个数字.小明将这4张卡片如图7-l 放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差.结果小明发现,无论白色卡片上是什么数字,计算结果都是1998.问红、黄、蓝3张卡片上各是什么数字?红黄 白 蓝【试题来源】【题目】请补全下图这个残缺的除法竖式.问这个除法算式的商数是多少?31 4 7 2 11 125 6 8 910 1331 4 7习题演练【试题来源】【题目】ABCD表示一个四位数,EFG表示一个三位数,A,B,C,D,E,F,G代表1至9中的不同的数字.已知ABCD+EFG=1993,问:乘积ABCD×EFG的最大值与最小值相差多少?【试题来源】【题目】如图,4个小三角形的顶点处有6个圆圈。
五年级奥数数字谜专题综合解析
五年级奥数数字谜专题综合解析
奥数是一种理性的精神,使人类的思维得以运用到最完善的.程度.让我们一起来阅读五年级奥数专题综合解析---数字谜,感受奥数的奇异世界!
(数字谜)[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=100改动上面算式中一个数的小数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?
答案与解析:根据[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=100,得到[21-(0.4+13)]×25=100,只有一个小数,假设小数有问题,那么,(21-17)×25=100,0.4应为4,2.5应为0.25
答:把2.5改成0.25。
为您提供的五年级奥数专题综合解析---数字谜,希望给您带来启发!。
数字谜涉及质数与合数等概念,以及需要利用数的整除特征、分解质因数等数论手段解的数字谜问题.1.试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次: 口口口(这是一个三位数).口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求其他两个数.【分析与解】714=2×3×7×17.由此可以看出,要使最下面方框中的数与714互质,在剩下未填的数字2,3,5,6中只能选5,也就是说,第三个数只能是5.现在来讨论第二个数的三个方框中应该怎样填2,3,6这3个数字.因为任意两个偶数都有公约数2,而714是偶数,所以第二个的三位数不能是偶数,因此个位数字只能是3.这样一来,第二个三位数只能是263或623.但是623能被7整除,所以623与714不互质.最后来看263这个数.通过检验可知:714的质因数2,3,7和17都不是263的因数,所以714与263这两个数互质.显然,263与5也互质.因此,其他两个数为263和5.2.如图19-1,4个小三角形的顶点处有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等.问这6个质数的积是多少?【分析与解】设每个小三角形三个顶点上的数的和都是S.4个小三角形的和S相加时,中间三角形每个顶点上的数被算了3次,所以 4S=2S+20,即S=10.这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:2×2×3×3×5×5=9003.在图19-2.所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.【分析与解】记两个乘数为7a b 和cd 其中a 、b 、c 、d 的值只能取自2、3、5或7.由已知条件,b 与c 相乘的个位数字仍为质数,这只可能是b 与c 中有一个是5另一个是3、5或7,如果b 不是5,那么c 必然是5,但73×5=365、77×5=385的十位数字都不是质数.因此b 是5,c 是3、5、7中的一个,同样道理,d 也是3、5、7中的一个.再由已知条件,75a 的乘积的各位数字全是质数,所以乘积肯定大于2000,满足积大于2000且a 、c 取质数,只有以下六种情况:775×3=2325,575×5=2875,775×5=3875,375×7=2625,575×7=4025,775×7=5425.其中只有第一组的结果各位数字是质数,因此a=7,c=3,同理,d 也是3.最终算式即为775×33=255754.把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方.那么这个和数是多少?【分析与解】 设原来的两位数为xy ,则交换十位数字与个位数字后的两位数为,两个数的和为yx ,两个数和为 xy +yx =1010x y x y +++()11x y =+是ll 的倍数,因为它是完全平方数,所以也是11 ×11=121的倍数.但是这个和小于100+100=200 <121×2,所以这个和数只能是121.5. 迎杯×春杯=好好好在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.那么“迎+春+杯+好”之和等于多少?【分析与解】 好好好=好×111=好×3×37.那么37必定是“迎杯”或“春杯”的约数,不妨设为“迎杯”的约数,那么“迎杯”为37或74. 当“迎杯”为37时,“春杯”为“好”×3,且“杯”为7,此时“春杯”为27,“好”为9,“迎+春+杯+好”之和为3+2+7+9=21;当“迎杯”为74时,“春杯”为“好”×3÷2,且“杯”为4,此时“春杯”为24,“好”为16,显然不满足.所以“迎+春+杯+好”之和为3+2+7+9=21.6.数数×科学=学数学在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字.那么“数学”所代表的两位数是多少?【分析与解】“学数学”是“数数”的倍数,因而是“数”与1l的倍数.学数学=学×101+数×10是“数”的倍数,而101是质数,所以“学”一定是“数”的倍数.又“学数学”是11的倍数,因而:“学+学-数”为11的倍数.因为“学”是“数”的倍数,从上式推出“数”是11的约数,所以“数”=1,“学”=(11+1)÷2=6.“数学”所代表的两位数是16.7.将1,2,3,4,5,6,7,8,9这9个数字分别填人下式的各个方框中,可使此等式成立:口口×口口=口口×口口口=3634.填好后得到三个两位数和一个三位数,这三个两位数中最大的一个是多少?【分析与解】3634=2×23×79,表达为两个两位数的乘积只能是(2×23)×79,即46×79;表达为一个两位数与一个三位数的乘积,只能是23×(2×79)=23×158.满足题意,所以这三个两位数中最大的一个是79.8.六年级的学生总人数是三位数,其中男生占35,男生人数也是三位数,而组成以上两个三位数的6个数字,恰好是l,2,3,4,5,6.那么六年级共有学生多少人?【分析与解】设六年级总人数为xyz,其中男生有abc人.有xyz×35=abc,即5abc=3xyz,其中xyz为5的倍数,所以z为5.而abc为3的倍数,所以其数字和a+b+c应为3的倍数,则在剩下的5个数中,a、b、c(不计顺序)只能为1,2,6或l,2,3或4,2,6或4,2,3.而c不能是偶数(不然z应为0),所以只能是l,2,6或1,2,3或4,2,3可能满足;又因为xyz最大为645,对应abc为387,即c不超过3.于是abc有可能为261,123,321,213,231,243这6种可能,验证只有当abc=261时,对应xyz为261÷3×5=435.所以六年级共有学毕435人.9.图19-3是三位数与一位数相乘的算式,在每个方格填入一个数字,使算式成立.那么共有多少种不同的填法?【分析与解】设1992=abc×d(a,b,c,d可以相同),有1992=2×2×2×3×83,其中d可以取2,3,4,6,8这5种,对应的算式填法有5种.10.在图19-4残缺的算式中,只写出3个数字l,其余的数字都不是1.那么这个算式的乘积是多少?【分析与解】如下图所示,为了方便说明,将某些数用字母标出.第4行口口1对应为AB×C,其个位为1,那么B×C的个位数字也是1,而B、C又均不能为1,所以只有3×7,9×9对应为1,那么B为9、7或3.第3行10口对应为AB×D,可能为100、102、103、104、105、106、107、108、109.103、107、109均为质数,没有两位数的约数,不满足;100、105没有个位数字为3、7、9的约数,不满足;102=17×6、104=13×8、106=53×2、108=27×4,但102、104对应的AB中4均为1,不满足.所以AB为53或27.当AB为27时,第4行为27×C,且个位数字为1,所以只能为27×3=8l,但不是三位数,不满足.当AB为53时,第4行为53×C,且个位数字为1,所以只能为53×7=371,因此被乘数必须为53,乘数为72,积为3816.11.图19-5是一个残缺的乘法竖式,在每个方框中填入一个不是2的数字,可使其成为正确的算式.那么所得的乘积是多少?【分析与解】 方法一:由已知条件,最后结果的首位数字不能是2,因此只能是3.这说明千位上作加法时有进位.百位数上相加时最多向千位进2,所以要使千位数有进位,其中的未知数字至少是10-2-2=6,即三个三位数加数中的第二个至少是600.因为它是第一个乘数与一个一位数字的乘积,因此该乘数肯定大于60.第二个乘数的百位数字与第一个乘数的乘积在220~229之间,所以它只能是3(否则4×60>229).而220~229之间个位数字不是2且是3的倍数的只有225=3×75和228=3×76.如果第一乘数是75,又第二个乘数的百位数字是3,那么它们的乘积小于75×400=30000,它的首位数字也就不可能是3,不满足.乘数是76,另一个乘数就要大于30000÷76>394,那么只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.算式中所得的乘积为30096.方法二:为了方便说明,将某些位置标上字母,如下图所示,因为干位最多进1,而最终的乘积万位又不能是2,所以只能是3:而第5行对应为22口=AB×C ,其中C 不可能为1,又不能为2,那么最小为3.当C 为3时,22口=AB×3,那么A 只能为7,B 只能为4,5或6,(1)当B 为4时,74×3=222,第5行个位为2,不满足题意;(2)当B 为5时,AB×CDE 对应为75×3DE ,小于30000,不满足;(3)当B 为6时,AB×CDE 对应为76×3DE ,D 只能为9,此时第4行对应为AB ×D 即76×9=684.因为30000÷76>394,所以39E 只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.验证C 取其他值时没有满足题意的解.所以算式中所得的乘积为30096.12.请补全图19-6这个残缺的除法竖式.问这个除法算式的商数是多少?【分析与解】 易知除号下第二行的首位为9.除号下第一行开头两位为1、0,商的十位为0.第二行9口对应为CD ×A,(1)9口不可能为90,不然第一行前三位10口与第二行90的差不可能为一位数,不满足第三行特征;(2)9口对应为91时,第三行的首位对应为10口-91,最小为9,所以只能为9,那么有91=CD×A ,928=CD×B ,不可能;(3)9口对应为92时,第三行的首位对应为10口-92,最小为8,所以可能为8、9,①如果为9,那么对应有92=CD×A ,928=CD×B ,不可能;②如果为8,那么对应有92=CD×A ,828=CD×B ,不难得知A=l,B=9,CD=92时满足,那么被除数为92×109=10028.验证没有其他的情况满足,所以这个除法算式的商数为109.13.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式学习好勤动脑×5=勤动脑学习好×8中,“学习好勤动脑”所表示的六位数最小是多少?【分析与解】 设“学习好”为x,“勤动脑”为Y,则“学习好勤动脑”为1000X+Y,“勤动脑学习好”为1000y+x ,有(1000x+Y)×5=(1000y +x )×8,化简有4992x=7995y,4992=128×3×13,7995=3×41×5×13,即128x=205y,有205,128x y =⎧⎨=⎩410,256x y =⎧⎨=⎩615,384x y =⎧⎨=⎩820512x y =⎧⎨=⎩所以,“学习好勤动脑”所表示的六位数可能为205128,410256,615384,820512,但是不能有重复数字,所以只有410256,615384满足,其中最小的是41025614.互为反序的两个自然数的积是92565,求这两个互为反序的自然数.(例如102和201,35和53,11和11,…,称为互为反序的数,但120和2l 不是互为反序的数.)【分析与解】 首先可以确定这两个自然数均为三位数,不然得到的乘积不可能为五位数. 设ABC ×CBA =92565,那么C 、A 中必定有一个为5,一个为奇数.不妨设C 为5.5AB ×5BA =92565,那么A 只能为1,1551B B =92565.又注意到92565=3×3×5×11×1l×17.验证只有15B 为165时满足,所以这两个自然数为165、561.15.开放的中国盼奥运×口=盼盼盼盼盼盼盼盼盼上面的横式中不同的汉字代表不同的数字,口代表某个一位数.那么,“盼”字所代表的数字是多少?【分析与解】 我们从“口”中所应填入的一位自然数开始分析,设A=“开放的中国盼奥运”,B=“盼盼盼盼盼盼盼盼盼”.于是B=A×口.显然口内不会是1.由于口是B 的约数,因此口不会是“盼”所代表的数字,要不然A 就等于111111111,这说明口内不会是5,而111111111不是7的倍数,说明口内也不会是7.如果口内填3,则“盼”只能是1或2,当“盼”是1时,B÷3=37037037,不符合要求;当“盼”时2时,B ÷3=74074074,也不符合要求;说明口内不能填入3.口内也不会是偶数数字2、4、6和8.因为口内是偶数数字时,“盼”也是偶数数字,口内显然不会是2,如果口内是4,根据被4整除的特征,“盼”只能是8,这时A就成了一个九位数,说明口内不能是4;类似的,可以说明口内不能是6和8.综上所需,口的数字只能是9,这时利用91111...1个=12345679×9,可以得到9个盼盼盼盼...盼=12345679×9×盼.于是“盼”代表的数字必须同时满足下面两个条件:经验证知◇=盼=7,即86419753×9=777777777.。
第二十讲数字谜综合一锻学王国的燥场上*有一些JS 字湘号在排队,平过有个小當伙站惜了位・,像知畫它应该站在■ 里吗?在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法•它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练. 但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.例题1.已知“ BAD BAD GOOD ”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字. 已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口•本题的突破口在哪里?练习1.在算式“路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字•已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.□□ □□□□ □□ 952「分析」从算式来看,是要找出两个两位数的乘积为952 .但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的. 我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2•从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?例题4.数数科学学数学.在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字. 请问:"数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数” X“学”的个位数字是“学”, 题中的“数数”有什么特点吗?但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现练习4数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字. 那么"好棒所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?年年岁岁花相似岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识.例题6.已知a是一个自然数,A、B是1至9中的数字,最简分数—0.3A3E&•请问:a是多少?222「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔詹姆斯基曾以开发心灵美为题, 一些令人叹服的巧妙算法,其中之一如下:例:8888 3333 296237048 38383832424242424242424242424242424242429623704这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了. 非是重点,趣味性才是它的精髓所在.列举了但结果并作业1.在算式12 2^ 口32 21的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2.用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质•已知组成的四位数是1860,那么其他的三个数是多少?作业3.将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1 ,5,6已经填好).口□□□ □口156作业4.在算式“钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5.已知a是一个自然数,b是一个1至9中的数字,如果―」0.&D&,那么a是多少?555第二十讲数字谜综合一例题1. 答案:3810详解:列竖式,易知D是0, G是1,且O是偶数.那么GOOD可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是610 610 1220 和830 830 1660,只有第二个满足.那么ABGD是3810.例题 2.答案:56 17 28 34 952详解:952 23 7 17 .考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成56 17、28 34和14 68 .考虑到8个数字不重复,只能是5617 28 34 952.例题 3. 答案:1、67、583 或1、67、853详解:2940 22 3 5 72,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8; 5、6、8; 5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8; 3、5、&经检验,有583、853符合要求.综上所述,一共有:1、67、583; 1、67、853两组答案.例题4.答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979 .依次验证几种情况,发现:当学数学为616,那么“学”为6, “数”为1, “ 数数科学学数学”变为“11科6 616 ”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“年岁121花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2,年4 .第二个算式为22 44人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是例题6.答案:83详解:按照混循环小数化分数的方法,0 3A3哗3A3B 3 ,因此等式变为9990—3A3B 3,即兰邑3,可知45 a 3A3B 3 .那么3A3B 3 一定是45的222 9990 9990 9990倍数,即为5和9的倍数,因此3A3B 3计算结果的个位一定是0后者5,那么3A3B的个位一定是3或者8,即B3或B3A338 .当B3时, 3A3B 333A30 一定是9的倍数,可知A3,原数为0.3333L不符合题意.当B8时, 3A3B 33A3833A35是9的倍数,可知 A 7 , 原数为0.373禺,符合题意,可知45 a 3735 , a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是72 72 144,要求的四位数是2417.练习2. 答案:1026简答:1026 2 33 19 .考虑最大的质因数19 .等号两边都有19的倍数,可以是19、38、57. 1026可以拆成19 54、38 27或57 18 .考虑到8个数字互不相同,只能是19 54 3827 1026 .练习3.答案:5和263简答:还有2、3、5和6可以用.714 2 3 7 17,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是27 37=999 .作业1.答案:12 231 132 21简答:21中有质因数乙所以23匚|应该是7的倍数,只能填1或8,经检验,应填1.作业2.答案:7, 43, 529简答:1860 22 3 5 31,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,968510.49是7的倍数,所以两位数只能是43, 259是7的倍数,所以三位数只能是529 . 作业3.答案:4 39 2 78 156简答:156 22 3 13,所以是4 39 2 78 156.作业4.答案:137简答:两个重复的三位数组成的六位数一定是1001的倍数,而1001 7 11 13,所以“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235简答:由分数化循环小数的方法可得, a 5 9 4b3 .所以9|4b3 , b=2, a=235.。
小学五年级奥数题:数字迷
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
数数_科学=学数学
在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字.那么”数学”所代表的两位数是多少?
【答案】
“学数学”是”数数”的倍数,因而是”数”与1l的倍数.学数学=学_1_+数__是”数”的倍数,而1_是质数,所以”学”一定是”数”的倍数.
又”学数学”是_的倍数,因而:”学+学-数”为_的倍数.
因为”学”是”数”的倍数,从上式推出”数”是_的约数,所以”数”=1,”学”=(_+1)÷2=6.
“数学”所代表的两位数是_.
小学五年级奥数题:数字迷.到电脑,方便收藏和打印:。
数字谜(一)例1 在下面算式等号左边合适的地方添上括号,使等式成立:5+7×8+12÷4-2=20。
例2把1~9这九个数字填到下面的九个□里,组成三个等式(每个数字只能填一次):例3下面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立:□□□÷□□=□-□=□-7。
例4 将1~9九个数字分别填入下面四个算式的九个□中,使得四个等式都成立:□+□=6,□×□=8,□-□=6,□□÷□=8。
例5 从1~9这九个自然数中选出八个填入下式的八个○内,使得算式的结果尽可能大:[○÷○×(○+○)]-[○×○+○-○]。
1.在下面的算式里填上括号,使等式成立:(1)4×6+24÷6-5=15;(2)4×6+24÷6-5=35;(3)4×6+24÷6-5=48;(4)4×6+24÷6-5=0。
2.加上适当的运算符号和括号,使下式成立:1 2 3 4 5 =100。
3.把0~9这十个数字填到下面的□里,组成三个等式(每个数字只能填一次):□+□=□,□-□=□,□×□=□□。
4.在下面的□里填上+,-,×,÷,()等符号,使各个等式成立:4□4□4□4=1,4□4□4□4=3,4□4□4□4=5,4□4□4□4=9。
5.将2~7这六个数字分别填入下式的□中,使得等式成立:□+□-□=□×□÷□。
6.将1~9分别填入下式的九个□内,使算式取得最大值:□□□×□□□×□□□。
7.将1~8分别填入下式的八个□内,使算式取得最小值:□□×□□×□□×□□。
数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
解:将5568质因数分解为5568=26×3×29。
由此容易知道,将 5568分解为两个两位数的乘积有两种:58×96和64×87,分解为一个两位数与一个三位数的乘积有六种:12×464, 16×348, 24×232,29×192, 32×174, 48×116。
显然,符合题意的只有下面一种填法:174×32=58×96=5568。
例3 在443后面添上一个三位数,使得到的六位数能被573整除。
分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。
由443000÷573=773 (71)推知, 443000+(573-71)=443502一定能被573整除,所以应添502。
例4 已知六位数33□□44是89的倍数,求这个六位数。
分析与解:因为未知的数码在中间,所以我们采用两边做除法的方法求解。
先从右边做除法。
由被除数的个位是4,推知商的个位是6;由左下式知,十位相减后的差是1,所以商的十位是9。
这时,虽然89×96=8544,但不能认为六位数中间的两个□内是85,因为还没有考虑前面两位数。
再从左边做除法。
如右上式所示,a可能是6或7,所以b只可能是7或8。
由左、右两边做除法的商,得到商是3796或3896。
由3796×89=337844, 3896×89=346744知,商是3796,所求六位数是337844。
例5 在左下方的加法竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字,请你用适当的数字代替字母,使加法竖式成立。
分析与解:先看竖式的个位。
由Y+N+N=Y或Y+ 10,推知N要么是0,要么是5。
如果N=5,那么要向上进位,由竖式的十位加法有T+E+E+1=T或T+10,等号两边的奇偶性不同,所以N≠5,N=0。
此时,由竖式的十位加法T+E+E=T或T+10, E不是0就是5,但是N=0,所以E=5。
竖式千位、万位的字母与加数的千位、万位上的字母不同,说明百位、千位加法都要向上进位。
因为N=0,所以I≠0,推知I=1,O=9,说明百位加法向千位进2。
再看竖式的百位加法。
因为十位加法向百位进1,百位加法向千位进2,且X≠0或1,所以R+T+T+1≥22,再由R,T都不等于9知,T只能是7或8。
若T=7,则R=8,X=3,这时只剩下数字2,4,6没有用过,而S只比F大1,S,F不可能是2,4,6中的数,矛盾。
若T=8,则R只能取6或7。
R=6时,X=3,这时只剩下2,4,7,同上理由,出现矛盾;R=7时,X=4,剩下数字2,3,6,可取F=2,S=3,Y=6。
所求竖式见上页右式。
解这类题目,往往要找准突破口,还要整体综合研究,不能想一步填一个数。
这个题目是美国数学月刊上刊登的趣题,竖式中从上到下的四个词分别是 40,10, 10, 60,而 40+10+10正好是60,真是巧极了!例6 在左下方的减法算式中,每个字母代表一个数字,不同的字母代表不同的数字。
请你填上适当的数字,使竖式成立。
分析与解:按减法竖式分析,看来比较难。
同学们都知道,加、减法互为逆运算,是否可以把减法变成加法来研究呢(见右上式)?不妨试试看。
因为百位加法只能向千位进1,所以E=9,A=1,B=0。
如果个位加法不向上进位,那么由十位加法1+F=10,得F=9,与E=9矛盾,所以个位加法向上进1,由1+F+1=10,得到F=8,这时C=7。
余下的数字有2,3,4,5,6,由个位加法知,G比D大2,所以G,D分别可取4,2或5,3或6,4。
所求竖式是解这道题启发我们,如果做题时遇到麻烦,不妨根据数学的有关概念、法则、定律把原题加以变换,将不熟悉的问题变为熟悉的问题。
另外,做题时要考虑解的情况,是否有多个解。
练习11.在一个四位数的末尾添零后,把所得的数减去原有的四位数,差是621819,求原来的四位数。
2.在下列竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字。
请你用适当的数字代替字母,使竖式成立:3.在下面的算式中填上括号,使得计算结果最大:1÷2÷3÷4÷5÷6÷7÷8÷9。
4.在下面的算式中填上若干个(),使得等式成立:1÷2÷3÷4÷5÷6÷7÷8÷9=2.8。
5.将1~9分别填入下式的□中,使等式成立:□□×□□=□□×□□□=3634。
6.六位数391□□□是789的倍数,求这个六位数。
7.已知六位数7□□888是83的倍数,求这个六位数。
练习11.6281。
解:621819÷(100-1)= 6281。
2.(1)由百位加法知,A=B+1;再由十位加法A+ C=B+10,推知C=9,进而得到A=5,B=4(见左下式)。
(2)由千位加法知B=A-1,再由个位减法知C=9。
因为十位减法向百位借1,百位减法向千位借1,所以百位减法是(10+B-1)-A=A,化简为9+B=2A,将B=A-1代入,得A=8, B=7(见右上式)。
3.1÷(2÷3÷4÷5÷6÷7÷8÷9)=90720。
4.1÷(2÷3)÷4÷(5÷6÷7÷8)÷9=2.8。
5. 46×79= 23×158= 3634。
提示:3634=2×23×79。
6.391344。
提示:仿照例3。
7.774888。
提示:仿例4,商的后3位是336,商的第一位是8或9。
数字谜(二)这一讲主要讲数字谜的代数解法及小数的除法竖式问题。
例1 在下面的算式中,不同的字母代表不同的数字,相同的字母代表相分析与解:这道题可以从个位开始,比较等式两边的数,逐个确定各个(100000+x)×3=10x+1,300000+3x=10x+1,7x=299999,x=42857。
这种代数方法干净利落,比用传统方法解简洁。
我们再看几个例子。
例2 在□内填入适当的数字,使左下方的乘法竖式成立。
求竖式。
例3 左下方的除法竖式中只有一个8,请在□内填入适当的数字,使除法竖式成立。
解:竖式中除数与8的积是三位数,而与商的百位和个位的积都是四位数,所以x=112,被除数为989×112=110768。
右上式为所求竖式。
代数解法虽然简洁,但只适用于一些特殊情况,大多数情况还要用传统的方法。
例4 在□内填入适当数字,使下页左上方的小数除法竖式成立。
分析与解:先将小数除法竖式化为我们较熟悉的整数除法竖式(见下页右上方竖式)。
可以看出,除数与商的后三位数的乘积是1000=23×53的倍数,即除数和商的后三位数一个是23=8的倍数,另一个是53=125的奇数倍,因为除数是两位数,所以除数是8的倍数。
又由竖式特点知a=9,从而除数应是96的两位数的约数,可能的取值有96,48,32,24和16。
因为,c=5,5与除数的乘积仍是两位数,所以除数只能是16,进而推知b=6。
因为商的后三位数是125的奇数倍,只能是125,375,625和875之一,经试验只能取375。
至此,已求出除数为16,商为6.375,故被除数为6.375×16=102。
右式即为所求竖式。
求解此类小数除法竖式题,应先将其化为整数除法竖式,如果被除数的末尾出现n个0,则在除数和商中,一个含有因子2n(不含因子5),另一个含有因子5n(不含因子2),以此为突破口即可求解。
例5 一个五位数被一个一位数除得到下页的竖式(1),这个五位数被另一个一位数除得到下页的竖式(2),求这个五位数。
分析与解:由竖式(1)可以看出被除数为10**0(见竖式(1)'),竖式(1)的除数为3或9。
在竖式(2)中,被除数的前两位数10不能被整数整除,故除数不是2或5,而被除数的后两位数*0能被除数整除,所以除数是4,6或8。
当竖式(1)的除数为3时,由竖式(1)'知, a=1或2,所以被除数为100*0或101*0,再由竖式(2)中被除数的前三位数和后两位数分别能被除数整除,可得竖式(2)的除数为4,被除数为10020;当竖式(1)的除数为9时,由能被9整除的数的特征,被除数的百位与十位数字之和应为8。
因为竖式(2)的除数只能是4,6,8,由竖式(2)知被除数的百位数为偶数,故被除数只有10080,10260,10440和10620四种可能,最后由竖式(2)中被除数的前三位数和后两位数分别能被除数整除,且十位数不能被除数整除,可得竖式(2)的除数为8,被除数为10440。
所以这个五位数是10020或10440。
练习21.下面各算式中,相同的字母代表相同的数字,不同的字母代表不同的2.用代数方法求解下列竖式:3.在□内填入适当的数字,使下列小数除法竖式成立:练习21.(1)4285;(2)461538。
7×(1000A+ B)= 6×(1000B+A),化简后得538A=461B,由于538与461互质,且A,B均为三位数,所以A=461,B= 538。
所求六位数是461538。
2.(1)124×81=10044;(2)117684÷12= 9807。