江苏专用2018版高考数学大一轮复习第十二章推理与证明算法复数12.4复数课件文
- 格式:ppt
- 大小:17.76 MB
- 文档页数:59
12.2 直接证明与间接证明1.直接证明(1)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.②框图表示:已知条件⇒…⇒…⇒结论③思维过程:由因导果.(2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②框图表示:结论⇐…⇐…⇐已知条件③思维过程:执果索因.2.间接证明反证法:要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).这个过程包括下面3个步骤:(1)反设——假设命题的结论不成立,即假定原结论的反面为真;(2)归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(3)存真——由矛盾结果,断定反设不真,从而肯定原结论成立.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.( ×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ×)(3)用反证法证明结论“a>b”时,应假设“a<b”.( ×)(4)反证法是指将结论和条件同时否定,推出矛盾.( ×)(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.(2016·扬州质检)已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为______________________. 答案 c n +1<c n 解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n,则c n 随n 的增大而减小,∴c n +1<c n .2.用反证法证明命题:“a ,b ∈N ,若ab 不能被5整除,则a 与b 都不能被5整除”时,假设的内容应为____________________________. 答案 a ,b 至少有一个能被5整除解析 “都不能”的否定为“至少有一个能”,故假设的内容应为“a ,b 至少有一个能被5整除”.3.要证a 2+b 2-1-a 2b 2≤0只要证明________(填正确的序号). ①2ab -1-a 2b 2≤0; ②a 2+b 2-1-a 4+b 42≤0;③ a +b 22-1-a 2b 2≤0;④(a 2-1)(b 2-1)≥0. 答案 ④解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(2016·盐城模拟)如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f x 1 +f x 2 +…+f x n n ≤f (x 1+x 2+…+x n n),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________. 答案332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数, 且A ,B ,C ∈(0,π). ∴f A +f B +f C3≤f (A +B +C3)=f (π3),即sin A +sin B +sin C ≤3sin π3=332,∴sin A +sin B +sin C 的最大值为332.题型一 综合法的应用 例1 数列{a n }满足a n +1=a n2a n +1,a 1=1. (1)证明:数列{1a n}是等差数列;(2)求数列{1a n }的前n 项和S n ,并证明1S 1+1S 2+…+1S n >nn +1.(1)证明 ∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n,即1a n +1-1a n=2,故数列{1a n}是以1为首项,2为公差的等差数列.(2)解 由(1)知1a n=2n -1,∴S n =n 1+2n -12=n 2.方法一1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n n +1 =(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=n n +1.方法二1S 1+1S 2+…+1S n =112+122+…+1n 2>1,又∵1>nn +1,∴1S 1+1S 2+…+1S n >n n +1. 思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.若a ,b ,c 是不全相等的正数,求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明 ∵a ,b ,c ∈(0,+∞), ∴a +b2≥ab >0,b +c2≥bc >0,a +c2≥ac >0.由于a ,b ,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a2>abc >0成立.上式两边同时取常用对数,得 lg(a +b 2·b +c 2·c +a2)>lg abc ,∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝ ⎛⎭⎪⎫0,π2,若x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝ ⎛⎭⎪⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明sin x 1+x 2 2cos x 1cos x 2>sin x 1+x 21+cos x 1+x 2.由于x 1,x 2∈⎝⎛⎭⎪⎫0,π2,故x 1+x 2∈(0,π).所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎪⎫0,π2,x 1≠x 2知上式显然成立,因此12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.引申探究若本例中f (x )变为f (x )=3x-2x ,试证:对于任意的x 1,x 2∈R ,均有f x 1 +f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证明f x 1 +f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22,即证明 3x 1-2x 1 + 3x 2-2x 2 2≥1223x x +-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥1223x x +-(x 1+x 2),即证明3x 1+3x 22≥1223x x +,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由基本不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.(2016·苏州模拟)下列各式:1+0.12+0.1>12,0.2+30.5+3>0.20.5,2+73+7>23,72+π101+π>72101. 请你根据上述特点,提炼出一个一般性命题(写出已知,求证),并用分析法加以证明. 解 已知a >b >0,m >0,求证:b +m a +m >ba.证明如下:∵a >b >0,m >0,欲证b +m a +m >ba, 只需证a (b +m )>b (a +m ),只需证am >bm , 只需证a >b ,由已知得a >b 成立, 所以b +m a +m >ba成立. 题型三 反证法的应用 命题点1 证明否定性命题例3 (2016·连云港模拟)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. (1)解 设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 1 1-q n 1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1 1-q n1-q,q ≠1.(2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 命题点2 证明存在性问题例4 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1. (1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD . 同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD , ∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾, ∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD . 命题点3 证明唯一性命题例5 已知a ≠0,证明关于x 的方程ax =b 有且只有一个根. 证明 由于a ≠0,因此方程至少有一个根x =b a. 假设x 1,x 2是它的两个不同的根, 即ax 1=b ,① ax 2=b ,②由①-②得a (x 1-x 2)=0, 因为x 1≠x 2,所以x 1-x 2≠0,所以a =0,这与已知矛盾,故假设错误. 所以当a ≠0时,方程ax =b 有且只有一个根.思维升华 应用反证法证明数学命题,一般有以下几个步骤 第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点;(2)试用反证法证明1a>c .证明 (1)∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a,∴x 2=1a (1a≠c ),∴1a 是f (x )=0的一个根.即1a是函数f (x )的一个零点.(2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0,知f (1a )>0,与f (1a )=0矛盾,∴1a≥c ,又∵1a ≠c ,∴1a>c .22.反证法在证明题中的应用典例 (14分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思想方法指导 在证明否定性问题,存在性问题,唯一性问题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去. 规范解答(1)解 因为四边形OABC 为菱形, 则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1),所以设点A ⎝ ⎛⎭⎪⎫t ,12,代入椭圆方程得t 24+14=1,则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形, 因为点B 不是W 的顶点,且AC ⊥OB , 所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[7分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22 =k ·x 1+x 22+m =m1+4k2.所以AC 的中点为M ⎝⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[10分]因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k ,因为k ·⎝ ⎛⎭⎪⎫-14k =-14≠-1, 所以AC 与OB 不垂直.[13分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[14分]1.(2017·泰州月考)用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是__________________________. 答案 方程x 2+ax +b =0没有实根解析 因为“方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.2.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为__________.答案 (-3,0]解析 若2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k × -38 <0或k =0.解得-3<k ≤0.3.设x ,y ,z >0,则关于三个数y x +y z ,z x +z y ,x z +xy的叙述正确的是________. ①都大于2②至少有一个大于2 ③至少有一个不小于2④至少有一个不大于2答案 ③解析 因为(y x +y z )+(z x +z y )+(x z +x y) =(y x +x y )+(y z +z y)+(z x +x z)≥6, 当且仅当x =y =z 时等号成立.所以三个数中至少有一个不小于2,③正确.4.(2016·镇江模拟)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是____________. 答案 P <Q解析 ∵P 2=2a +7+2a ·a +7=2a +7+2a 2+7a , Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q .5.(2016·苏州模拟)下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b ≥2成立的条件的序号是________. 答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立.6.用反证法证明:若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是________.①假设a ,b ,c 都是偶数;②假设a ,b ,c 都不是偶数;③假设a ,b ,c 至多有一个偶数;④假设a ,b ,c 至多有两个偶数.答案 ②解析 “至少有一个”的否定为“都不是”,故②正确.7.(2016·全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案 1和3解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧ f -1 =-2p 2+p +1≤0,f 1 =-2p 2-3p +9≤0,解得p ≤-3或p ≥32, 故满足题干条件的p 的取值范围为⎝⎛⎭⎪⎫-3,32. 9.已知m >0,a ,b ∈R ,求证:(a +mb 1+m )2≤a 2+mb 21+m. 证明 因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.10.设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图象关于y 轴对称,求证:f (x +12)为偶函数. 证明 由函数f (x +1)与f (x )的图象关于y 轴对称,可知f (x +1)=f (-x ).将x 换成x -12代入上式可得 f (x -12+1)=f [-(x -12)],即f (x +12)=f (-x +12), 由偶函数的定义可知f (x +12)为偶函数. 11.(2016·苏州模拟)已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0.∵a >1,∴ax 2-x 1>1且ax 1>0,∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1= x 2-2 x 1+1 - x 1-2 x 2+1 x 1+1 x 2+1 =3 x 2-x 1 x 1+1 x 2+1>0. 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1. ∵a >1,∴0<ax 0<1,∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾, 故方程f (x )=0没有负数根.12.(2016·浙江)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1- -x 41- -x =1-x 41+x , 由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32= x -1 2x +1 2 x +1+32≤32, 所以f (x )≤32. 由(1)得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34, 又因为f ⎝ ⎛⎭⎪⎫12=1924>34,所以f (x )>34. 综上,34<f (x )≤32. 13.(2015·课标全国Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2. 因此a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd,于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.。
1.条件概率及其性质(1)一般地,设A ,B 为两个事件,且P (A )>0,称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ). (2)条件概率具有的性质 ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (A )P (B |A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. 3.二项分布(1)一般地,在相同条件下重复做的几次试验称为n 次独立重复试验.(2)一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率. 【知识拓展】超几何分布与二项分布的区别(1)超几何分布需要知道总体的容量,而二项分布不需要; (2)超几何分布是不放回抽取,而二项分布是放回抽取(独立重复).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)条件概率一定不等于它的非条件概率.( × ) (2)相互独立事件就是互斥事件.( × )(3)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(4)二项分布是一个概率分布,其公式相当于(a +b )n 二项展开式的通项公式,其中a =p ,b =1-p .( × )(5)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( √ )1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为( ) A.38 B.27 C.28 D.37 答案 B解析 第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.2.(教材改编)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.427 D.227 答案 A解析 所求概率P =C 13·(13)1·(1-13)3-1=49. 3.(2015·课标全国Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 答案 A解析 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.4.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________. 答案 0.8解析 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.5.(教材改编)国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 答案 12解析 记在国庆期间“甲去北京旅游”为事件A ,“乙去北京旅游”为事件B ,又P (A B )=P (A )·P (B )=[1-P (A )][1-P (B )]=(1-13)(1-14)=12,“甲、乙二人至少有一人去北京旅游”的对立事件为“甲、乙二人都不去北京旅游”,故所 求概率为1-P (A B )=1-12=12.题型一 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )等于( ) A.18 B.14 C.25 D.12(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”, B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________. 答案 (1)B (2)14解析 (1)P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110,P (B |A )=P (AB )P (A )=14. (2)AB 表示事件“豆子落在△OEH 内”, P (B |A )=P (AB )P (A )=△OEH 的面积正方形EFGH 的面积=14. 引申探究1.若将本例(1)中的事件B :“取到的2个数均为偶数”改为“取到的2个数均为奇数”,则结果如何?解 P (A )=C 23+C 22C 25=25, P (B )=C 23C 25=310,又A ⊇B ,则P (AB )=P (B )=310,所以P (B |A )=P (AB )P (A )=P (B )P (A )=34.2.在本例(2)的条件下,求P (A |B ). 解 由题意知,∠EOH =90°,故P (B )=14,又∵P (AB )=△OEH 的面积圆O 的面积=12×1×1π×12=12π, ∴P (A |B )=P (AB )P (B )=12π14=2π.思维升华 条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A )求P (B |A ). (2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ).(2016·开封模拟)已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( ) A.310 B.29 C.78 D.79答案 D解析 方法一 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P (AB )P (A )=730310=79.方法二 第1次抽到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次抽到卡口灯泡的概率为C 17C 19=79.题型二 相互独立事件的概率例2 设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T 的分布列;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解 (1)由统计结果可得T 的频率分布为以频率估计概率得T 的分布列为(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同, 设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.方法一 P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.方法二 P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.思维升华 求相互独立事件同时发生的概率的方法 (1)首先判断几个事件的发生是否相互独立.(2)求相互独立事件同时发生的概率的方法主要有: ①利用相互独立事件的概率乘法公式直接求解;②正面计算较繁或难以入手时,可从其对立事件入手计算.(2017·青岛月考)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:现有甲、乙两位乘客,他们乘坐的里程都不超过22千米.已知甲、乙乘车不超过6千米的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.解 (1)由题意可知,甲、乙乘车超过12千米且不超过22千米的概率分别为14,13,则甲、乙两人所付乘车费用相同的概率 P 1=14×13+12×13+14×13=13,所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.(2)由题意可知,ξ=6,7,8,9,10, 则P (ξ=6)=14×13=112,P (ξ=7)=14×13+12×13=14,P (ξ=8)=14×13+14×13+12×13=13,P (ξ=9)=12×13+14×13=14,P (ξ=10)=14×13=112.所以ξ的分布列为题型三 独立重复试验与二项分布 命题点1 根据独立重复试验求概率例3 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列.解 (1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A ,B ,C ,则P (A )=23×23×23=827,P (B )=C 23⎝⎛⎭⎫232×⎝⎛⎭⎫1-23×23=827, P (C )=C 24⎝⎛⎭⎫232×⎝⎛⎭⎫1-232×12=427. (2)X 的可能取值为0,1,2,3, 则P (X =0)=P (A )+P (B )=1627,P (X =1)=P (C )=427,P (X =2)=C 24×⎝⎛⎭⎫1-232×⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427, P (X =3)=⎝⎛⎭⎫133+C 23⎝⎛⎭⎫132×23×13=19. 故X 的分布列为命题点2 根据独立重复试验求二项分布例4 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 (1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎫121×⎝⎛⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3), 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.(2016·沈阳模拟)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖. (1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X 的分布列.解 (1)设“某节目的投票结果是最终获一等奖”这一事件为A ,则事件A 包括:该节目可以获两张“获奖”票,或者获三张“获奖”票.∵甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响,∴P (A )=C 23(13)2(23)1+C 33(13)3=727. (2)所含“获奖”和“待定”票票数之和X 的值为0,1,2,3. P (X =0)=(13)3=127,P (X =1)=C 13(23)1(13)2=29, P (X =2)=C 23(23)2(13)1=49, P (X =3)=(23)3=827.因此X 的分布列为18.独立事件与互斥事件典例 (1)中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是37,乙夺得冠军的概率是14,那么中国队夺得女子乒乓球单打冠军的概率为________.(2)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________. 错解展示解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14,由A 、B 是相互独立事件,得所求概率为P (A B )+P (A B )+P (AB )=37×34+47×14+37×14=1628=47. (2)所求概率P =C 35×(23)3×(13)2=80243. 答案 (1)47 (2)80243现场纠错解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14.∵A 、B 是互斥事件,∴P (A ∪B )=P (A )+P (B )=37+14=1928.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则 P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4A 5)+P (A1A 2A 3A 4A 5)=⎝⎛⎭⎫233×⎝⎛⎭⎫132+13×⎝⎛⎭⎫233×13+⎝⎛⎭⎫132×⎝⎛⎭⎫233=881. 答案 (1)1928 (2)881纠错心得 (1)搞清事件之间的关系,不要混淆“互斥”与“独立”. (2)区分独立事件与n 次独立重复试验.1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.18 答案 A解析 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·长春模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( ) A .C 1012(38)10(58)2 B .C 912(38)9(58)2C .C 911(58)9(38)2D .C 911(38)10(58)2 答案 D解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球, 因此P (X =12)=38C 911(38)9(58)2=C 911(38)10(58)2. 3.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率( )A .事件A ,B 同时发生 B .事件A ,B 至少有一个发生C .事件A ,B 至多有一个发生D .事件A ,B 都不发生 答案 C解析 P (A )P (B )是指A ,B 同时发生的概率,1-P (A )·P (B )是A ,B 不同时发生的概率,即事件A ,B 至多有一个发生的概率.4.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34 B.23 C.45 D.710答案 A解析 设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A B C )=P (A )P (B )P (C )=[1-P (A )]·[1-P (B )]·[1-P (C )]=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14. 故目标被击中的概率P =1-P (A B C )=34.5.(2017·南昌质检)设随机变量X 服从二项分布X ~B (5,12),则函数f (x )=x 2+4x +X 存在零点的概率是( ) A.56 B.45 C.3132 D.12 答案 C解析 ∵函数f (x )=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B (5,12),∴P (X ≤4)=1-P (X =5)=1-125=3132.6.(2016·安徽黄山屯溪一中月考)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .P (B )=25B .事件B 与事件A 1相互独立C .P (B |A 1)=511D .P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关 答案 C解析 由题意A 1,A 2,A 3是两两互斥的事件, P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,由此知,C 正确;P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3) =12×511+15×411+310×411=922. 由此知A ,D 不正确.故选C.7.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.答案1927解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59, 解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927. 8.如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.答案 18解析 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件A B C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (A B C )=P (A )P (B )P (C )=12×12×12=18. 9.(2017·广州月考)设事件A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为________.答案964解析 设事件A 发生的概率为p ,由题意知(1-p )3=1-6364=164,解得p =34,则事件A 恰好发生一次的概率为C 13×34×(14)2=964. 10.(2016·荆州质检)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 答案 37解析 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37.11.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲,乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 (1)依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有k 人去参加甲游戏”为事件A k (k =0,1,2,3,4).则P (A k )=C k 4⎝⎛⎭⎫13k ⎝⎛⎭⎫234-k . 这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝⎛⎭⎫133×23+C 44⎝⎛⎭⎫134 =19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故 P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是12.(2016·西安模拟)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率. 解 (1)设A 表示事件“作物产量为300 kg ”,B 表示事件“作物市场价格为6 元/kg ”,由题设知P (A )=0.5,P (B )=0.4, 因为利润=产量×市场价格-成本. 所以X 所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,故X的分布列为(2)设C i表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2 000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×(1-0.8)=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.*13.李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率.解(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)记事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场比赛中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=A B∪A B,A,B独立.根据投篮统计数据,P(A)=0.6,P(B)=0.4.P(C)=P(A B)+P(A B)=0.6×0.6+0.4×0.4=0.52.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为0.52.。
基础巩固题组(建议用时:30分钟)一、选择题1。
(2016·西安八校联考)观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( ) A.22项B。
23项C。
24项D。
25项解析两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5为和为8的第3项,所以为第24项,故选C.答案C2。
命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )A。
使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误解析由“三段论”的推理方式可知,该推理的错误原因是推理形式错误。
答案C3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A。
f(x) B.-f(x) C.g(x) D。
-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x)。
答案D4。
观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于( )A.28 B。
76 C。
123 D.199解析观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案C5。
由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“错误!=错误!”类比得到“错误!=错误!"。
课时跟踪检测(七十二)[高考基础题型得分练]1.用数学归纳法证明“2n>2n +1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取( )A .2B .3C .5D .6答案:B解析:∵当n =1时,21=2,2×1+1=3,2n>2n +1不成立; 当n =2时,22=4,2×2+1=5,2n>2n +1不成立; 当n =3时,23=8,2×3+1=7,2n>2n +1成立, ∴n 的第一个取值n 0=3.2.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14答案:D解析:由f (n )可知,共有n 2-n +1项,且n =2时,f (2)=12+13+14.3.某个命题与正整数有关,如果当n =k (k ∈N *)时该命题成立,那么可以推出n =k +1时该命题也成立.现已知n =5时该命题成立,那么( )A .n =4时该命题成立B .n =4时该命题不成立C .n ≥5,n ∈N *时该命题都成立D .可能n 取某个大于5的整数时该命题不成立 答案:C解析:显然A ,B 错误,由数学归纳法原理知C 正确.4.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .10答案:B解析:左边=1+12+14+…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.5.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,利用归纳假设证明n =k +1时,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3答案:A解析:假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3.6.对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法证明的过程如下: (1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式k 2+k <k +1成立,当n =k +1时,k +2+k +1=k 2+3k +2<k 2+3k ++k +=k +2=(k +1)+1.∴当n =k +1时,不等式成立,则上述证法( ) A .过程全部正确 B .n =1验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 答案:D解析:在n =k +1时,没有应用n =k 时的假设,不是数学归纳法.7.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1n -n+ B.12nn +C.1n -n+D.1n +n+答案:C解析:当n =2时,13+a 2=(2×3)a 2,∴a 2=13×5;当n =3时,13+115+a 3=(3×5)a 3,∴a 3=15×7;故猜想a n =1n -n +.8.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1答案:B解析:当n =k (k ∈N *)时,左式为(k +1)(k +2)·…·(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1),则左边应增乘的式子是k +k +k +1=2(2k +1).9.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N ,且n >1),第一步要证的不等式是________.答案:1+12+13<2解析:∵n >1且n ∈N , ∴当n =2时,1+12+13<2.10.[2017·江苏无锡调研]利用数学归纳法证明不等式1n +1+1n +2+…+1n +n >12(n >1,n ∈N *)的过程中,用n =k +1时左边的代数式减去n =k 时左边的代数式的结果为________.答案:12k +1-12k +2解析:当n =k 时,左边=1k +1+1k +2+…+1k +k,① 当n =k +1时,左边=1k +2+1k +3+…+1k +k +12k +1+12k +2,② ②-①,得12k +1+12k +2-1k +1=12k +1-12k +2.11.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上的项为______________________________.答案:(k 2+1)+(k 2+2)+…+(k +1)2解析:当n =k 时,左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2, 则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2.[冲刺名校能力提升练]1.用数学归纳法证明:“1+a +a 2…+a n +1=1-a n +21-a(a ≠1,n ∈N *)”,在验证n =1时,等式左边是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3答案:C解析:由题意,根据数学归纳法的步骤可知,当n =1时,等式的左边应为1+a +a 2,故选C.2.[2017·天津模拟]设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”.那么,下列命题总成立的是( )A .若f (1)<1成立,则f (10)<100成立B .若f (2)<4成立,则f (1)≥1成立C .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立 D .若f (4)≥16成立,则当k ≥4时,均有f (k )≥k 2成立 答案:D解析:选项A ,B 的答案与题设中不等号方向不同,故A ,B 错;选项C 中,应该是k ≥3时,均有f (k )≥k 2成立;对于选项D ,满足题设原理,该命题成立.3.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是____________.答案:1k +k +解析:不等式的左边增加的式子是12k +1+12k +2-1k +1=1k +k +,故填1k +k +.4.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1(n ∈N *). (1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出证明.解:(1)当n =1时,方程x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,∴(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.当n =2时,方程x 2-a 2x -a 2=0有一根为S 2-1=a 1+a 2-1=a 2-12,∴⎝ ⎛⎭⎪⎫a 2-122-a 2⎝ ⎛⎭⎪⎫a 2-12-a 2=0,解得a 2=16. (2)由题意知(S n -1)2-a n (S n -1)-a n =0, 当n ≥2时,a n =S n -S n -1,代入上式整理得S n S n -1-2S n +1=0,解得S n =12-S n -1.由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23,猜想S n =nn +1(n ∈N *).下面用数学归纳法证明这个结论: ①当n =1时,结论成立.②假设n =k (k ∈N *,k ≥1)时结论成立,即S k =kk +1,当n =k +1时,S k +1=12-S k=12-kk +1=k +1k +2=k +1k ++1,即当n =k +1时结论成立. 由①②知S n =nn +1对任意的正整数n 都成立.5.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g (n )的大小; (2)猜想f (n )与g (n )的大小关系,并给出证明. 解:(1)当n =1时,f (1)=1,g (1)=1, 所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1)猜想f (n )≤g (n ),下面用数学归纳法给出证明. ①当n =1,2,3时,不等式显然成立, ②假设当n =k (k ≥3,k ∈N *)时不等式成立,即 1+123+133+143+…+1k 3<32-12k2.那么,当n =k +1时,f (k +1)=f (k )+1k +3<32-12k 2+1k +3.因为1k +2-⎣⎢⎡⎦⎥⎤12k2-1k +3=k +3k +3-12k 2=-3k -1k +3k 2<0,所以f (k +1)<32-1k +2=g (k +1).由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.。
12.1 合情推理与演绎推理1.合情推理(1)归纳推理①定义:从个别事实中推演出一般性的结论,称为归纳推理(简称归纳法).②特点:归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理①定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理(简称类比法).②特点:类比推理是由特殊到特殊的推理.(3)合情推理合情推理是根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳推理和类比推理都是数学活动中常用的合情推理.2.演绎推理(1)演绎推理一种由一般性的命题推演出特殊性命题的推理方法称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——一般性的原理;②小前提——特殊对象;③结论——揭示了一般原理与特殊对象的内在联系.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ×)(4)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ )(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n =n (n ∈N *).( × ) (6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × )1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=________. 答案 123解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a 10+b 10=123. 2.下面几种推理过程是演绎推理的是________.①在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳数列{a n }的通项公式;②由平面三角形的性质,推测空间四面体性质;③两直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线与第三条直线形成的同旁内角,则∠A +∠B =180°;④某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人. 答案 ③解析 ①、④是归纳推理,②是类比推理,③符合三段论模式,③是演绎推理.3.(2017·南京质检)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行. 则正确的结论是________. 答案 ①④解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交.4.(教材改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则存在的等式为________________.答案 b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *) 解析 利用类比推理,借助等比数列的性质,b 29=b 1+n ·b 17-n ,可知存在的等式为b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).5.(2016·泰州模拟)若数列{a n }的通项公式为a n =1 n +1 2(n ∈N *),记f (n )=(1-a 1)(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=________. 答案n +22n +2解析 f (1)=1-a 1=1-14=34,f (2)=(1-a 1)(1-a 2)=34(1-19)=23=46, f (3)=(1-a 1)(1-a 2)(1-a 3)=23(1-116)=58, 推测f (n )=n +22n +2.题型一 归纳推理命题点1 与数字有关的等式的推理 例1 (2016·山东)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝ ⎛⎭⎪⎫sin 8π9-2=43×4×5; …照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=__________. 答案 43×n ×(n +1)解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.命题点2 与不等式有关的推理例2 (2016·苏北四市联考)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +a x n ≥n +1(n ∈N *),则a =________. 答案 n n解析 第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n. 命题点3 与数列有关的推理例3 (2016·南京模拟)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n n +1 2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n , 六边形数 N (n,6)=2n 2-n .……可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.命题点4 与图形变化有关的推理例4 某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为________.答案 55解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55. 思维升华 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.(2016·苏州模拟)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,则可以归纳出一般结论:当n ≥2时,有____________.答案 f (2n)>n +22(n ∈N *)解析 由题意知f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n)>n +22.故填f (2n)>n +22(n ∈N *).题型二 类比推理例5 (1)对于命题:如果O 是线段AB 上一点,则|OB →|OA →+|OA →|OB →=0;将它类比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0;将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________. (2)(2017·苏州月考)求1+1+1+…的值时,采用了如下方法:令1+1+1+…=x ,则有x =1+x ,解得x =1+52(负值已舍去).可用类比的方法,求得1+12+11+12+1…的值为________.答案 (1)V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 (2)1+32解析 (1)线段长度类比到空间为体积,再结合类比到平面的结论,可得空间中的结论为V O-BCD·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0.(2)令1+12+1…=x ,则有1+12+1x =x ,解得x =1+32(负值已舍去).思维升华(1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P c h c=1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d=1.题型三 演绎推理例6 已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ). (1)试证明:f (x )为R 上的单调增函数;(2)若x ,y 为正实数且4x +9y=4,比较f (x +y )与f (6)的大小.(1)证明 设x 1,x 2∈R ,且x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1). ∴f (x )为R 上的单调增函数.(2)解 ∵x ,y 为正实数,且4x +9y=4,∴x +y =14(x +y )(4x +9y )=14(13+4y x +9x y )≥14(13+2 4y x ·9x y )=254, 当且仅当⎩⎪⎨⎪⎧ 4y x =9xy ,4x +9y =4,即⎩⎪⎨⎪⎧x =52,y =154时取等号,∵f (x )在R 上是增函数,且x +y ≥254>6,∴f (x +y )>f (6).思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.(1)某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为________. ①大前提错误 ②小前提错误③推理形式错误(2)(2016·南京模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是________.①大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数; ②大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数; ③大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数; ④大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数. 答案 (1)③ (2)②解析 (1)因为大前提“鹅吃白菜”,不是全称命题,大前提本身正确,小前提“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三段论推理形式,所以推理形式错误.(2)①中小前提不是大前提的特殊情况,不符合三段论的推理形式,故①错误;③、④都不是由一般性命题到特殊性命题的推理,所以①、③、④都不正确,只有②正确.10.高考中的合情推理问题考点分析合情推理在近年来的高考中,考查频率逐渐增大,题型多为填空题,难度为中档.解决此类问题的注意事项与常用方法:(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.典例(1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:①b2 014是数列{a n}的第________项;②b2k-1=________.(用k表示)(2)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(ⅰ)T={f(x)|x∈S};(ⅱ)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________.①A=N*,B=N;②A={x|-1≤x≤3},B={x|x=-8或0<x≤10};③A={x|0<x<1},B=R;④A=Z,B=Q.解析 (1)①a n =1+2+…+n =n n +12,b 1=4×52=a 4, b 2=5×62=a 5, b 3=9× 2×52=a 9, b 4= 2×5 ×112=a 10,b 5=14× 3×52=a 14,b 6=3×5 ×162=a 15,…b 2 014=⎝ ⎛⎭⎪⎫2 0142×5⎝ ⎛⎭⎪⎫2 0142×5+12=a 5 035.②由①知b 2k -1=⎝ ⎛⎭⎪⎫2k -1+12×5-1⎝ ⎛⎭⎪⎫2k -1+12×52=5k 5k -12.(2)对于①,取f (x )=x -1,x ∈N *,所以A =N *,B =N 是“保序同构”的,故排除①; 对于②,取f (x )=⎩⎪⎨⎪⎧-8,x =-1,x +1,-1<x ≤0,x 2+1,0<x ≤3,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,故排除②; 对于③,取f (x )=tan(πx -π2)(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”的, 故排除③. ④不符合,故填④.答案 (1)①5 035 ②5k 5k -12(2)④1.若大前提是:任何实数的平方都大于0,小前提是:a ∈R ,结论是:a 2>0,那么这个演绎推理出错在________. ①大前提 ②小前提 ③推理过程④没有出错答案 ①解析 推理形式正确,但大前提错误,故得到的结论错误. 2.下列推理是归纳推理的是________.①A ,B 为定点,动点P 满足PA +PB =2a >AB ,则P 点的轨迹为椭圆;②由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式;③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πab ;④科学家利用鱼的沉浮原理制造潜艇. 答案 ②解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以②是归纳推理,其余都不是.3.(2017·苏州质检)如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为________.答案 8解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N *)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N *)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6n n -1 2=3n 2-3n +1,由题意得3n 2-3n +1=169,即(n +7)·(n -8)=0,所以n =8(舍去负值),故共有8层.4.(2016·扬州模拟)平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为f (n )=__________.答案n 2+n +22解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n n +1 2=n 2+n +22个区域.5.(2016·徐州模拟)推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是________. 答案 ②解析 由演绎推理三段论可知,①是大前提;②是小前提;③是结论. 6.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中正确结论的个数是________. 答案 1解析 (a +b )n ≠a n +b n(n ≠1,a ·b ≠0),故①错误. sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34, 故②错误.由向量的运算公式知③正确.7.把正整数按一定的规则排成如图所示的三角形数表,设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下第i 行,从左往右数第j 个数,如a 42=8,若a ij =2 009,则i 与j 的和为________.答案 107解析 由题意可知奇数行为奇数列,偶数行为偶数列,2 009=2×1 005-1,所以 2 009为第1 005个奇数,又前31个奇数行内数的个数为961,前32个奇数行内数的个数为1 024,故2 009在第32个奇数行内,则i =63,因为第63行第1个数为2×962-1=1 923,2 009=1 923+2(j -1),所以j =44,所以i +j =107. 8.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,类似的结论为______________________. 答案10b 11b 12…b 20=30b 1b 2…b 30解析 由等比数列的性质可知b 1b 30=b 2b 29=…=b 11b 20, ∴10b 11b 12…b 20=30b 1b 2…b 30.9.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b2=1(a >b >0)外,过P 0作椭圆的两条切线的切点分别为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程是________________.答案x 0x a 2-y 0y b 2=1 解析 设P 1(x 1,y 1),P 2(x 2,y 2), 则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2yb2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb 2=1. 10.如图(1),若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比1122OM N OM N S S ∆∆=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为_____________.答案111222O PQR O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2解析 考查类比推理问题,由图看出三棱锥P 1-OR 1Q 1及三棱锥P 2-OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为111222O P Q R O P Q R V V--=OP 1OP 2·OQ 1OQ 2·OR 1OR 2. 11.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明. 解 f (0)+f (1)=130+3+131+3=11+3+13 1+3=33 1+3+13 1+3=33, 同理可得f (-1)+f (2)=33,f (-2)+f (3)=33. 由此猜想f (x )+f (1-x )=33. 证明:f (x )+f (1-x )=13x +3+131-x +3=13x +3+3x3+3·3x =13x +3+3x3 3+3x =3+3x3 3+3x=33. 12.(2016·连云港模拟)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论. 解 (1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αc os(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.13.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )的对称中心; (2)计算f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017). 解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f (12)=13×(12)3-12×(12)2+3×12-512=1.由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1).(2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1),所以f (12+x )+f (12-x )=2,即f (x )+f (1-x )=2. 故f (12 017)+f (2 0162 017)=2,f (22 017)+f (2 0152 017)=2, f (32 017)+f (2 0142 017)=2,…,f (2 0162 017)+f (12 017)=2. 所以f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017)=12×2×2 016=2 016.。
1.算法通常是指对一类问题的机械的、统一的求解方法.2.流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.3.三种基本逻辑结构(1)依次进行多个处理的结构称为顺序结构,是任何一个算法都离不开的基本结构.其结构形式为(2)选择结构是先根据条件作出判断,再决定执行哪一种操作的结构.其结构形式为(3)循环结构是指需要重复执行同一操作的结构,需要重复执行的同一操作称为循环体.循环结构又分为当型和直到型.其结构形式为4.赋值语句、输入语句、输出语句赋值语句用符号“←”表示,其一般格式是变量←表达式(或变量),其作用是对程序中的变量赋值;输入语句“Read a,b”表示输入的数据依次送给a,b,输出语句“Print x”表示输出运算结果x.5.算法的选择结构由条件语句来表达,一般是If—Then—Else语句,其一般形式是If A(1)当循环的次数已经确定,可用“For”语句表示“For”语句的一般形式为Step步长”,那么重复循环时,I每次增加1.(2)不论循环次数是否确定都可以用下面循环语句来实现循环结构当型和直到型两种语句结构.当型语句的一般格式是直到型语句的一般格式是【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.(×)(2)流程图中的图形符号可以由个人来确定.(×)(3)输入框只能紧接开始框,输出框只能紧接结束框.(×)(4)选择结构的出口有两个,但在执行时,只有一个出口是有效的.(√)(5)5=x是赋值语句.(×)(6)输入语句可以同时给多个变量赋值.(√)1.已知一个算法:(1)m=a.(2)如果b<m,则m←b,输出m;否则执行第(3)步.(3)如果c<m,则m←c,输出m.否则执行第(4)步.(4)输出m.如果a=3,b=6,c=2,那么执行这个算法的结果是____________.答案 2解析当a=3,b=6,c=2时,依据算法设计,本算法是求a、b、c三个数的最小值,故输出m的值为2.2.(2016·全国甲卷改编)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的流程图,执行该流程图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=________.答案17解析由流程图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件,输出s=17.3.(2016·扬州模拟)执行如图所示的伪代码,输出的结果是________.答案8解析该伪代码运行三次,第一次,I=4,S=4;第二次,I=6,S=24;第三次,I=8,S=192>100,退出循环,故输出的结果为8.4.执行如图所示的流程图,输出的x值为________.答案 6解析该流程图运行三次,第一次,x=4,y=16;第二次,x=5,y=32;第三次,x=6,y =64>10×6+3=63,退出循环,故输出的x值为6.5.执行下面的流程图,若输入的ε的值为0.25,则输出的n的值为________.答案 3解析 第一次循环:F 1=3,F 0=2,n =2; 第二次循环:F 1=5,F 0=3,n =3. 此时1F 1=15=0.2满足1F 1≤ε=0.25,故输出n =3.题型一 顺序结构与选择结构 命题点1 顺序结构例1 如图所示的流程图,根据该图和下列各小题的条件回答下面的几个小题.(1)该流程图解决的是一个什么问题?(2)当输入的x 的值为0和4时,输出的值相等,问当输入的x 的值为3时,输出的值为多大? (3)在(2)的条件下要想使输出的值最大,输入的x 的值应为多大? 解 (1)该流程图解决的是求二次函数f (x )=-x 2+mx 的函数值的问题. (2)当输入的x 的值为0和4时,输出的值相等, 即f (0)=f (4).因为f (0)=0,f (4)=-16+4m , 所以-16+4m =0, 所以m =4,f (x )=-x 2+4x . 则f (3)=-32+4×3=3,所以当输入的x 的值为3时,输出的f (x )的值为3. (3)因为f (x )=-x 2+4x =-(x -2)2+4, 当x =2时,f (x )最大值=4,所以要想使输出的值最大,输入的x 的值应为2. 命题点2 选择结构例2 执行如图所示的流程图,如果输入的t ∈[-1,3],则输出的s 属于________.(填正确序号)①[-3,4] ②[-5,2] ③[-4,3]④[-2,5]答案 ①解析 根据流程图可以得到分段函数s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1, 进而在函数的定义域[-1,3]内分段求出函数的值域.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t 2=-(t -2)2+4,所以此时3≤s ≤4.综上可知,函数的值域为[-3,4],即输出的s 属于[-3,4]. 引申探究若将本例中判断框的条件改为“t ≥1”,则输出的s 的范围是什么?解 根据流程图可以得到,当-1≤t <1时,s =4t -t 2=-(t -2)2+4,此时-5≤s <3; 当1≤t ≤3时,s =3t ∈[3,9].综上可知,函数的值域为[-5,9],即输出的s 属于[-5,9]. 思维升华 应用顺序结构与选择结构的注意点 (1)顺序结构顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的. (2)选择结构利用选择结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.执行如图所示的流程图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.答案 2解析 当条件x ≥0,y ≥0,x +y ≤1不成立时输出S 的值为1;当条件x ≥0,y ≥0,x +y ≤1成立时S =2x +y ,下面用线性规划的方法求此时S 的最大值. 作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分(含边界),由图可知当直线S =2x +y经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2.题型二 循环结构命题点1 由流程图求输出结果例3 (2016·全国乙卷改编)执行如图所示的流程图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足________.答案 y =4x解析 执行题中的流程图,知 第一次进入循环体:x =0+1-12=0,y =1×1=1,x 2+y 2<36; 第二次执行循环体:n =1+1=2,x =0+2-12=12,y =2×1=2,x 2+y 2<36;第三次执行循环体:n =2+1=3,x =12+3-12=32,y =3×2=6,x 2+y 2>36,满足x 2+y 2≥36,故退出循环,输出x =32,y =6,满足y =4x .命题点2 完善流程图例4 (2017·南京月考)如图给出的是计算12+14+16+…+120的值的一个流程图,其中菱形判断框内应填入的条件是________.答案 i >10或i ≥11解析 经过第一次循环得到s =12,i =2,此时的i 不满足判断框中的条件;经过第二次循环得到s =12+14,i =3,此时的i 不满足判断框中的条件;经过第三次循环得到s =12+14+16,i =4,此时的i 不满足判断框中的条件;…;经过第十次循环得到s =12+14+16+…+120,i =11,此时的i 满足判断框中的条件,执行输出,故判断框中的条件是“i >10”或“i ≥11”. 命题点3 辨析流程图的功能例5 根据下面流程图,对大于2的整数n ,输出的数列的通项公式是____________.答案a n=2n解析由流程图可知,第一次运行:i=1,a1=2,S=2;第二次运行:i=2,a2=4,S=4;第三次运行:i=3,a3=8,S=8;第四次运行:i=4,a4=16,S=16.故a n=2n.思维升华与循环结构有关问题的常见类型及解题策略(1)已知流程图,求输出的结果,可按流程图的流程依次执行,最后得出结果.(2)完善流程图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)对于辨析流程图功能问题,可将程序执行几次,即可根据结果作出判断.(2016·四川改编)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的流程图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为________.答案18解析初始值n=3,x=2,程序运行过程如下:v=1i=2v=1×2+2=4i=1v=4×2+1=9i=0v=9×2+0=18i=-1跳出循环,输出v=18.题型三基本算法语句例6阅读下面两个算法的伪代码:执行图1中伪代码的i的结果是________;执行图2中伪代码的i的结果是________.答案4 2解析执行图1中伪代码,得到(i,i(i+1))的结果依次为(1,2),(2,6),(3,12),(4,20),故输出4.执行图2中伪代码的情况如下:i=1,i=i+1=2,i·(i+1)=6<20(是),结束循环,输出2.思维升华解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.(2015·江苏)根据如图所示的伪代码,可知输出的结果S为________.S←1答案7解析I=1,S=1;S=1+2=3,I=1+3=4<8;S=3+2=5,I=4+3=7<8;S=5+2=7,I=7+3=10>8.退出循环,故输出7.12.流程图中变量的取值典例执行如图所示的流程图所表示的程序,则输出的A=________.错解展示解析将每次运算的A值用数列{a n}表示,将开始的A=1看作a0,则a1=2a0+1=1,a2=2a1+1=3,…∴a10=2a9+1=210-1=1 023.答案 1 023现场纠错解析本题计算的是递推数列a0=1,a n+1=2a n+1(n=0,1,2,…)的第11项,{a n+1}是首项为2,公比为2的等比数列,故a10+1=211,故a10=2 047.答案 2 047纠错心得流程图对计数变量及求和变量取值时,要注意两个变量的先后顺序.1.(2016·全国丙卷改编)执行如图所示的流程图,如果输入的a=4,b=6,那么输出的n=________.答案 4解析第一次循环:a=6-4=2,b=6-2=4,a=4+2=6,s=6,n=1;第二次循环:a=4-6=-2,b=4-(-2)=6,a=6-2=4,s=10,n=2;第三次循环:a=6-4=2,b=6-2=4,a=4+2=6,s=16,n=3;第四次循环:a=4-6=-2,b=4-(-2)=6,a=6-2=4,s=20,n=4,满足条件S>16,结束循环,输出4.2.(2016·北京改编)执行如图所示的流程图,输出的S值为________.答案 9解析 ①S =0+03=0,k =0+1=1,满足k ≤2; ②S =0+13=1,k =1+1=2,满足k ≤2; ③S =1+23=9,k =2+1=3,不满足k ≤2,输出9.3.(2015·天津改编)阅读流程图,运行相应的程序,则输出S 的值为________.答案 6解析 运行相应的程序,第一次循环:i =2,S =20-2=18;第二次循环:i =4,S =18-4=14;第三次循环:i =8,S =14-8=6.8>5,终止循环,输出6.4.(2016·南京模拟)阅读流程图,运行相应的程序,则程序运行后输出的结果为__________.答案 9解析 i =1,S =0,第一次循环:S =0+lg 13=-lg 3>-1;第二次循环:i =3,S =lg 13+lg 35=lg 15=-lg 5>-1;第三次循环:i =5,S =lg 15+lg 57=lg 17=-lg 7>-1;第四次循环:i =7,S=lg 17+lg 79=lg 19=-lg 9>-1;第五次循环:i =9,S =lg 19+lg 911=lg 111=-lg 11<-1.故输出9.5.(2017·盐城月考)定义某种运算,a b 的运算原理如图所示.设S =x ,x ∈[-2,2],则输出的S 的最大值与最小值的差为________.答案 2解析 由题意可得,S (x )=⎩⎪⎨⎪⎧|x |,-2≤x ≤1,1,1<x ≤2,∴S (x )max =2,S (x )min =0, ∴S (x )max -S (x )min =2.6.给出一个算法的流程图(如图所示),该流程图的功能是________.①输出a ,b ,c 三数中的最大数 ②输出a ,b ,c 三数中的最小数 ③将a ,b ,c 按从小到大排列 ④将a ,b ,c 按从大到小排列 答案 ②解析 先比较a ,b 的值,把较小的值赋值给a ;再比较a ,c 的值,把较小的值赋值给a ,输出a .故②正确.7.(2016·南通模拟)如图是一个算法流程图,则输出的k 的值是________.答案17解析该算法流程图循环三次,k的值依次是1,3,17,故输出的k的值是17.8.如图所示,该伪代码运行的结果为________.答案11解析该伪代码运行5次,依次为S=1,i=3;S=4,i=5;S=9,i=7;S=16,i=9;S=25,i=11,此时循环结束,故输出11.9.对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:8个数据的平均数),则输出的S的值是________.答案 7解析 本题计算的是这8个数的方差,因为 a =40+41+43+43+44+46+47+488=44,所以S =(-4)2+(-3)2+(-1)2+(-1)2+02+22+32+428=7.10.如图(1)(2)所示,它们都表示的是输出所有立方小于1 000的正整数的流程图,那么应分别补充的条件为:(1)____________; (2)______________.答案 (1)n 3<1 000 (2)n 3≥1 000解析 第一个图中,n 不能取10,否则会把立方等于1 000的正整数也输出了,所以应该填写n 3<1 000;第二个图中,当n ≥10时,循环应该结束,所以填写n 3≥1 000.11.给出一个如图所示的流程图,若要使输入的x 值与输出的y 值相等,则这样的x 值是________.答案 0,1,3解析 根据题意,本流程图表示分段函数:y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5,由于输入的x 值与输出的y 值相等, 由x 2=x 解得x =0或x =1,都满足x ≤2; 由x =2x -3解得x =3,也满足2<x ≤5; 由1x =x 解得x =±1,都不在x >5内,舍去. 可见满足条件的x 共三个:0,1,3.12.(2016·泰州质检)某流程图所给的程序运行结果为20,那么判断框中应填入的关于k 的条件是________.答案 k >8解析 由题意可知输出结果为20,第1次循环,S =11,k =9,第2次循环,S =20,k =8,此时S 满足输出结果,退出循环,所以判断框中的条件为“k >8”. 13.(2016·扬州模拟)执行如图所示的流程图,则输出k 的值为________.答案 3解析 该流程图运行三次,第一次循环,n =6,k =1;第二次循环,n =3,k =2;第三次循环,n =1,k =3,结束循环,故输出的k 的值是3.14.已知函数f (x )=ax 3+12x 2在x =-1处取得极大值,记g (x )=1f ′(x ).流程图如图所示,若输出的结果S >2 0152 016,则判断框中可以填入的关于n 的判断条件是________.(填序号)①n ≤2 015 ②n ≤2 016 ③n >2 015 ④n >2 016 答案 ②解析 由题意得f ′(x )=3ax 2+x ,由f ′(-1)=0, 得a =13,∴f ′(x )=x 2+x ,即g (x )=1x 2+x =1x (x +1)=1x -1x +1. 由流程图可知S =0+g (1)+g (2)+…+g (n ) =0+1-12+12-13+…+1n -1n +1=1-1n +1=n n +1, 由n n +1>2 0152 016,得n >2 015. 故可填入②.。
课外拓展阅读 归纳、猜想、证明[典例] [2016·江西九江模拟]设数列{a n }的前n 项和为S n ,并且满足2S n =a 2n +n ,a n >0(n ∈N *).(1)猜想{a n }的通项公式,并用数学归纳法加以证明;(2)设x >0,y >0,且x +y =1,证明:a n x +1+a n y +1≤2n +2.[审题视角] (1)将n =1,2,3代入已知等式得a 1,a 2,a 3,从而可猜想a n ,并用数学归纳法证明.(2)利用分析法,结合x >0,y >0,x +y =1,利用基本不等式可证.(1)[解] 分别令n =1,2,3,得⎩⎪⎨⎪⎧ 2a 1=a 21+12a 1+a 2=a 22+22a 1+a 2+a 3=a 23+3,∵a n >0,∴a 1=1,a 2=2,a 3=3.猜想:a n =n .∵2S n =a 2n +n ,①当n ≥2时,2S n -1=a 2n -1+(n -1).②①-②,得2a n =a 2n -a 2n -1+1,即a 2n =2a n +a 2n -1-1.(ⅰ)当n =2时,a 22=2a 2+12-1,∵a 2>0,∴a 2=2.(ⅱ)假设当n =k (k ≥2)时,a k =k ,那么当n =k +1时,a 2k +1=2a k +1+a 2k -1=2a k +1+k 2-1, ∴[a k +1-(k +1)][a k +1+(k -1)]=0,∵a k +1>0,k ≥2,∴a k +1+(k -1)>0,∴a k +1=k +1.即当n =k +1时也成立.∴a n =n (n ≥2).显然n =1时,也成立,故对于一切n ∈N *,均有a n =n .(2)[证明] 要证nx +1+ny +1≤2n +2, 只要证nx +1+2nx +1ny +1+ny +1≤2(n +2). 即n (x +y )+2+2n 2xy +nx +y +1≤2(n +2), 将x +y =1代入,得2n 2xy +n +1≤n +2,即只要证4(n 2xy +n +1)≤(n +2)2,即4xy ≤1.2 ∵x >0,y >0,且x +y =1, ∴xy ≤x +y 2=12, 即xy ≤14,故4xy ≤1成立, 所以原不等式成立.[答题模板]第1步:寻找特例a 1,a 2,a 3等.第2步:猜想a n 的公式.第3步:转换递推公式为a n 与a n -1的关系.第4步:用数学归纳法证明a n .①验证递推公式中的第一个自然数n =2.②推证a k +1的表达式为k +1.③补验n =1,说明对于n ∈N *成立.第5步:分析法证明.[方法点睛] (1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳——猜想——证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)为了正确地猜想a n ,首先准确求出a 1,a 2,a 3的值.(3)证明n =k 到n =k +1这一步时,忽略了假设条件去证明,造成不是纯正的数学归纳法.如本题:∵2S n -1=a 2n -1+n -1,∴2(S n -S n -1)=a 2n -a 2n -1+1,推导a n 与a n -1的递推关系,再推出a n ,则不是数学归纳法.(4)本题第(2)问中的不等式证明不是关于n 的不等式,由x +y =1来推证,则不能称为数学归纳法.。