概率论期中考试试卷及答案
- 格式:doc
- 大小:150.50 KB
- 文档页数:5
概率论与数理统计期中试题(一)《概率论与数理统计》期中试题(一)姓名班级学号成绩一、填空题(每小题4分,共12分)1.设事件仅发生一个的概率为0.3,且,则至少有一个不发生的概率为__________.2.设随机变量服从泊松分布,且,则______.3.设随机变量在区间上服从均匀分布,则随机变量在区间内的概率密度为_________.二、单项选择题(每小题4分,共16分)1.设为三个事件,且相互独立,则以下结论中不正确的是(A)若,则与也独立. (B)若,则与也独立.(C)若,则与也独立.(D)若,则与也独立. ()2.设随机变量的分布函数为,则的值为(A). (B). (C). (D). ()3.设随机变量和不相关,则下列结论中正确的是(A)与独立. (B).(C). (D).4.设离散型随机变量和的联合概率分布为若独立,则的值为(A). (A). (C)(D). ()三、(12分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差.五、(12分)设二维随机变量在区域上服从均匀分布. 求关于的边缘概率密度;六、(12分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离的数学期望.七、(12分)设, 求的概率密度.Y X0200.10.2010.30.050.120.1500.1八、(12分)已知离散型随机向量的概率分布为求.。
概率论考试题和答案一、选择题(每题5分,共20分)1. 随机变量X服从标准正态分布,下列哪个选项是正确的?A. P(X > 0) = 0.5B. P(X < 0) = 0.5C. P(X = 0) = 0.5D. P(|X| > 1) = 0.5答案:A2. 如果随机变量X服从参数为λ的泊松分布,那么E(X)等于:A. λB. 2λC. λ^2D. 1/λ答案:A3. 假设随机变量X和Y是独立的,且X服从正态分布N(0,1),Y服从正态分布N(1,4),那么Z = X + Y的期望值E(Z)是:A. 1B. 0C. 2D. 4答案:A4. 对于二项分布B(n, p),其方差Var(X)是:A. npB. np(1-p)C. nD. p答案:B二、填空题(每题5分,共20分)5. 如果随机变量X服从均匀分布U(a, b),那么X的期望值E(X)是_________。
答案:(a+b)/26. 假设随机变量X服从正态分布N(μ, σ^2),那么X的标准差是_________。
答案:σ7. 对于参数为p的伯努利分布,其方差Var(X)是_________。
答案:p(1-p)8. 如果随机变量X服从指数分布Exp(λ),那么X的期望值E(X)是_________。
答案:1/λ三、计算题(每题15分,共30分)9. 已知随机变量X服从正态分布N(2, 4),求P(X < 0)。
答案:因为X服从正态分布N(2, 4),所以X的均值μ=2,方差σ^2=4,标准差σ=2。
我们需要求P(X < 0),即求标准正态分布下,Z < (0-2)/2 = -1的概率。
根据标准正态分布表,P(Z < -1) ≈ 0.1587。
所以,P(X < 0) ≈ 0.1587。
10. 假设随机变量X服从参数为λ=2的泊松分布,求E(X)和Var(X)。
答案:因为X服从泊松分布,所以E(X) = λ = 2,Var(X) = λ = 2。
概率论与数理统计期中考试试题1一.选择题(每题4分,共20分)1.设,,A B C 为三个随机事件,,,A B C 中至少有一个发生,正确的表示是( ) A. ABC B. ABC C. AB C D. A B C2.一个袋子中有5个红球,3个白球,2个黑球,现任取三个球恰为一红,一白,一黑的概率为 ( ) A.12 B. 14 C. 13 D. 153.设,A B 为随机事件,()0.5,()0.6,(|)0.8P A P B P B A ===,则()P AB =( )A .0.7 B. 0.8 C. 0.6 D. 0.44. 一电话总机每分钟收到呼唤的次数服从参数为2的泊松分布,则某一分钟恰有4次呼唤的概率为( )A.423e - B. 223e - C. 212e - D. 312e - 5.若连续性随机变量2(,)X N μσ,则X Z μσ-= ( )A .2(,)ZN μσ B. 2(0,)Z N σ C. (0,1)ZN D. (1,0)Z N二. 填空题(每题4分,共20分)6. 已知1()2P A =,且,A B 互不相容,则()P AB =7. 老张今年年初买了一份为期一年的保险,保险公司赔付情况如下:若投保人在投保后一年内因意外死亡,则公司赔付30万元;若投保人因其他原因死亡,则公司赔付10万元;若投保人在投保期末生存,则公司无需付给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其他原因死亡的概率为0.0050,则保险公司赔付金额为0元的概率为 8. 设连续性随机变量X 具有分布函数0,1()ln ,11,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩则概率密度函数()f x = 9. 设连续型随机变量2(3,2)XN ,则{}2<5P X ≤=(注: (1)=0.8413,(0.5)=0.6915φφ)10. 设离散型随机变量X 的分布律为10120.20.30.10.4X-⎛⎫ ⎪⎝⎭,则2(1)Y X =-的分布律为三.解答题(每题8分,共48分)11. 将9名新生随机地平均分配到两个班级中去,这9名新生中有3名是优秀生。
《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2345C 68.将3个球放入5个盒子中,则3个盒子中各有一球的概率为=________.9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是=.10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度2f Y (y )=________.11.设二维随机变量(X ,Y )的概率密度f (x ,y )=⎩⎨⎧≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫ ⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+.(-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立;(3){0}P X Y +<;(4)1X Y =的条件分布律;(5)相关系数,X Y ρ18.(8分)设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975.(1)求每次测量中误差绝对值大于19.6的概率p ;(2)问Y 服从何种分布,并写出其分布律;求E (Y ).1取出的3件中恰有一件次品的概率为( )A .601B .457C .51D .157 2.下列选项不正确的是()A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为42100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41B .31C .21D .32 4.若随机变量,X Y 不相关,则下列等式中不成立的是.A5A 6A 79.设随机变量X ~E (1),且21Y X =-,则Y 的概率密度f Y (y )=________.10.设随机变量X ~B (4,32),则{}1P X <=___________. 11.已知随机变量X 的分布函数为0,6;6(),66121,6,x x F x x x ≤-⎧⎪+⎪=-<<⎨⎪≥⎪⎩,则X 的概率密度p (x )=______________.12.设二维随机变量(,)X Y 的协方差矩阵是90.60.625⎛⎫⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y =-+. 14.随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()3Y y f y ⎧-<<⎪=⎨,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z = 试求:(1)常数α,β;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是6否独立;(3)X 的分布函数F(x);(4){1}P X Y +<;(5)1X Y =的条件分布律;(6)相关系数,X Y ρ18.(8分)设顾客在某银行窗口等待服务的时间X (单位:分钟)具有概率密度()3103x e x p x -⎧>⎪=⎨,;某顾客在窗口等待服务,若超过9分钟,他就离视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A.互为对立事件一定是互不相容的B.互为独立的事件一定是互不相容的C.互为独立的随机变量一定是不相关的 D.不相关的随机变量不二、填空题:(每小题2分,共18分)7.同时扔4枚均匀硬币,则至多有一枚硬币正面向上的概率为________.8.将3个球放入6个盒子中,则3个盒子中各有一球的概率为=________.89.从a 个白球和b 个黑球中不放回的任取3次球,第3次取的黑球的概率是=.10.公共汽车站每隔5分钟有一辆汽车到站,乘客到站的时刻是任意的,则一个乘客候车时间不超过3分钟的概率为 (1,2,9,16,0)N -;2Z X =-. 率密度函数51,050,0x e x x ->≤的概率密,(,)X Y 相互独立,且X Y +的概率密度函数为(z f 在某区域有一架飞机,雷达以99%的概率探测到并报警。
《概率论与数理统计》期中试题(二)解答姓名 班级 学号 成绩一、填空题(每小题4分,共13分)(1) 设()0.5P A =,()0.6P B =,(|)0.8P B A =,则,A B 至少发生一个的概率为_________.(2) 设X 服从泊松分布,若26EX =,则(1)P X >=___________. (3) 元件的寿命服从参数为1100的指数分布,由5个这种元件串联而组成的系统,能够正常工作100小时以上的概率为_____________.解:(1)()()()0.8(|)1()0.5P BA P B P AB P B A P A -===- 得 ()0.2P AB = ()()()() 1.10.20.9P A B P A P B P AB =+-=-= . (2)222~(),6()X P EX DX EX λλλ==+=+ 故 2λ=. (1)1(1)1(0)(1)P X P X P X P X >=-≤=-=-=2221213e e e ---=--=-. (3)设第i 件元件的寿命为i X ,则1~(),1,2,3,4,5100i X E i =. 系统的寿命为Y ,所求概率为125(100)(100,100,,100)P Y P X X X >=>>> 51551[(100)][11].P X e e --=>=-+=二、单项选择题(每小题4分,共16分)(1),,A B C 是任意事件,在下列各式中,不成立的是 (A )()A B B A B -= .(B )()A B A B -= .(C )()A B AB AB AB -= .(D )()()()A B C A C B C =-- . ( )(2)设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =+是某一随机变量的分布函数,在下列给定的各组数值中应取(A )32,55a b ==-. (B )22,33a b ==. (C )13,22a b =-=. (D )13,22a b ==. ( )(3)设随机变量X 的分布函数为()X F x ,则35Y X =-的分布函数为()Y F y =(A )(53)X F y -. (B )5()3X F y -.(C )3()5X y F +. (D )31()5X yF --. ( ) (4)设随机变量12,X X 的概率分布为101111424i X P- 1,2i =. 且满足12(0)1P X X ==,则12,X X 的相关系数为12X X ρ=(A )0. (B )14. (C )12. (D )1-. ( ) 解:(1)(A ):成立,(B ):()A B A B A B -=-≠ 应选(B )(2)()1F a b +∞==+. 应选(C ) (3)()()(35)((3)/5)Y F y P Y y P X y P X y =≤=-≤=>- 331()1()55X y yP X F --=-≥=- 应选(D ) (4)12(,)X X 的分布为12120,0,0EX EX EX X ===,所以12cov(,)0X X =, 于是 120X X ρ=. 应选(A )三、(12分)在一天中进入某超市的顾客人数服从参数为λ的泊松分布,而进入超市的每一个人购买A 种商品的概率为p ,若顾客购买商品是相互独立的, 求一天中恰有k 个顾客购买A 种商品的概率。
《概率论与数理统计》课程期中试卷班级 姓名 学号____________ 得分注意:答案写在答题纸上,标注题号,做在试卷上无效。
考试不需要计算器。
一、选择题(每题3分,共30分)1. 以A 表示事件“泰州地区下雨或扬州地区不下雨”,则其对立事件A :( ) A .“泰州地区不下雨” B .“泰州地区不下雨或扬州地区下雨” C .“泰州地区不下雨,扬州地区下雨” D .“泰州、扬州地区都下雨”2. 在区间(0,1)中任取两个数,则事件{两数之和小于25}的概率为( ) A .225 B .425 C .2125 D .23253. 已知()0.7P A =,()0.5P B =,()0.3P A B -=,则(|)P A B =( ) A .0.5 B . 0.6 C .0.7 D . 0.84. 设()F x 和()f x 分别是某随机变量的分布函数和概率密度,则下列说法正确的是( ) A .()F x 单调不增 B . ()()xF x f t dt -∞=⎰C .0()1f x ≤≤D .() 1 F x dx +∞-∞=⎰.5. 设二维随机变量(,)X Y 的概率分布为已知随机事件{X = A . a=0.2,b=0.3 B . a=0.4,b=0.1 C . a=0.3,b=0.2 D . a=0.1,b=0.4 6. 已知()0.7P A =,()0.5P B =,(|)0.8P A B =,则()P A B -=( ) A .0.1 B . 0.2 C .0.3 D . 0.47. 设两个随机变量X 和Y 相互独立且同分布:{}{}1112P X P Y =-==-=,{}{}1112P X P Y ====,则下列各式成立的是( ) A .{}12P X Y ==B {}1P X Y ==C .{}104P X Y +==D .{}114P XY == 8. 设随机变量~(2,),~(3,),X B p Y B p 若19{1}27P Y ≥=,则{1}P X ≥= ( ) A .13 B .23 C .49D .599. 连续随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,)(x x x x x f ,则随机变量X 落在区间 (0.4, 1.2) 内的概率为( )A .0.42B .0.5C .0.6D .0.64 10. 将3粒红豆随机地放入4个杯子,则杯子中盛红豆最多为一粒的概率为( ) A .332B .38C .116D .18二、填空题(每题4分,共20分)11. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = . 12. 设随机变量X 服从参数为1的泊松分布,则{3}P X == . 13. 某大楼有4部独立运行的电梯,在某时刻T ,各电梯正在运行的概率均为43,则在此时刻恰好有1个电梯在运行的概率为 .14. 某种型号的电子的寿命X (以小时计)的概率密度210001000()0x f x x ⎧>⎪=⎨⎪⎩其它任取1只,其寿命大于2500小时的概率为 .15. 设随机变量X 的分布函数为:0(1),0.2(12),()0.5(23),1(3).x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≤⎩当时当时当时当时则 X 的分布律为 . 三、解答题(每题10分,共50分)16. 已知0.30.40.5+P A P B P AB P A A B ===()()()(|),,,求17. 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i i X i ⎧=⎨⎩第次取出红球第次取出白球,1,2i =. 在不放回模式下求12,X X 的联合分布律, 并考虑独立性(要说明原因).18. 某工厂有两个车间生产同型号家用电器,第1车间的次品率为0.15,第2车间的次品率为0.12.两个车间生产的成品都混合堆放在一个仓库中,假设1、2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提台产品,求该产品合格的概率.19. 设某城市成年男子的身高()2~170,6X N (单位:cm )(1)问应如何设计公交车车门高度,使得男子与车门碰头的概率小于0.01? (2)若车门高为182cm ,求100个成年男子中没有人与车门顶碰头的概率. ( 2.330.9920.9772Φ=Φ=(),())20. 已知随机变量(,)X Y 的分布律为问:(1)当,αβ为何值时,X 和Y 相互独立;(2)在上述条件下。
概率论期中考试试卷及答案1、将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球、 解:把4个球随机放入5个盒子中共有45=625种等可能结果、 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P(A)=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法4个球中取2个放在一个盒子里,其她2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果、 故12572625360)(==B P2、某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时与2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。
解:设x,y 分别为两船到达码头的时刻。
由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω。
设A 为“两船不碰面”,则表现为阴影部分。
222024,024024,024,2111()24576,()2322506.522()()0.8793()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===⨯+⨯===Ω={(x,y)},A={(x,y)或},有所以,3、设商场出售的某种商品由三个厂家供货,其供应量之比就是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求:(1) 该件商品就是次品的概率。
(2) 该件次品就是由第一厂家生产的概率。
解:厦门大学概统课程期中试卷____学院___系___年级___专业考试时间 2013、11、81231122331,(1)()()(|)()(|)()(|)=60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024(2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++=设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知111()()(|)60%*(1-98%)()()0.024 =0.5P AB P B P A B P A P A ==4、甲乙丙三台机床独立工作,在同一时间内她们不需要工人照顾的概率分别为0、7,08,0、9,求在这段时间内,最多只有一台机床需人照顾的概率。
1.将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.
解:
把4个球随机放入5个盒子中共有45=625种等可能结果. (1)A={4个球全在一个盒子里}共有5种等可能结果,故
P(A)=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有
30
2415=C C 种方法
4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法
因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故
12572
625360)(=
=B P
2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。
解:
设x,y 分别为两船到达码头的时刻。
由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω。
设A 为“两船不碰面”,则表现为阴影部分。
222024,024024,024,2111
()24576,()2322506.522
()
()0.8793
()
x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===⨯+⨯===Ω={(x,y)},
A={(x,y)或},有所以,
3.设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求:
(1) 该件商品是次品的概率。
(2) 该件次品是由第一厂家生产的概率。
厦门大学概统课程期中试卷
____学院___系___年级___专业
考试时间 2013.11.8
解:
1231122331,
(1)
()()(|)()(|)()(|)
=60%*(1-98%)+20%*(1-98%)+20%*(1-96%)
=0.024(2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++=
设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知
111()()(|)60%*(1-98%)
()()0.024
=0.5P AB P B P A B P A P A ==
4.甲乙丙三台机床独立工作,在同一时间他们不需要工人照顾的概率分别为0.7,08,0.9,求在这段时间,最多只有一台机床需人照顾的概率。
解:
设123A A A 、、分别代表这段时间甲、乙、丙机床需要照管,i B 代表这段时间恰有i 台机床需要照管,i=0、1.
显然,0B 与1B 互斥,123A A A 、、相互独立。
并且:
123012312311231231230101(=(=(=(=((((=(=(+(+(=+(=((P A P A P A P B P A A A P A P A P A P B P A A A P A A A P A A A P B B P B P B ⨯⨯⨯⨯⨯⨯⨯⨯⋃+)0.3、)0.2、)0.1
))=)))=0.70.80.90.504,))))
0.30.80.90.70.20.9+0.70.80.1=0.398故最多只有一台机床需要照顾的概率为:)))=0.902
5.设顾客在某银行的窗口等候服务的时间 X (以分钟计)服从参数为1/5的指数分布,某顾客在窗口等候服务,若超过10 分钟,他就离开.他一月要到银行5 次,以Y 表示一个月他未等到服务而离开的次数,试计算P {Y ≥ 1}. 解:
15
125
10
20202551,0
()5
0,015(10),
5~(5,)
(1)1(0)1()(1-)=1-0.4833=0.5167
x x e x X f x x Y n p P X e dx e Y B e P Y P Y C e e -+∞
-----⎧>⎪=⎨⎪≤⎩
==>==≥=-==-⨯⎰的密度函数为为伯努利概型,其中,,即
6. 某种电池的寿命X (单位:小时)是一个随机变量,服从μ = 300,σ = 35 的正态分布,求这样的电池寿命在250 小时以上的概率,并求一允许限x ,使得电池寿命在(300 – x ,300 + x )的概率不小于0.9.
(1.4286)0.9236;(1.65)0.95Φ=Φ=
解:
22~()=(30035)250300
(250)1(250)1()1( 1.4286)35
(1.4286)0.9236
(300300)(300)(300)(
)()2()10.9353535()0.95351.6557.7535X N N P X F P x X x F x F x x x x
x
x
x μσ-≥=-=-Φ=-Φ-=Φ=-<<+=+--=Φ-Φ-=Φ-≥Φ≥≥≥因,,故又即;
故,
7. 设随机变量X 在区间 (−1, 2)上服从均匀分布,求2x Y e = 的密度函数 解:
2-24-2
4
-241
,12
~(12)()3
0,1
,,
2111(),3261,6()0,X x Y Y x X U X f x dx Y e e y e dy y f y e y e y y e y e
y
Y f y ⎧-<<⎪-=⎨⎪⎩==<<==<<⎧<<⎪=⎨⎪⎩
因,,有的密度函数为其他
又因为严格单增,且-1<x<2时,有则故的密度函数为其他
8.假定某人浏览时独立且随机点击任意,点击甲概率为p ,(0<p<1)。
浏览进行到点击甲两次为止,用X 表示直至第一次点击甲为止所点击的次数,以Y 表示此次浏览点击的总次数,试求(X,Y )的联合分布律及X 与Y 的条件分布律。
解:
各次点击是独立的,对任意的m,n(m<n),有 2222
1
1
12
11
1
22
1
1
22,)(,=(1),1,2,,1;2,3
,)(=
(,=
(1)(1)(1),1,2,
(=(,=(1)(1)(1)n n n m n m m m n n n m m n X Y P X m Y n p p m n n X Y X Y P X m P X m Y n p p p p p p m p P Y n P X m Y n p p n p p -∞
∞
-=+=+-----==-==-=-====--==-====-=--∑
∑
∑
∑故(的联合分布律为
)(关于及的边缘分布律为))))2222
22
11
,2,32,3(1)1(==,1,2,,1;
(1)(1)11,2,
(1)(==(1),1,2,(1)
n n n n m m n X Y n p p P X m Y n m n n p p n m p p P Y n X m p p n m m p p ------==-===----=-==-=++
-故、条件分布律分别为:当时
)当时
)
9.设二维随机变量 ),(Y X 的联合概率密度为01,01
(,)0
cxy x y f x y <<<<⎧=⎨⎩其它
(其中c 为常数)
求: (1)常数C
(2)求关于,X 关于Y 的边缘概率密度() ()X Y F x F y ,
(3)求12P X Y ⎧
⎫+>⎨⎬⎩
⎭的概率
解:
1
1
0101
(1) (,)1
1 *1
42 (0,1)
(2) () =(,)0 (0,1)2 ( () =(,)x y x y X Y f x y dxdy cxydxdy c dx xydy c x x f x f x y dy x y x f y f x y dx -∞<<+∞-∞<<+∞
<<<<+∞-∞+∞
-∞
====∈⎧=⎨
∉⎩∈=⎰⎰
⎰⎰⎰⎰⎰⎰
由密度函数性质可知因此 01/2
01/2
11/20
0,1)
0 (0,1)
11(3) =1-=1-(,)22111
1-411212
x y x
x P X Y P X Y f x y dxdy
dx xydy <<<<-⎧⎨
∉⎩⎧⎫⎧
⎫+>+≤⎨⎬⎨⎬⎩⎭⎩⎭==-
=⎰⎰⎰⎰。