四川省简阳市石板学区16—17学年下学期八年级期中考试数学试题(附答案)
- 格式:doc
- 大小:287.50 KB
- 文档页数:7
中学二片区2016—2017学年下期半期考试2018级数学试题(考试时间:120分钟 满分120分)一、选择题(本大题共8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一个正确选项。
1.在中,分式的个数是( ▲ )A .2B .3C .4D .52.函数y=的自变量x 的取值范围是( ▲ )A .x >1B .x <1C .x ≥1D .x ≤13.当分式33||+-x x 的值为零时,x 的值为( ▲ ) A.0 B.3 C.-3 D.±3 4.已知双曲线xm y 3-=位于二,四象限,则m 的取值范围( ▲ ) A. 3≥m B. 3>m C. 3≤m D. 3<m 5. 已知关于x 的方程11=+x a的解为负数,则a 的取值范围是( ▲ ) A. 1<a 且 0≠a B. 1<a C. 1≤a D. 1≤a 且0≠a 6.函数x k y =的图象经过点(4-,6),则下列各点中,在函数xky =图象上的是( ▲ )A .(3,8)B .(3,8-)C .(8-,3-)D .(4-,6-) 7.“五一”期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 ( ▲ )A .32180180=+-x x B .31802180=-+x x C .32180180=--x xD .31802180=--xx8.如图,某天早晨王老师沿⊙M 的半圆形M→A→B→M 路径匀速散步,点M 的距离y 与时间x 之间的函数关系的大致图象是( ▲ )二、填空题(本大题共8个小题,每小题3分,共24分)9.“肥皂泡厚度约为0.00000072米”,看0.00000072用科学记数法表示此数为 ▲ .10.若点P (3,m 21-)在第四象限,则m 的取值范围是 ▲ . 11.计算:=-+-ab bb a a 22 ▲ . 12.将直线y=3x ﹣1向下平移3个单位,得到的直线的函数式是__▲___.13.若234a b c ==,则32a b ca b c-+++= ▲ . 14.己知点M (m ,4)在函数xy 12-=的图象上,则m = ▲ .15.汽车行驶前,油箱中有油55升,已知每千米汽车耗油10升, 油箱中的余油量Q(升)与行驶距离X(千米) 之间的函数关系式是 ▲ ;为了保证行车安全,油箱中至少存油5升,则汽车最多可行驶 ▲ 千米. 16.如图,已知反比例函数1y x=的图象,当x 取1,2,3,…,n 时, 对应在反比例图象上的点分别为M 1,M 2,M 3…,M n ,则:112223n 1n 1n P M M P M M P M M S S S --∆∆∆++⋯+= ▲ .(结果用n 表示)三、解答题(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤. 17.计算(每小题5分,共10分)(1)012)2017()21(2-++--π (2)111122----÷-a a a a a a 18.(每小题6分,共12分) (1)解方程: 283111x x x ++=--x16题图(2)先化简,再求值:12)11(2232+-+÷---+x x x x x x x x 其中x 是22≤<-x 的整数19.(共9分)已知一次函数1)21(-+-=m x m y ,当m 取何值时(1)函数图像与y 轴交于点(0,-5); (2)函数y 随x 的增大而减小; (3)函数图像不经过一象限.20.(8分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y (km )与自行车队离开甲地时间x (h )的函数关系图象,请根据图象提供的信息解答下列各题:(1)甲地到乙地的距离是 km; (2)自行车队行驶的速度是 km/h ; (3)邮政车出发多少小时与自行车队首次相遇?21.(8分)已知直线b kx y +=与双曲线xmy =交于A(1,3),B(n ,-1),如图(1) 求直线和双曲线函数解析式; (2) 求 AOB ∆的面积22.(6分)列方程解应用题:某公司拟为灾区援建一所希望学校.公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建校工程的时间是乙工程队的1.5倍,甲、乙两队合作完成建校工程需要72天.甲、乙两队单独完成建校工程各需多少天?23.(7分)某学校常需要用车,但不准备买车,学校准备和一出租车公司签订月租合同,甲出租车公司每月需缴1200元月租费,然后每行驶1千米,再付车费0.2元,乙出租车公司不缴月租费,每行驶1千米,付车费1.2元.若汽车月行x 千米,应付给甲、乙出租车公司的月费用分别是21,y y 元。
人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
初二数学期中考试试卷及答案初二数学期中考试试卷及答案数学期中考试的试卷有哪些试题?这些试题的答案是?下面店铺给大家带来初二数学期中考试试卷及答案,欢迎大家阅读。
初二数学期中考试试卷及答案一、填空题(每小题2分,共24分)1.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.用字母表示的实数m﹣2有算术平方根,则m取值范围是m≥2.【分析】根据用字母表示的实数m﹣2有算术平方根,可得m﹣2≥0,据此求出m取值范围即可.【解答】解:∵用字母表示的实数m﹣2有算术平方根,∴m﹣2≥0,解得m≥2,即m取值范围是m≥2.故答案为:m≥2.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来.3.点P(﹣4,1)x轴对称的点的坐标是(﹣4,﹣1).【分析】根据点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y)求解.【解答】解:点P(﹣4,1)关于x轴对称的点的坐标为(﹣4,﹣1).故答案为(﹣4,﹣1).【点评】本题考查了关于x轴、y轴对称的点的坐标:点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).4.用四舍五入法把9.456精确到百分位,得到的近似值是9.46.【分析】把千分位上的数字6进行四舍五入即可.【解答】解:9.456≈9.46(精确到百分位).故答案为9.46.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.5.如图,△ABC≌△DEF,则DF=4.【分析】根据全等三角形的对应边相等解答即可.【解答】解:∵△ABC≌△DEF,∴DF=AC=4,故答案为:4.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.6.已知函数是正比例函数,且图象在第二、四象限内,则m的值是﹣2.【分析】当函数的图象经过二、四象限可得其比例系数为负数,据此求解.【解答】解:∵函数是正比例函数,∴m2﹣3=1且m+1≠0,解得m=±2.又∵函数图象经过第二、四象限,∴m+1<0,解得m<﹣1,∴m=﹣2.故答案是:﹣2.【点评】此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.7.已知a<<b,且a,b为两个连续整数,则a+b=7.< p="">【分析】求出的范围:3<<4,即可求出ab的值,代入求出即可.【解答】解:∵3<<4,a<<b,< p="">∵ab是整数,∴a=3,b=4,∴a+b=3+4=7,故答案为:7.【点评】本题考查了对无理数的大小比较的应用,解此题的关键是求出的范围.8.已知函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是x<2.【分析】直接利用函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【解答】解:如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点评】此题主要考查了函数与一元不等式,正确利用数形结合是解题关键.9.如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D点,则弹性皮筋被拉长了8cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB 即为橡皮筋拉长的距离.【解答】解:根据题意得:AD=BD,AC=BC,AB⊥CD,则在Rt△ACD中,AC=AB=6cm,CD=8cm;根据勾股定理,得:AD===10(cm);所以AD+BD﹣AB=2AD﹣AB=20﹣12=8(cm);即橡皮筋被拉长了8cm;故答案为:8cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用;熟练掌握等腰三角形的性质,由勾股定理求出AD是解决问题的关键.10.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是9,则DP的长是3.【分析】作DE⊥BC,交BC延长线于E,如图,则四边形BEDP 为矩形,再利用等角的余角相等得到∠ADP=∠CDE,则可利用“AAS”证明△ADP≌△CDE,得到DP=DE,S△ADP=S△CDE,所以四边形BEDP为正方形,S四边形ABCD=S矩形BEDP,根据正方形的面积公式得到DP2=9,易得DP=3.【解答】解:作DE⊥BC,交BC延长线于E,如图,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中,∴△ADP≌△CDE,∴DP=DE,S△ADP=S△CDE,∴四边形BEDP为正方形,S四边形ABCD=S矩形BEDP,∴DP2=9,∴DP=3.故答案为3.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了正方形的性质和勾股定理.本题的`关键的作辅助线构造两个全等的三角形.11.如图,已知点P为∠AOB的角平分线上的一定点,D是射线OA上的一定点,E是OB上的某一点,满足PE=PD,则∠OEP与∠ODP的数量关系是∠OEP=∠ODP或∠OEP+∠ODP=180°.【分析】以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,根据SAS证△E2OP≌△DOP,推出E2P=PD,得出此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB 于另一点E1,连接PE1,根据等腰三角形性质推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.【解答】解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由如下:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,如图所示:∵在△E2OP和△DOP中,,∴△E2OP≌△DOP(SAS),∴E2P=PD,即此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生的猜想能力和分析问题和解决问题的能力,题目具有一定的代表性,是一道比较好的题目.12.如图,直线y=x+2于x、y轴分别交于点A、B两点,以OB 为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C移动的距离为+1.【分析】先求出直线y=x+2与y轴交点B的坐标为(0,2),再由C在线段OB的垂直平分线上,得出C点纵坐标为1,将y=1代入y=x+2,求得x=﹣1,即可得到C′的坐标为(﹣1,1),进而得出点C 移动的距离.【解答】解:∵直线y=x+2与y轴交于B点,∴x=0时,得y=2,∴B(0,2).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为1.将y=1代入y=x+2,得1=x+2,解得x=﹣1.故C点到y轴的距离为:,故点C移动的距离为:+1.故答案为:+1.【点评】本题考查了函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化﹣平移,得出C点纵坐标为1是解题的关键.二、选择题(每小题3分,共24分)13.在平面直角坐标系中,点P(﹣2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】点P的横坐标为负,在y轴的左侧,纵坐标为正,在x轴上方,那么可得此点所在的象限.【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,1)在第二象限,故选B.【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.14.在实数0、π、、、﹣、3.1010010001中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数,根据无理数的定义逐个判断即可.【解答】解:无理数有:π、,共2个,故选B.【点评】此题主要考查了无理数的定义,其中初中范围内的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.以下图形中对称轴的数量小于3的是()A.B.C.D.【分析】根据对称轴的概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选D.【点评】本题考查了轴对称图形,解答本题的关键是掌握对称轴的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.16.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A:∠B:∠C=l:2:3B.三边长为a,b,c的值为1,2,C.三边长为a,b,c的值为,2,4D.a2=(c+b)(c﹣b)【分析】由直角三角形的定义,只要验证最大角是否是90°;由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、∵∠A:∠B:∠C=1:2:3,∴∠C=×180°=90°,故是直角三角形,故本选项错误;B、∵12+()2=22,∴能构成直角三角形,故本选项错误;C、∵22+()2≠42,∴不能构成直角三角形,故本选项正确;D、∵a2=(c+b)(c﹣b),∴a2=c2﹣b2,∴能构成直角三角形,故本选项错误.故选C.【点评】本题主要考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.17.已知点A(﹣2,y1),B(3,y2)在函数y=﹣x﹣2的图象上,则()A.y1>y2B.y1<y2c.y1≤y2d.y1≥y2< p="">【分析】根据k<0,函数的函数值y随x的增大而减小解答.【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵﹣2<3,∴y1>y2.故选A.【点评】本题考查了函数的增减性,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.18.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=1,则BC的长为()A.3B.2+C.2D.1+【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=1,∵∠B=30°,∴BD=2DE=1,∴BC=3,故选A.【点评】本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.19.如图,Rt△MBC中,∠MCB=90°,点M在数轴﹣1处,点C 在数轴1处,MA=MB,BC=1,则数轴上点A对应的数是()A.+1B.﹣+1C.﹣﹣lD.﹣1【分析】通过勾股定理求出线段MB,而线段MA=MB,进而知道点A对应的数,减去1即可得出答案.【解答】解:在Rt△MBC中,∠MCB=90°,∴MB=,∴MB=,∵MA=MB,∴MA=,∵点M在数轴﹣1处,∴数轴上点A对应的数是﹣1.故选:D.【点评】题目考察了实数与数轴,通过勾股定理,在数轴寻找无理数.题目整体较为简单,与课本例题类似,适合随堂训练.20.如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C,使得△ABC是腰长为无理数的等腰三角形,点C的个数为()A.3B.4C.5D.7【分析】根据题意画出图形,找到等腰三角形,计算出腰长进行判断即可.【解答】解:等腰三角形ABC1中,腰AC1=AB===2;等腰三角形ABC2中,腰AC2=AB===2;等腰三角形ABC3中,腰AC3=BC3==;等腰三角形ABC4中,腰AC4=BC4==;等腰三角形ABC5中,腰AC5=BC5==;故选C.【点评】本题考查了勾股定理,利用格点构造等腰三角形计算出腰长是解题的关键.三、解答题(52分)21.计算:.【分析】首先化简二次根式,然后按照实数的运算法则依次计算.【解答】解:=2+0﹣=.【点评】此题主要考查了实数的运算,解题需注意区分三次方根和平方根.22.(1)已知:(x+1)2﹣9=0,求x的值;(2)已知a﹣3的平方根为±3,求5a+4的立方根.【分析】(1)方程变形后,利用平方根定义开方即可求出x的值;(2)利用平方根定义求出a的值,代入原式求出立方根即可.【解答】解:(1)方程变形得:(x+1)2=9,开方得:x+1=3或x+1=﹣3,解得:x1=2,x2=﹣4;(2)由题意得:a﹣3=9,即a=12,则5a+4=64,64的立方根为4.【点评】此题考查了立方根,平方根,熟练掌握各自的定义是解本题的关键.23.已知,如图,点A、B、C、D在一条直线上,AB=CD,EA∥FB,EC∥FD,求证:EA=FB.【分析】首先利用平行线的性质得出,∠A=∠FBD,∠D=∠ECA,进而得出△EAC≌△FBD,即可得出AC=BD,进而得出答案.【解答】证明:∵EA∥FB,∴∠A=∠FBD,∵EC∥FD,∴∠D=∠ECA,在△EAC和△FBD中,,∴△EAC≌△FBD(AAS),∴EA=FB.【点评】此题主要考查了全等三角形的判定与性质等知识,根据已知得出△EAC≌△FBD是解题关键.24.如图,已知函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),函数y1=(m﹣2)x+2与x轴交于点B.(1)求m、n的值;(2)求△ABO的面积;(3)观察图象,直接写出当x满足x<2时,y1>y2.【分析】(1)先把A点坐标代入正比例函数解析式求出n,从而确定A点坐标,然后利用待定系数法确定m的值;(2)由函数y1=x+2求得B的坐标,然后根据三角形面积公式求得即可;(3)根据函数的图象即可求得.【解答】解:(1)把点A(2,n)代入y2=2x得n=2×2=4,则A点坐标为(2,4),把A(2,4)代入y1=(m﹣2)x+2得,4=(m﹣2)×2+2解得m=3;(2)∵m=3,∴y1=x+2,令y=0,则x=﹣2,∴B(﹣2,0),∵A(2,4),∴△ABO的面积=×2×4=4;(3)由图象可知:当x<2时,y1>y2.故答案为x<2.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.25.如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点.(1)求证:△BCD≌△ACE;(2)若AE=8,DE=10,求AB的长度.【分析】(1)根据等腰直角三角形的性质得出CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°,求出∠ACE=∠BCD,根据SAS 推出两三角形全等即可;(2)根据全等求出AE=BD,∠EAC=∠B=45°,求出∠EAD=90°,在Rt△EAD中,由勾股定理求出AD,即可得出AB的长度.【解答】(1)证明:∵△ACB与△ECD都是等腰直角三角形,∴CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°,∴∠ACE=∠BCD=90°﹣∠ACD,在△ACE和△BCD中,,∴△BCD≌△ACE(SAS);(2)解:∵△BCD≌△ACE,∴BD=AE=8,∠EAC=∠B=45°,∴∠EAD=45°+45°=90°,在Rt△EAD中,由勾股定理得:AD===6,∴AB=BD+AD=8+6=14.【点评】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,勾股定理的应用,解此题的关键是能求出△ACE≌△BCD和求出AD的长,难度适中.26.(1)观察与归纳:在如图1所示的平面直角坐标系中,直线l与y轴平行,点A与点B是直线l上的两点(点A在点B的上方).①小明发现:若点A坐标为(2,3),点B坐标为(2,﹣4),则AB 的长度为7;②小明经过多次取l上的两点后,他归纳出这样的结论:若点A坐标为(t,m),点B坐标为(t,n),当m>n时,AB的长度可表示为m ﹣n;(2)如图2,正比例函数y=x与函数y=﹣x+6交于点A,点B是y=﹣x+6图象与x轴的交点,点C在第四象限,且OC=5.点P是线段OB上的一个动点(点P不与点0、B重合),过点P与y轴平行的直线l 交线段AB于点Q,交射线OC于R,设点P横坐标为t,线段QR的长度为m.已知当t=4时,直线l恰好经过点C.①求点A的坐标;②求OC所在直线的关系式;③求m关于t的函数关系式.【分析】(1)直线AB与y轴平行,A(x1,y1),B(x2,y2),A、B 两点横坐标相等,再根据AB的长度为|y1﹣y2|即可求得,(2)①联立方程,解方程得出A点的坐标;②根据勾股定理求得C点坐标,然后根据待定系数法即可求得OC 所在直线的关系式;③分两种情况分别讨论求出即可.【解答】解:(1)①若点A坐标为(2,3),点B坐标为(2,﹣4),则AB的长度为3﹣(﹣4)=7;②若点A坐标为(t,m),点B坐标为(t,n),当m>n时,AB的长度可表示为m﹣n;故答案为7;m﹣n;(2)①解得,∴A(3,3);②∵直线l平行于y轴且当t=4时,直线l恰好过点C,如图2,作CE⊥OB于E,∴OE=4,在Rt△OCE中,OC=5,由勾股定理得:CE==3,∴点C的坐标为:(4,﹣3);设OC所在直线的关系式为y=kx,则﹣3=4k,∴k=﹣,∴OC所在直线的关系式为y=﹣x;③由直线y=﹣x+6可知B(6,0),作AD⊥OB于D,∵A(3,3),∴OD=BD=AD=3,∴∠AOB=45°,OA=AB,∴∠OAB=90°,∠ABO=45°当0<t≤3时,如图2,< p="">∵直线l平行于y轴,∴∠OPQ=90°,∴∠OQP=45°,∴OP=QP,∵点P的横坐标为t,∴OP=QP=t,在Rt△OCE中,∵tan∠EOC=|k|=,∴tan∠POR==,∴PR=OPtan∠POR=t,∴QR=QP+PR=t+t=t,∴m关于t的函数关系式为:m=t;当3<t<6时,如图3,< p="">∵∠BPQ=90°,∠ABO=45°,∴∠BQP=∠PBQ=45°,∴BP=QP,∵点P的横坐标为t,∴PB=QP=6﹣t,∵PR∥CE,∴△BPR∽△BEC,∴=,∴=,解得:PR=9﹣t,∴QR=QP+PR=6﹣t+9﹣t=15﹣t,∴m关于t的函数关系式为:m=15﹣t;综上,m关于t的函数关系式为m=.【点评】此题主要考查了函数综合以及相似三角形的判定与性质和勾股定理等知识,利用分类讨论以及数形结合得出是解题关键.27.如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C 地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:(1)乙车的速度是80千米/时,乙车行驶的时间t=6小时;(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;(3)直接写出甲车出发多长时间两车相距8O千米.【分析】(1)结合题意,利用速度=路程÷时间,可得乙的速度、行驶时间;(2)找到甲车到达C地和返回A地时x与y的对应值,利用待定系数法可求出函数解析式;(3)甲、乙两车相距80千米有两种情况:①相向而行:相等关系为“甲车行驶路程+乙车行驶路程+甲乙间距离=480”,②同向而行:相等关系为“甲车距它出发地的路程+乙车路程﹣甲乙间距离=480”分别根据相等关系列方程可求解.【解答】解:(1)∵乙车比甲车先出发1小时,由图象可知乙行驶了80千米,∴乙车速度为:80千米/时,乙车行驶全程的时间t=480÷80=6(小时);(2)根据题意可知甲从出发到返回A地需5小时,∵甲车到达C地后因立即按原路原速返回A地,∴结合函数图象可知,当x=时,y=300;当x=5时,y=0;设甲车从C地按原路原速返回A地时,即,甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=kx+b,将函数关系式得:,解得:,故甲车从C地按原路原速返回A地时,甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=﹣120x+600;(3)由题意可知甲车的速度为:(千米/时),设甲车出发m小时两车相距8O千米,有以下两种情况:①两车相向行驶时,有:120m+80(m+1)+80=480,解得:m=;②两车同向行驶时,有:600﹣120m+80(m+1)﹣80=480,解得:m=3;∴甲车出发两车相距8O千米.故答案为:(1)80,6.下载全文。
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
永春一中初二年级期中考试数学科试卷(2017.4)命题:学校指定命题 考试时间:120分钟 试卷总分:150分班级 号数 姓名 友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上相应题目的答题区域内作答. 1. 在函数11y x =-中,自变量x 的取值范围是( ) A .x ≤1; B .x ≥1; C .≠x -1; D .≠x 1. 2.点P (-1,2)关于x 轴对称的点的坐标是( )A .(-1,2);B .(2,-1);C .(1,-2);D .(-1,-2). 3.如果把分式2yx y+中的x 和y 都扩大3倍,那么分式的值 ( ) A. 扩大6倍; B. 扩大3倍; C.缩小3倍; D.不变.4.一项工程,甲单独做a 小时完成,乙单独做b 小时完成,甲乙两人一起做2小时完成的工作量可表示为( ) A.2a b +; B. 2ab a b +; C. 22a b+; D.22a b +. 5.具有下列条件的四边形中,是平行四边形的是( )A .一组对角相等B .两条对角线互相垂直C .两组对边分别相等D .两组邻角互补6.已知点A (3,-2),将点A 向左平移4个单位长度得到点B ,则点B 在( )A. 第一象限;B. 第二象限;C. 第三象限;D. 第四象限. 7.反比例函数2y x=-(x >0)的图象在 ( ) A.第一象限; B. 第四象限; C.一、三象限; D. 二、四象限. 8.如图,在口ABCD 中,AB=6,BC=10,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是( )A .12;B .14;C .16;D .18.第8题图9.函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( )10.如图,已知口ABCD 中,AE ⊥BC 于点E ,以点B 为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA′E′, 连接DA′.若∠ADC=60°,∠ADA′=45°, 则∠DA′E′的大小为( ) A .170° B .165°C .160°D .155°二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置. 11.某种病毒的直径是0.0000014米,用科学记数法表示为_________________米. 12.将直线32y x =--向上平移4个单位,得到直线 .13.正比例函数的图象经过点(3,2),则该函数的表达式为 . 14.在口ABCD 中,若∠A+∠C=100°,则∠B= .15.已知23x x -=,则224x x+的值为 . 16.如图,已知反比例函数ky x=()0x >与正比例函数y x =()0x ≥的图象,点A (1,5),点A′(5,b )与点B′均在反比例函数的图象上,点B 在直线y x = 上,四边形AA′B′B 是平行四边形,则B 点的坐标 为 。
2016-2017学年四川省八年级(下)期中数学试卷一、选择题(每小题只有一个正确答案,共30分)1.化简=()A.﹣7 B.7 C.±7 D.492.下列五个等式中一定成立的有()①;②;③;④a0=1;⑤.A.1个B.2个C.3个D.4个3.下列哪个点在直线y=﹣2x+3上()A.(﹣2,﹣7)B.(﹣1,1)C.(2,1)D.(﹣3,9)4.一次函数y=﹣2015x+2015的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.下列说法正确的是()A.对角线相等的四边形是矩形B.对角互补的平行四边形是矩形C.对角线互相垂直的四边形是菱形D.菱形是轴对称图形,它的对角线就是它的对称轴6.已知正比例函数y=(2m+3)x的图象上两点A(x1,y1)和A(x2,y2),当x1<x2时y1>y2,则m的取值范围是()A.B.C.D.m<07.一次函数的图象经过点(2,1)和(﹣1,﹣3),则它的解析式为()A.B.C.D.8.正比例函数y=2kx和一次函数的大致草图是()A.B.C.D.9.下列图象中每条直线上的点的坐标都是二元一次方程x﹣2y=2的解是()A.B.C.D.10.如图,矩形ABCD中,对角线AC与BD相交于点O,P为AD上的动点,过点P作PM⊥AC,PN⊥BD,垂足分别为M、N,若AB=m,BC=n,则PM+PN=()A.B.C.D.二、填空题(每小题3分,共24分)11.=.12.三角形三边之比为,则这个三角形的形状是.13.一次函数y=﹣2x﹣3的图象向上平移7个单位后所得直线的解析式为.14.顺次连接四边形各边中点所得的四边形是.15.若平行四边形的一条边长是10,一条对角线长为8,则它的另一条对角线长x的取值范围是.16.矩形ABCD的两条对角线AC、BD相交于点O,∠AOB=60°,OA=3,则这个矩形的面积为.17.菱形的周长为4a,邻角之比为2:1,则较长的一条对角线长为.18.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).三、解答题(96分,请写出必要的解答步骤和推理过程.)19.(10分)(2015春•广安校级期中)计算(1)(2).20.(10分)(2015春•广安校级期中)先化简再求值(),其中x=+1,y=1﹣.21.(10分)(2015春•高新区期末)如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.22.(10分)(2010•肇庆)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.23.(10分)(2015春•广安校级期中)如图,平行四边形ABCD的两条对角线AC、BD相交于点O,BD=6,AC=4,,四边形ABCD是菱形吗?请说出你的理由.24.(10分)(2015春•广安校级期中)已知等腰三角形周长为30.(1)写出底边长y关于腰长x的函数关系式;(2)写出自变量x的取值范围;(3)画出函数的图象.25.(10分)(2010•广安)为了提高土地利用率,将小麦、玉米、黄豆三种农作物套种在一起,俗称“三种三收”,现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例.要求小麦的种植面积占总面积的60%,下表是三种农作物的亩产量及销售单价的对应表:小麦玉米黄豆亩产量(千克)400 600 220销售单价(元/千克)2 1 2.5(1)设玉米的种值面积为x亩,三种农作物的总售价为y元,写出y与x的函数关系式;(2)在保证小麦种植面积的情况下,玉米、黄豆同时均按整亩数套种,有几种“三种三收”套种方案?(3)在(2)中的种植方案中,采用哪种套种方案才能使总销售价最高?最高价是多少?26.(12分)(2012•泉州)国家推行“节能减排,低碳经济”政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b元,据市场调查知:每辆车改装前、后的燃料费(含改装费)y0、y1(单位:元)与正常运营时x(单位:天)之间分别满足关系式:y0=ax、y1=b+50x,如图所示.试根据图象解决下列问题:(1)每辆车改装前每天的燃料费a=元;每辆车的改装费b=元,正常营运天后,就可以从节省的燃料费中收回改装成本;(2)某出租车公司一次性改装了100辆出租车,因而,正常运营多少天后共节省燃料费40万元?27.(14分)(2015•盘锦四模)已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.2016-2017学年四川省八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题只有一个正确答案,共30分)1.化简=()A.﹣7 B.7 C.±7 D.49考点:二次根式的性质与化简.分析:依据进行化简即可.解答:解:=|﹣7|=7.故选:B.点评:本题主要考查的是二次根式的性质,掌握二次根式的性质是解题的关键.2.下列五个等式中一定成立的有()①;②;③;④a0=1;⑤.A.1个B.2个C.3个D.4个考点:二次根式的性质与化简;零指数幂.分析:依据二次根式的性质和零指数幂的性质进行判断即可.解答:解:①的条件是a≥0,故①不一定成立;②,一定成立;③一定成立;④a0=1的条件是a不等于0,故④不一定成立;⑤==,故⑤错误.故选:B.点评:本题主要考查的是二次根式的性质、零指数幂的性质,熟记二次根式的性质、零指数幂的性质是解题的关键.3.下列哪个点在直线y=﹣2x+3上()A.(﹣2,﹣7)B.(﹣1,1)C.(2,1)D.(﹣3,9)考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据一次函数图象上点的坐标特征对各选项分别进行判断.解答:解:A、当x=﹣2时,y=﹣2x+3=7,所以A选项错误;B、当x=﹣1时,y=﹣2x+3=6,所以B选项错误;C、当x=2时,y=﹣2x+3=﹣1,所以C选项错误;D、当x=﹣3时,y=﹣2x+3=9,所以D选项正确.故选D.点评:本题考查了一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y=kx+b.4.一次函数y=﹣2015x+2015的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:先根据一次函数y=﹣2015x+2015中k=﹣2015,b=2015判断出函数图象经过的象限,进而可得出结论.解答:解:∵一次函数y=﹣2015x+2015中k=﹣2015<0,b=2015>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.5.下列说法正确的是()A.对角线相等的四边形是矩形B.对角互补的平行四边形是矩形C.对角线互相垂直的四边形是菱形D.菱形是轴对称图形,它的对角线就是它的对称轴考点:多边形.分析:根据矩形、菱形的判定定理,即可解答.解答:解:A、对角线相等的平行四边形四边形是矩形,正确;B、对角相等的平行四边形是矩形,故错误;C、对角线互相垂直平分的四边形是菱形,故错误;D、菱形是轴对称图形,它的对角线所在的直线就是它的对称轴,故错误;故选:A.点评:本题考查了矩形、菱形的判定定理,解决本题的关键是熟记矩形、菱形的判定定理.6.已知正比例函数y=(2m+3)x的图象上两点A(x1,y1)和A(x2,y2),当x1<x2时y1>y2,则m的取值范围是()A.B.C.D.m<0考点:一次函数图象上点的坐标特征.分析:由题目所给信息“当x1<x2时y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:2m+3<0.解答:解:∵正比例函数y=(2m+3)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时y1>y2时,∴正比例函数y=(2m+3)x的图象是y随x的增大而减小,∴2m+3<0,解得:m故选A点评:本题考查了一次函数图象上点的坐标特征.准确理解一次函数图象的性质,确定y 随x的变化情况是解题的关键.7.一次函数的图象经过点(2,1)和(﹣1,﹣3),则它的解析式为()A.B.C.D.考点:待定系数法求一次函数解析式.分析:利用待定系数法把点(2,1)和(﹣1,﹣3)代入一次函数y=kx+b,可得到一个关于k、b的方程组,再解方程组即可得到k、b的值,然后即可得到一次函数的解析式.解答:解:设一次函数y=kx+b的图象经过两点(2,1)和(﹣1,﹣3),∴,解得:,∴一次函数解析式为:y=x﹣.故选D.点评:此题主要考查了待定系数法求一次函数解析式,关键是掌握待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.8.正比例函数y=2kx和一次函数的大致草图是()A.B.C.D.考点:一次函数的图象;正比例函数的图象.分析:根据正比例函数图象所在的象限判定k的符号,根据k的符号来判定一次函数图象所经过的象限.解答:解:A、∵正比例函数y=2kx图象经过第一、三象限,则k>0.则一次函数的图象应该经过第一、三、四象限.故本选项错误;B、∵正比例函数y=2kx图象经过第一、三象限,则k>0.则一次函数的图象应该经过第一、三、四象限.故本选项正确;C、∵正比例函数图象经过第二、四象限,则k<0.则一次函数y=kx+k的图象应该经过第一、二、四象限.故本选项错误;D、∵正比例函数图象经过第二、四象限,则k<0.则一次函数y=kx+k的图象应该经过第一、二、四象限.故本选项错误;故选:B.点评:本题考查了一次函数、正比例函数的图象.此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.9.下列图象中每条直线上的点的坐标都是二元一次方程x﹣2y=2的解是()A.B.C.D.考点:一次函数与二元一次方程(组).分析:首先把二元一次方程x﹣2y=2变形为:y=x﹣1,再求出函数与x、y轴的交点即可选出答案.解答:解:二元一次方程x﹣2y=2变形为:y=x﹣1,当x=0时,y=﹣1,当y=0时,x=2,因此函数y=x﹣1过(0,﹣1)(2,0),故选:C点评:此题主要考查了一次函数与二元一次方程,关键是掌握二元一次方程都可以变形为一次函数.10.如图,矩形ABCD中,对角线AC与BD相交于点O,P为AD上的动点,过点P作PM⊥AC,PN⊥BD,垂足分别为M、N,若AB=m,BC=n,则PM+PN=()A.B.C.D.考点:矩形的性质.分析:连接OP,由矩形的性质得出OA=OD,∠ABC=90°,由勾股定理求出AC,得出OA,由△OAP的面积+△ODP的面积=矩形ABCD的面积,即可得出结果.解答:解:连接OP,如图所示:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OD=BD,AC=BD,∴OA=OD,AC==,∴OA=OD=,∵△OAP的面积+△ODP的面积=△AOD的面积=矩形ABCD的面积,即OA•PM+OD•PN=OA(PM+PN)=AB•BC=mn,∴PM+PN==,故选:C.点评:本题考查了矩形的性质、勾股定理、三角形面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.二、填空题(每小题3分,共24分)11.=﹣8.考点:算术平方根.分析:根据算术平方根解答即可.解答:解:=﹣8,故答案为:﹣8点评:此题主要考查了求一个数的算术平方根,解题时应先找出所要求的这个数是哪一个数的平方.由开平方和平方是互逆运算,用平方的方法求这个数的算术平方根.12.三角形三边之比为,则这个三角形的形状是直角三角形.考点:勾股定理的逆定理.分析:一个三角形的三边符合a2+b2=c2,根据勾股定理的逆定理,这个三角形是直角三角形.解答:解:设三边分别为x,7x,5x(x>0),∵x2+(7x)2=(5x)2,∴这个三角形是直角三角形.故答案为:直角三角形.点评:本题考查了勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.已知三边长,只要验证两小边的平方和等于最长边的平方即可.13.一次函数y=﹣2x﹣3的图象向上平移7个单位后所得直线的解析式为y=﹣2x+4.考点:一次函数图象与几何变换.专题:几何变换.分析:根据直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m求解.解答:解:一次函数y=﹣2x﹣3的图象向上平移7个单位后所得直线的解析式为y=﹣2x ﹣3+7,即y=﹣2x+4.故答案为y=﹣2x+4.点评:本题考查了一次函数图象与几何变换:直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m,直线y=kx+b向下平移m(m>0)个单位所得直线解析式为y=kx+b﹣m.14.顺次连接四边形各边中点所得的四边形是平行四边形.考点:平行四边形的判定;三角形中位线定理.分析:连接原四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.解答:解:(如图)根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD∴EH=FG,EH∥FG∴四边形EFGH是平行四边形.故答案为:平行四边形.点评:此题主要考查学生对平行四边形的判定的掌握情况,综合利用了中位线定理.15.若平行四边形的一条边长是10,一条对角线长为8,则它的另一条对角线长x的取值范围是12<x<28.考点:平行四边形的性质;三角形三边关系.分析:由平行四边形的性质得出OA=OC=AC=4,OB=OD=BD,在△BOC中,由三角形的三边关系定理得出OB的取值范围,得出BD的取值范围即可.解答:解:如图所示:∵四边形ABCD是平行四边形,∴OA=OC=AC=4,OB=OD=BD,在△BOC中,BC=10,OC=4,∴OB的取值范围是BC﹣OC<OB<BC+OC,即6<OB<14,∴BD的取值范围是12<BD<28.故答案为:12<x<28.点评:本题考查了平行四边形的性质、三角形的三边关系定理;熟练掌握平行四边形的性质和三角形的三边关系,并能进行推理计算是解决问题的关键.16.矩形ABCD的两条对角线AC、BD相交于点O,∠AOB=60°,OA=3,则这个矩形的面积为9.考点:矩形的性质.分析:由矩形的性质和已知条件得出△AOB是等边三角形,得出AB=OA=3,得出AC,由勾股定理求出BC,由矩形的面积公式即可得出结果.解答:解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∠ABC=90°,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3,∴AC=2OA=6,∴BC===3,∴矩形ABCD的面积=AB•BC=3×3=9.故答案为:9.点评:本题考查了矩形的性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.17.菱形的周长为4a,邻角之比为2:1,则较长的一条对角线长为a.考点:菱形的性质.分析:作出图形,根据菱形的邻角互补求出较小的内角为60°,从而判断出△ABC是等边三角形,再根据等边三角形的性质求出OB,然后根据菱形对角线互相平分可得BD=2OB.解答:解:如图,∵菱形的两邻角之比为2:1,∴较小的内角∠ABC=180°×=60°,∴△ABC是等边三角形,∵菱形的周长为4a,∴AB=BC=CD=AD=a,∴OB=sin60°×a=a,∴较长的对角线BD=2OB=2×a=a.故答案为:a.点评:本题考查了菱形的性质,等边三角形的判定与性质,熟记性质并求出△ABC是等边三角形是解题的关键,作出图形更形象直观.18.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).考点:二次根式的化简求值.专题:计算题;压轴题;规律型.分析:由S n=1++===,求,得出一般规律.解答:解:∵S n=1++===,∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.点评:本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三、解答题(96分,请写出必要的解答步骤和推理过程.)19.(10分)(2015春•广安校级期中)计算(1)(2).考点:二次根式的混合运算.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法和除法运算.解答:解:(1)原式=3+2﹣2+=+2;(2)原式=2(2﹣5)+2÷2=2×(﹣3)+1=﹣18+1=﹣17.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(10分)(2015春•广安校级期中)先化简再求值(),其中x=+1,y=1﹣.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x,y的值代入原式进行计算即可.解答:解:原式==,当x=+1,y=1﹣时,原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(10分)(2015春•高新区期末)如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.考点:平行四边形的判定与性质.专题:证明题.分析:根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.解答:证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.点评:本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.22.(10分)(2010•肇庆)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.考点:矩形的判定;勾股定理;平行四边形的性质.专题:计算题;证明题.分析:(1)因为∠1=∠2,所以BO=CO,2BO=2CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;(2)在△BOC中,∠BOC=120°,则∠1=∠2=30°,AC=2AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.解答:(1)证明:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=OD,∴AC=2CO,BD=2BO,∴AC=BD.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:在△BOC中,∵∠BOC=120°,∴∠1=∠2=(180°﹣120°)÷2=30°,∴在Rt△ABC中,AC=2AB=2×4=8(cm),∴BC=(cm).∴四边形ABCD的面积=.点评:此题把矩形的判定、勾股定理和平行四边形的性质结合求解.考查学生综合运用数学知识的能力.解决本题的关键是读懂题意,得到相应的四边形的各边之间的关系.23.(10分)(2015春•广安校级期中)如图,平行四边形ABCD的两条对角线AC、BD相交于点O,BD=6,AC=4,,四边形ABCD是菱形吗?请说出你的理由.考点:菱形的判定.分析:由平行四边形的性质得出OB=OD=BD=3,OA=OC=AC=2,由勾股定理的逆定理得出∠BOC=90°,即可得出结论.解答:解:四边形ABCD是菱形;理由如下:∵四边形ABCD是平行四边形,∴OB=OD=BD=3,OA=OC=AC=2,∵OB2+OC2=32+22=13,BC2=()2=13,∴OB2+OC2=BC2,∴∠BOC=90°,∴AC⊥BD,∴平行四边形ABCD是菱形.点评:本题考查了平行四边形的性质、勾股定理的逆定理、菱形的判定方法;熟练掌握平行四边形的性质和勾股定理的逆定理,并能进行推理论证是解决问题的关键.24.(10分)(2015春•广安校级期中)已知等腰三角形周长为30.(1)写出底边长y关于腰长x的函数关系式;(2)写出自变量x的取值范围;(3)画出函数的图象.考点:一次函数的应用.分析:(1)等腰三角形的两个腰是相等的,根据题中条件即可列出腰长和底边长的关系式.(2)根据2腰长的和大于底边长及底边长为正数可得自变量的取值.(3)利用两点式画出函数图象即可.解答:解:(1)∵等腰三角形的两腰相等,周长为30,∴2x+y=30,∴底边长y与腰长x的函数关系式为:y=﹣2x+30;(2)∵两边之和大于第三边,∴2x>y,∴x>,∵y>0,∴x<15,x的取值范围是:7.5<x<15.(3)画出函数的图象如图所示:点评:本题主要考查对于一次函数关系式的掌握以及三角形性质的应用,判断出等腰三角形腰长的取值范围是解决本题的难点.25.(10分)(2010•广安)为了提高土地利用率,将小麦、玉米、黄豆三种农作物套种在一起,俗称“三种三收”,现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例.要求小麦的种植面积占总面积的60%,下表是三种农作物的亩产量及销售单价的对应表:小麦玉米黄豆亩产量(千克)400 600 220销售单价(元/千克)2 1 2.5(1)设玉米的种值面积为x亩,三种农作物的总售价为y元,写出y与x的函数关系式;(2)在保证小麦种植面积的情况下,玉米、黄豆同时均按整亩数套种,有几种“三种三收”套种方案?(3)在(2)中的种植方案中,采用哪种套种方案才能使总销售价最高?最高价是多少?考点:一次函数的应用.专题:方案型;图表型.分析:(1)根据等量关系“总售价=小麦的售价+玉米的售价+黄豆的售价”列出函数关系式;(2)玉米、黄豆同时均按整亩数套种,则x可取0<x<4,得出三种方案;(3)由于函数随x的增大而增大,所以x取3时,总销售价最高.解答:解:(1)∵面积为10亩的一块农田进行“三种三收”套种,设玉米的种植面积为x亩,∵小麦的种植面积占总面积的60%,∴小麦的种植面积为6亩,黄豆的种植面积为(4﹣x)亩;y=400×2×6+600x+220×2.5×(4﹣x)=50x+7000(2)玉米、黄豆同时均按整亩数套种,则x可取0<x<4,得出三种方案:①玉米1亩,黄豆3亩②玉米2亩,黄豆2亩③玉米3亩,黄豆1亩(3)由于函数在0<x<4中随x的增大而增大,所以x取3时,即选第三种方案,总销售价最高;y=50×3+7000=7150(元)点评:本题考查了一次函数与实际结合的问题,通过一次函数解决小麦、玉米、黄豆总售价的最大值以及分配套种情况.26.(12分)(2012•泉州)国家推行“节能减排,低碳经济”政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b元,据市场调查知:每辆车改装前、后的燃料费(含改装费)y0、y1(单位:元)与正常运营时x(单位:天)之间分别满足关系式:y0=ax、y1=b+50x,如图所示.试根据图象解决下列问题:(1)每辆车改装前每天的燃料费a=90元;每辆车的改装费b=4000元,正常营运100天后,就可以从节省的燃料费中收回改装成本;(2)某出租车公司一次性改装了100辆出租车,因而,正常运营多少天后共节省燃料费40万元?考点:一次函数的应用.分析:(1)根据图象得出y0=ax过点(100,9000),得出a的值,再将点(100,9000),代入y1=b+50x,求出b即可,再结合图象得出正常营运100天后从节省的燃料费中收回改装成本;(2)根据题意及图象得出:改装前、后的燃料费燃料费每天分别为90元,50元,进而得出100×(90﹣50)x=400000+100×4000,得出即可.解答:解:(1)∵y0=ax过点(100,9000),得出a=90,将点(100,9000),代入y1=b+50x,b=4000,根据图象得出正常营运100天后从节省的燃料费中收回改装成本.故答案为:a=90;b=4000,100;(2)解法一:依据题意及图象得:改装前、后的燃料费燃料费每天分别为90元,50元,则:100×(90﹣50)x=400000+100×4000,解得:x=200,答:200天后共节省燃料费40万元;解法二:依题意:可得:÷(90﹣50)+100=200(天),答:200天后共节省燃料费40万元.点评:此题主要考查了一次函数的应用,根据已知利用图象上点的坐标得出改装前、后的燃料费燃料费每天分别为90元,50元是解题关键.27.(14分)(2015•盘锦四模)已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.考点:全等三角形的判定与性质;直角三角形斜边上的中线.分析:(1)根据AAS推出△AEQ≌△BFQ,推出AE=BF即可;(2)延长EQ交BF于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可;(3)延长EQ交FB于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可.解答:解:(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF,理由是:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中∴△AEQ≌△BFQ,∴AE=BF,故答案为:AE∥BF,AE=BF;(2)QE=QF,证明:延长EQ交BF于D,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF;,(3)当点P在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EQ交FB于D,如图3,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中∴△AEQ≌△BDQ,∴EQ=DQ,∵∠BFE=90°,∴QE=QF.点评:本题考查了平行线的性质和判定,全等三角形的性质和判定,直角三角形的性质的应用,解此题的关键是求出△AEQ≌△BDQ,用了运动观点,难度适中.。
四川省2016-2017学年八年级下学期期中数学试卷一、选择题(每小题3分,共30分)1.计算a÷•的结果是( )A.a B.a2C.D.2.点P(﹣4,5)关于x轴对称的点的坐标为( )A.(4,5)B.(﹣4,﹣5)C.(5,﹣4)D.(4,﹣5)3.下列四个点中,在反比例函数y=﹣的图象上的点是( )A.(2,4)B.(﹣2,﹣4)C.(﹣2,4)D.(4,2)4.已知+=3,则的值为( )A.B.C.D.5.下面各分式:,,,,其中最简分式有( )个.A.4 B.3 C.2 D.16.若把分式的x、y同时缩小12倍,则分式的值( )A.扩大12倍B.缩小12倍C.不变D.缩小6倍7.对于非零的实数a、b,规定a⊕b=﹣.若2⊕(2x﹣1)=1,则x=( ) A.B.C.D.﹣8.函数y=k(x﹣1)与y=(k≠0)在同一坐标系中的图象的位置可能是( )A.B.C.D.9.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是( )A.B.C.D.10.若点(x1,y1)、(x2,y2)和(x3,y3)分别在反比例函数的图象上,且x1<x2<0<x3,则下列判断中正确的是( )A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y1二、填空题(每小题3分,共18分)11.某种感冒病毒的直径是0.00000034米,用科学记数法表示为__________米.12.将()﹣1,(﹣2)0,(﹣3)2这三个数从小到大的顺序为__________.13.计算:﹣a﹣1=__________.14.函数中自变量x的取值范围是__________.15.已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=__________.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是__________,点B n的坐标是__________.[来源:学|科|网]三、解答题17.计算(1)()﹣1+|﹣2|﹣(π﹣1)0(2)÷(3)﹣﹣(4)解方程:+3=.18.先化简,再求值:÷+1,在0,1,2三个数中选一个合适的,代入求值.19.若解关于x的分式方程会产生增根,求m的值.20.某人骑自行车比步行每小时快8千米,坐汽车比骑自行车每小时快16千米,此人从A 地出发,先步行4千米,然后乘坐汽车10千米就到B地,他又骑自行车从B 地返回A地,往返所用的时间相等,求此人步行的速度.21.已知一次函数的图象经过点A(2,1),B(﹣1,﹣3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.22.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.[来源:学科网](1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.23.我校实行学案教学,需印刷若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费方式的函数关系式是__________;乙种收费方式的函数关系式是__________;(2)如果我校2014-2015学年八年级每次印刷100~450(含100和450)份学案,选择哪种印刷方式较合算.24.我县农村已经实行了农民新型合作医疗保险制度,享受医保的农民可在规定的医院就医并按规定标准报销部分医疗费用,下表是医疗费用报销的标准:医疗费用范围门诊住院0~5000元5001~20000元20000元以上每年报销比例标准30% 30%40% 50%(说明:住院医疗费用的报销分段计算,如:某人住院医疗费用共30 000元,则5000元按30%报销、15 000元按40%报销、余下的10 000元按50%报销,题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2009年门诊看病报销医疗费180元,则他在这一年中门诊医疗自付费用__________元;(2)设某农民一年中住院的实际医疗费用为x元(5001≤x≤20 000),按标准报销的金额为y元,试求出y与x的函数关系式;(3)若某农民一年内本人自负住院费17 000元(自负医疗费=实际医疗费﹣按标准报销的金额),则该农民当年实际医疗费用共多少?四川省2016-2017学年八年级下学期期中数学试卷一、选择题(每小题3分,共30分)1.计算a÷•的结果是( )A.a B.a2C.D.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,计算即可得到结果.解答:解:原式=a••=.故选D.点评:此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找公因式.2.点P(﹣4,5)关于x轴对称的点的坐标为( )A.(4,5)B.(﹣4,﹣5)C.(5,﹣4)D.(4,﹣5)考点:关于x轴、y轴对称的点的坐标.分析:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解答:解:点P(﹣4,5)关于x轴对称的点的坐标为(﹣4,﹣5).故选B.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.[来源:学科网ZXXK]3.下列四个点中,在反比例函数y=﹣的图象上的点是( )A.(2,4)B.(﹣2,﹣4)C.(﹣2,4)D.(4,2)考点:反比例函数图象上点的坐标特征.分析:根据反比例函数的性质对各选项进行逐一判断即可.解答:解:A、∵2×4=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;B、∵(﹣2)×(﹣4)=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;C、∵﹣2×4=﹣8,∴此点在反比例函数的图象上,故本选项正确;D、∵4×2=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误.故选C.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy的特点是解答此题的关键.4.已知+=3,则的值为( )A.B.C.D.考点:分式的化简求值.分析:先将+=3化为a+b=3ab,再将原式化为,然后整体代入求值即可.解答:解:∵+=3,∴=3,∴a+b=3ab,[来源:Z#xx#]∴原式====.故选D.点评:本题考查了分式的化简求值,熟悉因式分解是解题的关键.5.下面各分式:,,,,其中最简分式有( )个.A.4 B.3 C.2 D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:==,不是最简分式;==,不是最简分式;==﹣1,不是最简分式;是最简分式,最简分式有1个;故选D.点评:此题考查了最简分式,判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.6.若把分式的x、y同时缩小12倍,则分式的值( )A.扩大12倍B.缩小12倍C.不变D.缩小6倍考点:分式的基本性质.分析:要把x,y同时缩小12倍,即将x,y用代换,就可以解出此题.解答:解:∵=,∴分式的值不变.故选:C.点评:此题考查的是对分式的性质的理解和运用,扩大或缩小n倍,就将原来的数乘以n或除以n.7.对于非零的实数a、b,规定a⊕b=﹣.若2⊕(2x﹣1)=1,则x=( ) A.B.C.D.﹣考点:解分式方程.专题:新定义.分析:根据新定义得到﹣=1,然后把方程两边都乘以2(2x﹣1)得到2﹣(2x﹣1)=2(2x﹣1),解得x=,然后进行检验即可.解答:解:∵2⊕(2x﹣1)=1,∴﹣=1,去分母得2﹣(2x﹣1)=2(2x﹣1),解得x=,检验:当x=时,2(2x﹣1)≠0,故分式方程的解为x=.故选:A.点评:本题考查了解分式方程:先去分母,把分式方程转化为整式方程,解整式方程,然后把整式方程的解代入原方程进行检验,最后确定分式方程的解.也考查了阅读理解能力.8.函数y=k(x﹣1)与y=(k≠0)在同一坐标系中的图象的位置可能是( )A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出k取值,再根据反比例函数的性质判断出k的取值,二者一致的即为正确答案.解答:解:A、一次函数图象是y随x的增大而减小,则k<0.反比例函数y随x的增大而减小,则k>0.相矛盾,故本选项错误;B、一次函数图象是y随x的增大而减小,则k<0.反比例函数y随x的增大而增大,则k >0.相一致,故本选项正确;C、一次函数图象是y随x的增大而减小,则k<0.反比例函数y随x的增大而减小,则k >0.相矛盾,故本选项错误;D、y=k(x﹣1)=kx﹣k,由于一次函数图象是y随x的增大而减小,则k<0,所以﹣k>0,故一次函数图象与y轴交于正半轴,与函数图象不符.故本选项错误;故选:B.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.9.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是( )A.B.C. D.考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:关键描述语是:“比李老师早到半小时”;等量关系为:李老师所用时间﹣张老师所用时间=.解答:解:李老师所用时间为:,张老师所用的时间为:.所列方程为:﹣=.故选:B.点评:未知量是速度,有路程,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.10.若点(x1,y1)、(x2,y2)和(x3,y3)分别在反比例函数的图象上,且x1<x2<0<x3,则下列判断中正确的是( )A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y1考点:反比例函数图象上点的坐标特征.分析:判断出各个点所在的象限,根据反比例函数的增减性可得其中两组点的大小关系,进而比较同一象限点的大小关系即可.解答:解:由题意,得点(x1,y1)、(x2,y2)在第二象限,(x3,y3)在第四象限,∴y3最小,∴x1<x2,∴y1<y2,∴y3<y1<y2.故选B.点评:考查反比例函数图象上点的坐标的特点;用到的知识点为:第二象限点的纵坐标总大于第四象限点的纵坐标;在同一象限内,比例系数小于0,y随x的增大而增大.二、填空题(每小题3分,共18分)11.某种感冒病毒的直径是0.00000034米,用科学记数法表示为3.4×10﹣7米.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000034=3.4×10﹣7;故答案为3.4×10﹣7.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.将()﹣1,(﹣2)0,(﹣3)2这三个数从小到大的顺序为(﹣2)0<()﹣1<(﹣3)2.考点:实数大小比较;有理数的乘方;零指数幂;负整数指数幂.分析:首先分别求出这三个数的大小,然后根据实数比较大小的方法,把这三个数从小到大的顺序排列起来即可.解答:解:()﹣1=6,(﹣2)0,=1,(﹣3)2=9,因为1<6<9,所以(﹣2)0<()﹣1<(﹣3)2.故答案为:(﹣2)0<()﹣1<(﹣3)2.点评:此题主要考查了实数比较大小的方法,要熟练掌握,解答此题的关键是分别求出这三个数的大小.13.计算:﹣a﹣1=.考点:分式的加减法.专题:计算题.分析:将原式化为﹣(a+1),通分后相加即可.解答:解:原式=﹣==.故答案为.[来源:学科网ZXXK]点评:本题考查了分式的加减法,学会通分是解题的关键.14.函数中自变量x的取值范围是x≥1.考点:函数自变量的取值范围.分析:根据二次根式有意义的条件,被开方数是非负数就可以求得.解答:解:根据二次根式的意义可得:x﹣1≥0,解得:x≥1.点评:主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=6.考点:反比例函数系数k的几何意义;等腰三角形的性质.分析:根据等腰三角形的性质得出CO=BC,再利用反比例函数系数k的几何意义得出S△AOB 即可.解答:解:过点A作AC⊥OB于点C,∵AO=AB,∴CO=BC,∵点A在其图象上,∴AC×CO=3,∴AC×BC=3,∴S△AOB=6.故答案为:6.点评:此题主要考查了等腰三角形的性质以及反比例函数系数k的几何意义,正确分割△AOB是解题关键.[来源:Z§xx§]16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是(7,4),点B n的坐标是(2n﹣1,2n﹣1).考点:一次函数图象上点的坐标特征;正方形的性质.专题:规律型.分析:首先求得直线的解析式,分别求得B1,B2,B3…的坐标,可以得到一定的规律,据此即可求解.解答:解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴A1的纵坐标是:1=20,A1的横坐标是:0=20﹣1,∴A2的纵坐标是:1+1=21,A2的横坐标是:1=21﹣1,∴A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22﹣1,∴A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23﹣1,据此可以得到A n的纵坐标是:2n﹣1,横坐标是:2n﹣1﹣1.∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴B n的横坐标是:2n﹣1,纵坐标是:2n﹣1.则B n的坐标是(2n﹣1,2n﹣1).故答案为:(7,4),(2n﹣1,2n﹣1).点评:此题主要考查了待定系数法求函数解析式和坐标的变化规律,正确得到点的坐标的规律是解题的关键.三、解答题17.计算(1)()﹣1+|﹣2|﹣(π﹣1)0(2)÷(3)﹣﹣(4)解方程:+3=.考点:分式的混合运算;零指数幂;负整数指数幂;解分式方程.专题:计算题.分析:(1)原式利用负指数幂、零指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果;(3)原式通分并利用同分母分式的减法法则计算,即可得到结果;(4)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=2+2﹣1=3;(2)原式=•=;(3)原式=﹣﹣=;(4)去分母得:1+3x﹣6=x﹣1,[来源:学,科,网]解得:x=2,经检验x=2是增根,分式方程无解.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:÷+1,在0,1,2三个数中选一个合适的,代入求值.考点:分式的化简求值.分析:首先将原式能分解因式的分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,最后根据分式的性质,选出有意义的x的值,即可得到原式的值.解答:解:÷+1=÷+1=×+1=+1=,当x=0或2时,分式无意义,故x只能等于1,原式=.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.19.若解关于x的分式方程会产生增根,求m的值.考点:分式方程的增根.专题:计算题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.解答:解:方程两边都乘(x+2)(x﹣2),得2(x+2)+mx=3(x﹣2)∵最简公分母为(x+2)(x﹣2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=﹣4.把x=﹣2代入整式方程,得m=6.综上,可知m=﹣4或6.点评:增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.某人骑自行车比步行每小时快8千米,坐汽车比骑自行车每小时快16千米,此人从A 地出发,先步行4千米,然后乘坐汽车10千米就到B地,他又骑自行车从B 地返回A地,往返所用的时间相等,求此人步行的速度.考点:分式方程的应用.分析:设步行的速度是x千米/小时,骑自行车的速度是(x+8)千米/小时,汽车的速度是(x+8+16)千米/小时,根据往返所用的时间相等,可列方程求解.解答:解:设步行的速度是x千米/小时,+=,x=6,经检验x=6符合题意,答:此人步行的速度6千米/小时.点评:本题考查理解题意的能力,关键是以往返所用的时间相等做为等量关系列方程求解.21.已知一次函数的图象经过点A(2,1),B(﹣1,﹣3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.考点:待定系数法求一次函数解析式.专题:计算题;待定系数法.分析:根据一次函数解析式的特点,可得出方程组,得到解析式;再根据解析式求出一次函数的图象与x轴、y轴的交点坐标;然后求出一次函数的图象与两坐标轴所围成的三角形面积.解答:解:(1)根据一次函数解析式的特点,可得出方程组,解得,则得到y=x﹣.(2)根据一次函数的解析式y=x﹣,得到当y=0,x=;当x=0时,y=﹣.所以与x轴的交点坐标(,0),与y轴的交点坐标(0,﹣).(3)在y=x﹣中,令x=0,解得:y=,则函数与y轴的交点是(0,﹣).在y=x﹣中,令y=0,解得:x=.因而此一次函数的图象与两坐标轴所围成的三角形面积是:×=.点评:本题综合考查用待定系数法求解析式以及点的坐标的特点和三角形的面积公式.22.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.考点:反比例函数与一次函数的交点问题.专题:计算题;数形结合.分析:(1)先把A(﹣4,2)代入y=求出m=﹣8,从而确定反比例函数的解析式为y=﹣;再把B(n,﹣4)代入y=﹣求出n=2,确定B点坐标为(2,﹣4),然后利用待定系数法确定一次函数的解析式;(2)观察图象得到当﹣4<x<0或x>2 时,一次函数的图象都在反比例函数图象的下方,即一次函数的值小于反比例函数的值.解答:解:(1)把A(﹣4,2)代入y=得m=﹣4×2=﹣8,∴反比例函数的解析式为y=﹣;把B(n,﹣4)代入y=﹣得﹣4n=﹣8,解得n=2,∴B点坐标为(2,﹣4),把A(﹣4,2)、B(2,﹣4)分别代入y=kx+b得,解方程组得,∴一次函数的解析式为y=﹣x﹣2;(2)﹣4<x<0或x>2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标同时满足两个函数的解析式;求反比例函数图象与一次函数图象的交点坐标就是把两个图象的解析式组成方程组,方程组的解就是交点的坐标.也考查了待定系数法以及观察函数图象的能力.23.我校实行学案教学,需印刷若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费方式的函数关系式是y1=0.1x+6(x≥0);乙种收费方式的函数关系式是y2=0.12x(x≥0);(2)如果我校2014-2015学年八年级每次印刷100~450(含100和450)份学案,选择哪种印刷方式较合算.考点:一次函数的应用.分析:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,直接运用待定系数法就可以求出结论;(2)由(1)的解析式分三种情况进行讨论,当y1>y2时,当y1=y2时,当y1<y2时分别求出x的取值范围就可以得出选择方式.解答:解:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,由题意,得,12=100k1,解得:,k1=0.12,∴y1=0.1x+6(x≥0),y2=0.12x(x≥0);故答案为:y1=0.1x+6(x≥0),y2=0.12x(x≥0);(2)由题意,得[来源:学+科+网]当y1>y2时,0.1x+6>0.12x,得x<300;当y1=y2时,0.1x+6=0.12x,得x=300;当y1<y2时,0.1x+6<0.12x,得x>300;[来源:Z+xx+]∴当100≤x<300时,选择乙种方式合算;当x=300时,甲、乙两种方式一样合算;当300<x≤450时,选择甲种方式合算.答:印制100~300(含100)份学案,选择乙种印刷方式较合算,印制300份学案,甲、乙两种印刷方式都一样合算,印制300~450(含450)份学案,选择甲种印刷方式较合算.点评:本题考查待定系数法求一次函数的解析式的运用,运用函数的解析式解答方案设计的运用,解答时求出函数解析式是关键,分类讨论设计方案是难点.24.我县农村已经实行了农民新型合作医疗保险制度,享受医保的农民可在规定的医院就医并按规定标准报销部分医疗费用,下表是医疗费用报销的标准:医疗费用范围门诊住院0~5000元5001~20000元20000元以上每年报销比例标准30% 30%40% 50%(说明:住院医疗费用的报销分段计算,如:某人住院医疗费用共30 000元,则5000元按30%报销、15 000元按40%报销、余下的10 000元按50%报销,题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2009年门诊看病报销医疗费180元,则他在这一年中门诊医疗自付费用元;(2)设某农民一年中住院的实际医疗费用为x元(5001≤x≤20 000),按标准报销的金额为y 元,试求出y与x的函数关系式;(3)若某农民一年内本人自负住院费17 000元(自负医疗费=实际医疗费﹣按标准报销的金额),则该农民当年实际医疗费用共多少?考点:一元一次不等式的应用;一次函数的应用.专题:图表型.分析:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.解答:解:(1)因为门诊报销标准为30%,当门诊看病报销医疗费180元时,则这一年中门诊医疗自付费用180÷30%=600元;这一年中门诊医疗自付费用为600×70%=420元.(2)设某农民一年中住院的实际医疗费用为x元.由于5001≤x≤20 000,所以5000元按标准30%报销,余下的部分按标准40%报销;因此y=5000×30%+(x﹣5000)×40%=0.4x﹣500(5001≤x≤20 000).(3)假设该农民当年实际医疗费用不超过20 000元,则根据函数y=0.4x﹣500解得按标准报销的金额为7500,又因为自付医疗费=实际医疗费﹣按标准报销的金额=20 000﹣7500=12 500<17 000,所以该农民当年实际医疗费用超过20 000元.设该农民当年实际医疗费用为z元.则17 000=z﹣[5000×30%+15 000×40%+(z﹣20 000)×50%][来源:学科网ZXXK]解得:z=29 000.答:该农民当年实际医疗费用共29 000元.点评:本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.。
八下数学期中试卷(含答案)八年级数学第页共6页1 八年级下期中数学试题姓名班级考号得分:一. 填空题(每空2分,共30分)1.用科学记数法表示0.000043为。
2.计算:计算()=?+--1311 ; 232()3y x=__________; a b b b a a -+-=; yx x x y xy x 22+?+= 。
3.当x 时,分式51-x 有意义;当x 时,分式11x 2+-x 的值为零。
4.反比例函数xm y 1-=的图象在第一、三象限,则m 的取值范围是;在每一象限内y 随x 的增大而。
5. 如果反比例函数x my =过A (2,-3),则m= 。
6. 设反比例函数y=3mx-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<="" p="" 的取值范围是="" .="">8. 三角形的两边长分别为3和5,要使这个三角形是直角三角A D形,则第三条边长是.9. 如图若正方形ABCD 的边长是4,BE=1,在AC 上找一点P E使PE+PB 的值最小,则最小值为。
B C 10.如图,公路PQ 和公路MN 交于点P,且∠NPQ=30°,公路PQ 上有一所学校A,AP=160米,若有一拖拉机沿MN 方向以18米∕秒的速度行驶并对学校产生影响,八年级数学第页共6页2则造成影响的时间为秒。
二.单项选择题(每小题3分,共18分)11.在式子1a 、2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有()A 、2个B 、3个C 、4个D 、5个 12.下面正确的命题中,其逆命题不成立的是()A.同旁内角互补,两直线平行B.全等三角形的对应边相等C.角平分线上的点到这个角的两边的距离相等D.对顶角相等13.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是()A . 1.5,2,3a b c ===B . 7,24,25a b c ===C . 6,8,10a b c === D. 3,4,5a b c === 14.在同一直角坐标系中,函数y=kx+k 与(0)ky k x=≠的图像大致是()15.如图所示:数轴上点A 所表示的数为a ,则a 的值是(A.16.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为().A .3B .4C .5D .6三、解答题:17.(8分)计算:八年级数学第页共6页3 (1)xy y x y x ---22 (2)22111a a a a a ++---18.(6分)先化简代数式1121112-÷+-+-+a a a a a a ,然后选取一个使原式有意义的a 的值代入求值.19.(8分)解方程:(1)1233x x x=+-- (2)482222-=-+-+x x x x x20.(6分)已知:如图,四边形ABCD ,AB=8,BC=6,CD=26,AD=24,且AB ⊥BC 。
八年级数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 18cmC. 26cmD. 28cm2. 下列哪个数是有理数?A. √3B. -√5C. 1.1010010001D. 0.3333. 已知函数f(x) = 2x + 3,那么f(-1)的值为多少?A. -1B. 1C. -5D. 54. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是什么?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)5. 下列哪个图形不是正多边形?A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 在一个等差数列中,如果公差为0,则这个数列中的所有数都相等。
()8. 两个锐角互余。
()9. 任何一个正整数都可以表示为2的幂的乘积。
()10. 一元二次方程的解可以是两个相等的实数根。
()三、填空题(每题1分,共5分)11. 若一个等差数列的首项为3,公差为2,那么第10项为______。
12. 若一个正方形的边长为a,那么它的对角线长度为______。
13. 若一个圆的半径为r,那么它的面积公式为______。
14. 若一个三角形的三个内角分别为45°、45°和90°,那么这个三角形是______三角形。
15. 若一个函数f(x) = x^2 4x + 4,那么它的顶点坐标为______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 请简述一元二次方程的求根公式。
18. 请简述等差数列的通项公式。
19. 请简述圆的标准方程。
20. 请简述直角坐标系中两点之间的距离公式。
五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,且它的周长为30cm,求长方形的长和宽。
八年级数学(下)期中试卷(含答案)一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或23.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣94.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣47.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.11.若分式方程=有增根,则这个增根是x=.12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(0,2)13.直线y=﹣2x+6与两坐标轴围成的三角形面积是.14.点P(﹣5,﹣4)到x轴的距离是单位长度.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.17.先化简,再求值:(﹣)×,其中x=2.18.解方程(1)(2)+=.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360乙车320 x(2)求甲、乙两车的速度.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?参考答案与试题解析一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个【分析】依据分式的定义进行判断即可.【解答】解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选;B.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或2【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0解得:x=±2.当x=2时分母x2﹣2x=4﹣4=0,分式没有意义;当x=﹣2时分母x2﹣2x=4+4=8≠0.所以x=﹣2.故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.3.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 012=1.2×10﹣8.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形【分析】根据平行四边形的对角相等,对角线互相平分可判断出A、B正确;再由平行四边形是中心对称图形可对C、D进行判断.【解答】解:A、∵平行四边形的对角线互相平分,∴此命题是真命题;B、∵平行四边形的对角相等,∴此命题是真命题;C、∵平行四边形是中心对称图形,不是轴对称图形,∴此命题是假命题;D、∵平行四边形是中心对称图形,∴此命题是真命题.故选C.【点评】本题考查的是命题与定理,熟知平行四边形的性质是解答此题的关键.5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)【分析】根据第四象限内点的横坐标是正数,纵坐标是负数以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵第四象限的点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标是5,纵坐标是﹣4,∴点P的坐标为(5,﹣4).故选D.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣4【分析】分式方程两边乘以最简公分母x(x﹣2)即可得到结果.【解答】解:去分母得:x﹣2=2x,故选:A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内【分析】根据反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:函数y=(k>0),图象是双曲线,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.故选:C.【点评】此题主要考查了反比例函数的性质,关键是熟练掌握性质.8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,﹣k<0,然后,判断一次函数y=﹣kx+k的图象经过象限即可.【解答】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴﹣k<0,∴一次函数y=﹣kx+k的图象经过一、二、四象限;故选A【点评】本题主要考查了一次函数的图象,掌握一次函数y=kx+b,当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2【分析】先把点(m,n)代入函数y=2x+1求出2m﹣n的值,再代入所求代数式进行计算即可.【解答】解:∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1,∴4m﹣2n+1=2(2m﹣n)+1=2×(﹣1)+1=﹣1.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分子除以(a﹣2),分母也除以(a﹣2),得=,故答案为:a﹣2.【点评】本题考查了分式的性质,分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.11.若分式方程=有增根,则这个增根是x=2.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.【解答】解:∵分式方程=有增根,∴x﹣2=0∴原方程增根为x=2,故答案为2.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)y=﹣x+2(1)y随x的增大而减小;(2)图象经过点(0,2)【分析】设一次函数的解析式为y=kx+b,由一次函数的单调性即可得出k的取值范围,随便选取一个k值,再将点(0,2)代入一次函数解析式求出b值即可.【解答】解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k<0.令k=﹣1,则函数解析式为y=﹣x+b,又∵点(0,2)在一次函数y=﹣x+b的图象上,∴2=b,∴一次函数的解析式为y=﹣x+2.故答案为:y=﹣x+2.【点评】本题考查了待定系数法求函数解析式以及一次函数的性质,解题的关键是由点的坐标利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的单调性求出一次项系数k的取值范围是关键.13.直线y=﹣2x+6与两坐标轴围成的三角形面积是9.【分析】首先求出直线y=﹣2x+6与x轴、y轴的交点的坐标,然后根据三角形的面积公式,得出结果.【解答】解:∵直线y=﹣2x+6中,﹣=﹣=3,b=6,∴直线与x轴、y轴的交点的坐标分别为A(3,0),B(0,6),∴故S△AOB=×3×6=9.故答案为:9.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b与x轴的交点为(﹣,0),与y轴的交点为(0,b).14.点P(﹣5,﹣4)到x轴的距离是4单位长度.【分析】求得P的纵坐标绝对值即可求得P点到x轴的距离.【解答】解:∵|﹣4|=4,∴P点到x轴的距离是4,故答案为4.【点评】此题主要考查点的坐标;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为y=﹣(x<0).【分析】设比例函数的解析式为y=(k≠0),再根据反比例函数的图象在第二象限判断出k的符号,由反比例函数系数k的几何意义求出k的值即可.【解答】解:设比例函数的解析式为y=(k≠0),∵反比例函数的图象在第二象限,∴k<0,∵PA⊥x轴,S△PAO=3,∴=3,即k=﹣6,∴该反比例函数在第二象限的表达式为:y=﹣(x<0).故答案为:y=﹣(x<0).【点评】本题考查的是反比例函数系数k的几何意义,即反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.【分析】(1)先通分,然后进行通分母的减法运算;(2)先进行乘方运算,然后把除法运算化为乘法运算,再约分即可.【解答】解:(1)原式=﹣=;(2)原式=÷==.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.先化简,再求值:(﹣)×,其中x=2.【分析】先把括号内根据分式的通分法则进行计算,根据约分法则把原式化简,代入已知数据计算即可.【解答】解:原式=×=×=,当x=2时,原式=1.【点评】本题考查的是分式的化简求值,掌握分式的通分法则和约分法则是解题的关键.18.解方程(1)(2)+=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣3x=x2﹣8x+12,解得:x=,经检验x=是分式方程的解;(2)去分母得:6+3(x+1)=x+1,去括号得:6+3x+3=x+1,移项合并得:2x=﹣8,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?【分析】(1)设出反比例函数关系式,利用代定系数法把P(﹣2,1)代入函数解析式即可.由于Q点也在反比例函数图象上,所以把Q点坐标代入反比例函数解析式中即可得到Q点坐标,求出m的值,利用待定系数法求一次函数解析式;(2)根据图象可得到答案,注意反比例函数图象与y轴无交点,所以分开看.【解答】解:(1)设反比例函数的解析式为y=∵反比例函数经过点P(﹣2,1),∴a=﹣2×1,∴a=﹣2,∴反比例函数的解析式为y=﹣,∵Q(1,m)在反比例函数图象上,∴m=﹣2,设一次函数的解析式为y=kx+b∵P(﹣2,1),Q(1,﹣2)在一次函数图象上∴,∴,∴一次函数的解析式为y=﹣x﹣1;(2)如图所示:由图可知:当0<x<1或x<﹣2时一次函数的值大于反比例函数的值.【点评】此题主要考查了利用待定系数法求反比例函数解析式与一次函数解析式,画函数图象,正确的识别图形是解题的关键.20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.【分析】把分式的分子分母因式分解,再约分,根据分式有意义的条件,选择x的值,再计算即可.【解答】解:原式=+1=+1=x,∵2x≠0且x(x﹣2)≠0,∴x≠0,2,∴x=1,∴原式=×1=.【点评】本题考查了分式的化简求值,以及分式有意义的条件:分母不为0,掌握分式的通分和约分是解题的关键.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【分析】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【解答】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【点评】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)求甲、乙两车的速度.【分析】(1)设乙的速度是x千米/时,那么甲的速度是(x+10)千米/时,根据时间=可求甲、乙两辆汽车所需时间;(2)路程知道,且同时到达,可以时间做为等量关系列方程求解.【解答】解:(1)甲的速度是(x+10)千米/时,甲车所需时间是,乙车所需时间是;行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)乙的速度是x千米/时,甲的速度是(x+10)千米/时,依题意得:=,解得x=80,经检验:x=80是原方程的解,x+10=90,答:甲的速度是90千米/时,乙的速度是80千米/时.【点评】本题考查理解题意能力,关键是以时间做为等量关系,根据时间=,列方程求解.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为15分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.【解答】解:(1)∵30﹣15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s=t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)代入(30,4),(45,0),得解得∴s=﹣t+12(30≤t≤45)令﹣t+12=t,解得t=当t=时,S=×=3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.。
石板学区2016-2017年八年级下期中检测试卷
数学
试卷总分100分,考试时间120分钟 姓名: 得分:
一、选择题(每小题3分,共30分)
1.在代数式
π
3,,25,1,3b a b a y x x x a +-++中,分式有( ) A 、1个 B 、2个 C 、3个 D 、 4个
2、若分式
1
-2
x x -的值为0,则x 的取值是( ) A 、2≠x B 、 1-≠x
C 、 2=x
D 、 1±≠x 3、如果把分式
y
x xy
-中的x 、y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍 4.若关于x 的分式方程
2332=-++-x
m x x 无解,则m 的值是( ) A 、30==m m 或 B 、0=m C 、3=m D 、1-=m 5、函数
31
2-+
-=x x y 中自变量x 的取值范围是( )
A .32≠〈x x 且
B .3=x
C .2≤x
D .32≠≤x x 且 6.若
是反比例函数,则a 的取值为( )
A .1
B .﹣l
C .±l
D .任意实数
7、在反比例函数
x k
y -1=
的图象的每一条曲线上,y 都随x 的增大而减小,则k 的值可以
是( )
A .0
B .1
C .2
D .3
8、如果点),(11-y A A ,),(22y B ,),(33y C 都在反比例函数x
y 3
=的图象上,那么( )
A 、321y y y <<
B 、231y y y <<
C 、312y y y <<
D 、123y y y <<
9.函数
x m
y =
与)0(≠-=m m mx y 在同一平面直角坐标系中的大致图象是( )
10、八年级学生去距学校km 10的博物馆参观,一部分学生骑自行车先走,过了min 20后,其余学生乘汽车出发,结果他们同时到达。
已知汽车的速度是骑自行车学生速度的2倍,求骑车学生的速度。
设骑车学生的速度为h xkm /,则所列方程正确的是( )
A 、3121010-=x x
B 、 3121010+
=x x C 、 2021010-=x x D 、2021010+=x x
二、填空题(每小题3分,共18分)
11、一个纳米粒子的直径是0.0000000348米,这个数用科学计数法表示为 ______米.(保留两个有效数字)
12、若0
22
221,21,2,2.0⎪⎭
⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=-=-=--d c b a ,将d c b a ,,,按从大到小的关系排
列 。
13、已知432z
y x =
=,则代数式z y x z y x ++-+的值为___________.
14、如果点)21,(m m P -关于x 轴对称的点Q 在第四象限,则m 的取值范围是
______________.
15、已知等腰三角形的周长为18,设底边长为x ,腰长为y ,则y 与x 之间的函数关系是为:________________ (要求写出自变量x 的取值范围)
16、一组按规律排列的式子:,
,26
,17,10,5,25432a a a a a --(n 为正整数),其中第7个式子
是 ,第n 个式子是 (用含n 的式子表示). 三、解答题(共52分) 17、(每题3分,共6分)计算:
(1) 421)1.3(51
+⎪⎭
⎫ ⎝⎛--+--π (2) a b b a b a 3223-1∙÷
18、(每题3分,共6分)解方程:
(1)25-23-1--=x x x (2) 2
44
1231-412--+=+x x x x
19、(5分)先化简,再求值。
⎪
⎭
⎫ ⎝⎛
++-÷-++232212x x x x x ,其中21=x 。
20、(本题6分)(1)计算
x
x ++-11
11的值(2分)
(2)通过以上计算请你用一种你认为比较简便的方法计算m 的值:
4
214121111x x x x m ++++++-=
(4分)
21、(本题6分)阅读材料:1的任何次幂都等于1,-1的奇次幂都等于-1,-1的偶数次幂都等于1,任何不等于零的零次幂都等于1.
试根据以上材料探索使等于
1322015
=++x x )(成立的x 的值。
22、(本题8分)在如图所示的平面直角坐标系中,作出函数的图象,并根据图象直接
回答下列问题:
(1)当x=﹣2时,求y 的值;(2分) (2)当2<y <4时,求x 的取值范围;(2分)
(3)当﹣1<x <2,且x ≠0时,求y 的取值范围。
(2分)
注:作图2分
23.(本题6分)某校为美化校园,计划对面积为1800平方米区域进行绿化,安排甲、乙两个工程队完成。
已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400平方米区域绿化时,甲队比乙队少用4天。
求甲、乙两工程队每天能完成绿化的面积分别是多少平方米?
24、(本题9分)如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(﹣4,n).
(1)(4分)求一次函数和反比例函数的解析式;
(2)(3分)求△OAB的面积;
(3)(2分)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
石板学区2016-2017年八年级下期中检测数学试卷参考答案
数学
一、选择题(每小题3分,共30分)
二、填空题(每小题3分,共18分)
11、12、13、14、
15、16、
三、解答题(共52分)
17、(每题3分,共6分)(1)6 (2)
18、(每题3分,共6分,不检验扣1分)
(1)是增根,原方程无解;(2)是原方程的解。
18、(5分)
20、(本题6分)(2分)
(4分)
21、(本题6分)(1)当时,;(1分)
(2)当时,,指数是奇数,舍去(2分)(3)当时,,,符合题意;(2分)综上所述:的值为或。
(1分)
22、(本题8分)(1)当x=﹣2时,y==3;(2分)
(2)当2<y<4时:<x<3;(2分)
(3)由图象可得当﹣1<x<2 且x≠0时,y<﹣6或y>3.(2分)
23、(本题6分)
设乙工程队每天能完成绿化面积是平方米,则,解得经检验,是原方程的解。
答:甲、乙两工程队每天能完成绿化的面积分别是100平方米、50平方米。
24、(本题9分)
解:(1)(4分)
,
(2)(3分)
(3)(2分)当,一次函数值大于反比例函数值.。