2015-2016学年北京市西城区月坛中学九年级(上)数学期中试卷带解析答案
- 格式:doc
- 大小:1.25 MB
- 文档页数:28
北京市西城区重点中学九年级上学期期中考试数学试卷(一)一、选择题1、抛物线y=2(x﹣3)2+1的顶点坐标是()A、(3,1)B、(3,﹣1)C、(﹣3,1)D、(﹣3,﹣1)2、抛物线y=(x+2)2﹣3的对称轴是()A、直线x=﹣3B、直线x=3C、直线x=2D、直线x=﹣23、如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A、20°B、40°C、60°D、80°4、下面的图形中,既是轴对称图形又是中心对称图形的是()A、 B、 C、 D、5、将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A、y=(x﹣6)2+5B、y=(x﹣3)2+5C、y=(x﹣3)2﹣4D、y=(x+3)2﹣96、将抛物线y=3x2+1的图像向左平移2个单位,再向下平移3个单位,得到的抛物线是()A、y=3(x+2)2﹣3B、y=3(x+2)2﹣2C、y=3(x﹣2)2﹣3D、y=3(x﹣2)2﹣27、二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A、k<3B、k<3且k≠0C、k≤3D、k≤3且k≠08、如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A、12B、12C、6D、69、如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A、30°B、45°C、50°D、70°10、如图为二次函数y=ax2+bx+c的图象,下列各式中:①a>0,②b>0,③c=0,④c=1,⑤a+b+c=0.正确的只有()A、①④B、②③④C、③④⑤D、①③⑤二、填空题11、若y=x m﹣2是二次函数,则m=________.12、点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1________y2.(填“>”,“<”或“=”)13、若二次函数y=x2+2m﹣1的图像经过原点,则m的值是________.14、如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是________.15、程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为________.16、阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:小敏的作法如下:老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________;由此可证明直线PA,PB都是⊙O的切线,其依据是________.三、解答题17、解方程:x2﹣6x+5=0.18、若二次函数的图像过(﹣3,0)、(1,0)、(0,﹣3)三点,求这个二次函数的解析式.19、若二次函数y=ax2+bx+c的图像最高点为(1,3)经过(﹣1,0)两点,求此二次函数的解析式.20、已知二次函数的解析式是y=x2﹣2x﹣3(1)用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)在直角坐标系中,用五点法画出它的图像;(3)利用图象求当x为何值时,函数值y<0(4)当x为何值时,y随x的增大而减小?(5)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.21、如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=10cm,OM:OC=3:5,求弦AB的长.22、如图,在平面直角坐标系中,四边形OABC四个顶点的坐标分别为O(0,0),A(﹣3,0),B(﹣4,2),C(﹣1,2).将四边形OABC绕点O顺时针旋转90°后,点A,B,C分别落在点A′,B′,C′处.(1)请你在所给的直角坐标系中画出旋转后的四边形OA′B′C′;(2)点C旋转到点C′所经过的弧的半径是________,点C经过的路线长是________.23、如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.(1)求证:DE是圆O的切线;(2)若∠C=30°,CD=10cm,求圆O的半径.24、如图,二次函数y1=ax2+bx+3的图像与x轴相交于点A(﹣3,0)、B(1,0),交y轴于点C,C,D是二次函数图像上的一对对称点,一次函数y2=mx+n的图像经过B、D两点.(1)求二次函数的解析式及点D的坐标;(2)根据图像写出y2>y1时,x的取值范围.25、抛物线y=﹣x2+(m﹣1)x+m.(1)求证:无论m为何值,这条抛物线都与x轴至少有一个交点;(2)求它与x轴交点坐标A,B和与y轴的交点C的坐标;(用含m的代数式表示点坐标)(3)S△ABC=3,求抛物线的解析式.26、某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,(1)求该商品平均每天的利润y(元)与涨价x(元)之间的函数关系式;(2)问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润;(3)若每件商品的售价不高于13元,那么将售价定为多少元时,可以获最大利润?27、阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.观察图像可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图像,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.下面是他的探究过程,请将(1)、(2)、(3)补充完整:(1)①将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x﹣1>;当x<0时,原不等式可以转化为x2+4x﹣1<;②构造函数,画出图像设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图像.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(2)确定两个函数图像公共点的横坐标观察所画两个函数的图像,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为________(3)借助图像,写出解集结合(1)的讨论结果,观察两个函数的图像可知:不等式x3+4x2﹣x﹣4>0的解集为________28、已知如图:抛物线y=x2﹣1与x轴交于A,B两点,与y轴交于点C.(1)求A,B,C三点的坐标.(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.29、如图,在直角坐标系中,O为坐标原点,二次函数y=x2+mx+2的图象与x轴的正半轴交于点A,与y轴的正半轴交交于点B,且OA:OB=1:2.设此二次函数图象的顶点为D.(1)求这个二次函数的解析式;(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1.点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.答案解析部分一、<b >选择题</b>1、【答案】A【考点】二次函数的性质【解析】【解答】解:由y=2(x﹣3)2+1,根据顶点式的坐标特点可知,顶点坐标为(3,1).故选:A.【分析】已知抛物线的顶点式,可直接写出顶点坐标.2、【答案】D【考点】二次函数的性质【解析】【解答】解:根据抛物线的顶点式可知,顶点横坐标x=2,所以对称轴是x=﹣2.故选D.【分析】直接利用二次函数的顶点式求得.3、【答案】D【考点】圆周角定理【解析】【解答】解:∵⊙O是△ABC的外接圆,∠ABC=40°,∴∠AOC=2∠ABC=80°.故选:D.【分析】由⊙O是△ABC的外接圆,若∠ABC=40°,根据圆周角定理,即可求得答案.4、【答案】C【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【分析】根据轴对称图形与中心对称图形的概念求解.5、【答案】C【考点】二次函数的三种形式【解析】【解答】解:y=x2﹣6x+5=x2﹣6x+9﹣4=(x﹣3)2﹣4,故选:C.【分析】运用配方法把一般式化为顶点式即可.6、【答案】B【考点】平移的性质【解析】【解答】解:抛物线y=3x2+1的顶点坐标为(0,1),∵向左平移2个单位,再向下平移3个单位,∴平移后的抛物线的顶点坐标为(﹣2,﹣2),∴得到的抛物线是y=3(x+2)2﹣2.故选B.【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.7、【答案】D【考点】抛物线与x轴的交点【解析】【解答】解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选D.【分析】利用kx2﹣6x+3=0有实数根,根据判别式可求出k取值范围.8、【答案】C【考点】切线的性质【解析】【解答】解:连接CP,∵OA边与⊙C相切于点P,∴CP⊥AO,∵⊙C与∠AOB的两边分别相切,∠AOB=90°,∴∠POC=45°,∴OP=CP=6,∴OC= =6 ,故选C.【分析】连接CP,由切线的性质可得CP⊥AO,再由切线长定理可得∠POC=45°,进而可得△POC是等腰直角三角形,利用勾股定理即可求出OC的长.9、【答案】C【考点】圆心角、弧、弦的关系,圆周角定理【解析】【解答】解:∵∠ABC=70°,∠ACB=30°,∴∠A=80°,∴∠D=∠A=80°,∵D是的中点,∴ ,∴BD=CD,∴∠DBC=∠DCB= =50°,故选C.【分析】根据三角形的内角和定理得到∠A=80°,根据圆周角定理得到∠D=∠A=80°,根据等腰三角形的内角和即可得到结论.10、【答案】D【考点】二次函数的图象,二次函数的性质【解析】【解答】解:如图,抛物线开口方向向上,则a>0.故①正确;对称轴方程x=﹣>0,即b<0,②错误;∵抛物线经过原点,∴c=0.故③正确;当x=1时,y=0,即a+b+c=0.故⑤正确.综上所述,正确的说法是①③⑤.故选D.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.二、<b >填空题</b>11、【答案】4【考点】二次函数的定义【解析】【解答】解:∵函数y=x m﹣2是二次函数,∴m﹣2=2,∴m=4.故答案为4.【分析】根据二次函数的定义列出关于m的方程,求出m的值即可.12、【答案】>【考点】二次函数的图象,二次函数的性质【解析】【解答】解:当x=﹣3时,y1=x2﹣5x=24;当x=2时,y2=x2﹣5x=﹣6;∵24>﹣6,∴y1>y2.故答案为:>.【分析】分别计算自变量为﹣3、2时的函数值,然后比较函数值的大小即可.13、【答案】【考点】二次函数的图象,二次函数的性质【解析】【解答】解:∵二次函数y=x2+2m﹣1的图像经过点(0,0),∴2m﹣1=0,∴m= .故答案为.【分析】利用二次函数图像上点的坐标特征,把原点坐标代入解析式得到关于m 的方程,然后解此方程即可.14、【答案】(﹣4,3)【考点】坐标与图形变化-旋转【解析】【解答】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).【分析】过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得OB′=AB,A′B′=OB,然后写出点A′的坐标即可.15、【答案】102+(x﹣5+1)2=x2【考点】一元二次方程的应用【解析】【解答】解:设绳索长OA=OB=x尺,由题意得,102+(x﹣5+1)2=x2.故答案为:102+(x﹣5+1)2=x2.【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理列出方程.16、【答案】直径所对的圆周角是直角①经过半径外端并且垂直于这条半径的直线是圆的切线【考点】切线的判定与性质,作图—复杂作图【解析】【解答】解:∵OP是⊙O的直径,∴∠OAP=∠OBP=90°.∴直线PA,PB都是⊙O的切线.故答案为:直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线.【分析】直接根据圆周角定理即可得出∠OAP=∠OBP=90°,由切线的性质即可得出结论.三、<b >解答题</b>17、【答案】解:分解因式得:(x﹣1)(x﹣5)=0,x﹣1=0,x﹣5=0,x 1=1,x2=5【考点】解一元二次方程-因式分解法【解析】【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.18、【答案】解:设二次函数的解析式为y=ax2+bx+c,将(﹣3,0)、(1,0)、(0,﹣3)三点代入解析式得:,解得:.则二次函数解析式为y=x2+2x﹣3【考点】待定系数法求二次函数解析式【解析】【分析】设出二次函数的解析式为y=ax2+bx+c,将三点坐标代入二次函数解析式求出a,b,c的值,即可确定出解析式.19、【答案】解:设抛物线解析式为y=a(x﹣1)2+3,把(﹣1,0)代入得4a+3=0,解得a=﹣,所以抛物线解析式为y=﹣(x﹣1)2+3【考点】待定系数法求二次函数解析式【解析】【分析】由于已知抛物线的顶点坐标,则可设顶点式y=a(x﹣1)2+3,然后把(﹣1,0)代入求出a的值即可.20、【答案】(1)解:y=x2﹣2x﹣3=(x﹣1)2﹣4,即y=(x﹣1)2﹣4(2)解:由(1)可知,y=(x﹣1)2﹣4,则顶点坐标为(1,﹣4),令x=0,则y=﹣3,∴与y轴交点为(0,﹣3),令y=0,则0=x2﹣2x﹣3,解得x1=﹣1,x2=3,∴与x轴交点为(﹣1,0),(3,0).列表:(3)解:由图象知,当﹣1<x<3时,函数值y<0(4)解:由图象知,当x<1时,y随x的增大而减小(5)解:当x=﹣3时,y=9+6﹣3=12,则﹣3<x<3时,0<y<12【考点】二次函数的三种形式,抛物线与x轴的交点【解析】【分析】(1)利用配方法将函数解析式进行转换即可;(2)根据顶点式求得顶点坐标,令x=0,求得与y轴的交点,令y=0,求得与x轴的坐标,再在对称轴的两侧取两组对称点,列表,然后描点、连线即可.(3)、(4)、(5)根据二次函数图象的性质即可解答.21、【答案】解:连接OA,∵CD=10cm,∴OC=5cm.∵OM:OC=3:5,∴OM=3,∴AM= = =4,∴AB=2AM=8.【考点】勾股定理,垂径定理【解析】【分析】连接OA,先根据CD=10cm得出OC的长,再由OM:OC=3:5得出OM的长,由勾股定理求出AM的长,进而可得出结论.22、【答案】(1)解:如图所示,四边形OA′B′C′即为所求作的图形(2)①π【考点】垂径定理的应用,弧长的计算,旋转的性质,作图-旋转变换【解析】【解答】解:(2)根据勾股定理,OC= = ,C经过的路线长= = π.【分析】(1)根据网格结构找出点A、B、C的对应点A′、B′、C′的位置,然后顺次连接即可;(2)先利用勾股定理求出OC的长度,再根据弧长的计算公式列式进行计算即可得解.23、【答案】(1)证明:连接OD,∵D是BC的中点,O为AB的中点,∴OD∥AC.又∵DE⊥AC,∴OD⊥DE,∵OD为半径,∴DE是圆O的切线(2)解:连接AD;∵AB是圆O的直径,∴∠ADB=90°=∠ADC,∴△ADC是直角三角形.∵∠C=30°,CD=10,∴AD= .∵OD∥AC,OD=OB,∴∠B=30°,∴△OAD是等边三角形,∴OD=AD= ,∴圆O的半径为cm.【考点】等边三角形的性质,圆周角定理,切线的判定【解析】【分析】(1)连接OD,利用三角形的中位线定理可得出OD∥AC,再利用平行线的性质就可证明DE是圆O的切线.(2)利用30°特殊角度,可求出AD的长,由两直线平行同位角相等,可得出∠ODB=∠C=30°,从而△ABD为直角三角形,圆O的半径可求.24、【答案】(1)解:二次函数y1=ax2+bx+3的图像经过点A(﹣3,0),B(1,0);∴ ,解得;∴二次函数图像的解析式为y1=﹣x2﹣2x+3;∴点D的坐标为(﹣2,3)(2)解:y2>y1时,x的取值范围是x<﹣2或x>1【考点】待定系数法求二次函数解析式【解析】【分析】(1)将A、B的坐标代入抛物线的解析式中即可求得待定系数的值,进而可根据抛物线的对称轴求出D点的坐标;(2)联立两函数的解析式,即可求得B、D的坐标,进而可判断出y2>y1时x的取值范围.25、【答案】(1)证明:∵△=(m﹣1)2﹣4×1×m=(m+1)2≥0∴无论m为何值这条抛物线都与x轴至少有一个交点(2)解:∵令x=0得:y=m,∴点C的坐标为(0,m).∵令y=0得;﹣x2+(m﹣1)x+m=0,解得:x=﹣1或x=m,∴A(﹣1,0)B(m,0)(3)解:由上题可得|AB|=|m+1|,OC=|m|,∵SS△ABC=3,∴|m+1||m|=6.解得:m=﹣3,m=2.∴y=﹣x2﹣4x﹣3或y=﹣x2+x+2【考点】抛物线与x轴的交点【解析】【分析】(1)先列出三角形的代数式,然后利用配方法证明△≥0即可;(2)令x=0可求得点C的坐标,令y=0求得方程的解,从而可求得点A、B 的坐标;(3)利用三角形的面积求得m的值从而可求得抛物线的解析式.26、【答案】(1)解:由题意得,y=(x﹣8)[100﹣10(x﹣10)]=﹣10x2+280x﹣1600,(10≤a <20)(2)解:y=(x﹣8)[100﹣10(x﹣10)]=﹣10(x﹣14)2+360(10≤a<20),∵a=﹣10<0∴当x=14时,y有最大值360答:他将售出价(x)定为14元时,才能使每天所赚的利润(y)最大,最大利润是360元(3)解:由图像可知x=13时,y的值最大,答:将售价定为每件13元时,可以获最大利润【考点】二次函数的应用【解析】【分析】(1)根据日利润=销售量×每件利润.每件利润为x﹣8元,销售量为100﹣10(x﹣10),据此得关系式.(2)利用配方法即可解决问题.(3)根据图象可知x=13时,y的值最大.27、【答案】(1)解:(2)±1和﹣4(3)x>1或﹣4<x<﹣1【考点】二次函数与不等式(组)【解析】【解答】解:(2)两个函数图像公共点的横坐标是±1和﹣4.则满足y3=y4的所有x的值为±1和﹣4.故答案是:±1和﹣4;(3)不等式x3+4x2﹣x﹣4>0即当x>0时,x2+4x﹣1>,此时x的范围是:x>1;当x<0时,x2+4x﹣1<,则﹣4<x<﹣1.故答案是:x>1或﹣4<x<﹣1.【分析】(1)首先确定二次函数的对称轴,然后确定两个点即可作出二次函数的图象;(2)根据图象即可直接求解;(3)根据已知不等式x3+4x2﹣x﹣4>0即当x>0时,x2+4x﹣1>,;当x<0时,x2+4x﹣1<,根据图象即可直接写出答案.28、【答案】(1)解:∵令y=0,则x=±1,令x=0,则y=﹣1,∴A(﹣1,0),B(1,0),C(0,﹣1)(2)解:设过B、C两点的直线解析式为y=kx+b(k≠0),∵B(1,0),C(0,﹣1),∴ ,解得,∴直线BC的解析式为y=x﹣1,∵AP∥CB,A(﹣1,0),∴直线AP的解析式为:y=x+1,∴ ,解得或,∴P(2,3),∴AP= =3 ,∵OB=OC=OA,∠BOC=90°,∴△ABC是等腰直角三角形,即AC⊥BC,∴四边形ACBP是直角梯形,∵AC=BC= = ,= (BC+AP)×AC= (+3 )× =4∴S四边形ACBP【考点】二次函数的图象,二次函数的性质【解析】【分析】(1)先令y=0求出x的值即可得出AB两点的坐标;再令x=0,求出y的值即可得出C点坐标;(2)根据B、C两点的坐标用待定系数法求出直线BC的解析式,再根据AP∥CB,A(﹣1,0)可得出直线AP的解析式,故可得出点P的坐标,有两点间的距离公式可求出AP及BC的长,再根据OB=OC=OA,∠BOC=90°可知△ABC是等腰直角三角形,即AC⊥BC,再由梯形的面积公式即可得出结论.29、【答案】(1)解:∵二次函数y=x2+mx+2的图象与x轴的正半轴交于点A,与y轴的正半轴交交于点B,且OA:OB=1:2,∴B(0,2),A(1,0),把A(1,0)代入y=x2+mx+2得m=﹣3,∴二次函数的解析式为y=x2﹣3x+2(2)解:如图1中,由题意可知,C(3,1),作CG∥OB交抛物线于G.x=3时,y=2,∴点G坐标(3,2),∴把抛物线向下平移1个单位即可经过点C,∴平移后的抛物线的解析式为y=x2﹣3x+1(3)解:如图2中,设P(m,m2﹣3m+1),∵BB1=DD1,△PBB1的面积是△PDD1面积的2倍,∴m=2| [MISSING IMAGE: , ]﹣m|,∴m=1或3,∴点P坐标为(1,﹣1)或(3,1)【考点】二次函数的图象,二次函数的性质【解析】【分析】(1)先求出A、B两点坐标,利用待定系数法即可解决问题.(2)如图1中,由题意可知,C(3,1),作CG∥OB交抛物线于G.x=3时,y=2,推出点G坐标(3,2),所以把抛物线向下平移1个单位即可经过点C,由此即可解决问题.(3)如图2中,设P(m,m2﹣3m+1),由题意BB1=DD1,△PBB1的面积是△PDD1面积的2倍,可得m=2| [MISSING IMAGE: , ]﹣m|,解方程即可.北京市西城区重点中学九年级上学期期中考试数学试卷(二)一、选择题1、下面的图形中,既是轴对称图形又是中心对称图形的是()A、 B、 C、 D、2、抛物线y=(x﹣2)2+1的顶点坐标为()A、(2,1)B、(2,﹣1)C、(﹣2,﹣1)D、(﹣2,1)3、如图,∠A是⊙O的圆周角,∠A=40°,则∠BOC的度数为()A、50°B、80°C、90°D、120°4、如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A、8B、6C、4D、105、如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是()A、把△ABC向右平移6格B、把△ABC向右平移4格,再向上平移1格C、把△ABC绕着点A顺时针旋转90°,再向右平移6格D、把△ABC绕着点A逆时针旋转90°,再向右平移6格6、将抛物线y=6x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线解析式是()A、y=6(x﹣2)2+3B、y=6(x+2)2+3C、y=6(x﹣2)2﹣3D、y=6(x+2)2﹣37、圆内接正方形半径为2,则面积为()A、2B、4C、8D、168、平面直角坐标系中,⊙O是以原点O为圆心,4为半径的圆,则点A(2,﹣2)的位置在()A、⊙O内B、⊙O上C、⊙O外D、不能确定9、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A、a>0B、当x≥1时,y随x的增大而增大C、c<0D、当﹣1<x<3时,y>010、如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P,Q两点同时停止运动.设P点运动的时间为t秒,△APQ的面积为S,则表示S与t之间的函数关系的图象大致是()A、B、C、D、二、填空题11、点P(3,﹣4)关于原点对称的点的坐标是________.12、如图,在⊙O中,AB=AC,∠ABC=70°.∠BOC=________.13、请写出一个开口向上,并且与y轴交于点(0,﹣1)的抛物线的解析式________.14、如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为________度.15、如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为________.16、如图,菱形ABCD中,AB=2,∠C=60°,我们把菱形ABCD的对称中心O称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为________;(结经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为________.果都保留π)三、解答题17、抛物线y=2x2向上平移后经过点A(0,3),求平移后的抛物线的表达式.18、如图,在8×11的方格纸中,△ABC的顶点均在小正方形的顶点处.(1)画出△ABC绕点A顺时针方向旋转90°得到的△A′B′C′;(2)求点B运动到点B′所经过的路径的长度.19、已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.20、已知抛物线y=x2﹣2x﹣8.(1)用配方法把y=x2﹣2x﹣8化为y=(x﹣h)2+k形式;(2)并指出:抛物线的顶点坐标是________,抛物线的对称轴方程是________,抛物线与x轴交点坐标是________,当x________时,y随x的增大而增大.21、如图,AB是⊙O的直径,AD是弦,∠A=22.5°,延长AB到点C,使得∠ACD=45°.(1)求证:CD是⊙O的切线.(2)若AB=2 ,求OC的长.22、如图,抛物线y=ax2+bx+c经过A(﹣4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(﹣4,0)、C(0,3)两点.(1)写出方程ax2+bx+c=0的解;(2)若ax2+bx+c>mx+n,写出x的取值范围.23、如图,点A,B,C,D,E在圆上,弦的延长线与弦的延长线相交于点,AB 是圆的直径,D是BC的中点.求证:AB=AC.24、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?25、已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.(1)求证:无论m取何值时,方程恒有实数根;(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.26、如图,在△ABC中,∠BAC=90°,AB=AC,D是BC上的点.求证:BD2+CD2=2AD2.27、已知:抛物线y=x2+(b﹣1)x﹣5.(1)写出抛物线的开口方向和它与y轴交点的坐标;(2)若抛物线的对称轴为直线x=1,求b的值,并画出抛物线的草图(不必列表);(3)如图,若b>3,过抛物线上一点P(﹣1,c)作直线PA⊥y轴,垂足为A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数解析式.28、如图,将线段AB绕点A逆时针旋转60°得AC,连接BC,作△ABC的外接圆⊙O,点P为劣弧上的一个动点,弦AB,CP相交于点D.(1)求∠APB的大小;(2)当点P运动到何处时,PD⊥AB?并求此时CD:CP的值;(3)在点P运动过程中,比较PC与AP+PB的大小关系,并对结论给予证明.答案解析部分一、<b >选择题</b>1、【答案】C【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【分析】根据轴对称图形与中心对称图形的概念求解.2、【答案】A【考点】二次函数的性质【解析】【解答】解:抛物线y=(x﹣2)2+1是以抛物线的顶点式给出的,其顶点坐标为:(2,1).故选A.【分析】抛物线的顶点式为:y=a(x﹣h)2+k,其顶点坐标是(h,k),可以确定抛物线的顶点坐标.3、【答案】B【考点】圆周角定理【解析】【解答】解:∵∠A是⊙O的圆周角,∠A=40°,∴∠BOC=2∠A=80°.故选B.【分析】由∠A是⊙O的圆周角,∠A=40°,根据圆周角定理,即可求得∠BOC 的度数.4、【答案】A【考点】勾股定理,垂径定理【解析】【解答】解:连接OA,∵OA=5,OC=3,OC⊥AB,∴AC= = =4,∵OC⊥AB,∴AB=2AC=2×4=8.故选A.【分析】先连接OA,根据勾股定理求出AC的长,由垂径定理可知,AB=2AC,进而可得出结论.5、【答案】D【考点】图形的旋转,旋转的性质【解析】【解答】解:根据图象,△ABC绕着点A逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF重合.故选:D.【分析】观察图象可知,先把△ABC绕着点A逆时针方向90°旋转,然后再向右平移即可得到.6、【答案】B【考点】二次函数图象与几何变换【解析】【解答】解:抛物线y=6x2先向左平移2个单位得到解析式:y=6(x+2)2,再向上平移3个单位得到抛物线的解析式为:y=6(x+2)2+3.故选B.【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.7、【答案】C【考点】正多边形和圆【解析】【解答】解:过圆心O作OE⊥CB,∵圆的半径为2,内接四边形是正方形,∴∠BOC=90°,OB=OC,∴∠OBC=∠OCB=45°,∴22+22=CB2,∴AB2=8,即正方形的面积为:8.故选:C.【分析】根据圆内接正方形的性质,得出∠BOC=90°,以及CB2即正方形的面积,求出即可.8、【答案】A【考点】坐标与图形性质,点与圆的位置关系【解析】【解答】解:如图所示:点A(2,﹣2)在⊙O内.故选:A.【分析】利用已知画出图形,进而得出A的位置.9、【答案】D【考点】二次函数图象与系数的关系【解析】【解答】解:A、抛物线的开口方向向下,则a<0.故A选项错误;B、根据图示知,当x≥1时,y随x的增大而减小.故此选项错误;C、根据图示知,该抛物线与y轴交与正半轴,则c>0.故C选项错误;D、根据图示知,抛物线的对称轴为x=1,抛物线与x轴的一交点的横坐标是﹣1,则抛物线与x轴的另一交点的横坐标是3,所以当﹣1<x<3时,y>0.故此选项正确;故选:D.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.10、【答案】D【考点】函数的图象【解析】【解答】解:分两种情况:①当0<t≤2时,如图1所示,由题意得:AP=t,BQ=2t= AP•BQ= t•2t=t2,其图象是抛物线,S△APQ②当2<t≤4时,如图2所示,S= AP•BC= ×t×4=2t,其图象为一条直线,△APQ故选D.【分析】根据动点P从A点出发,到B停止,速度为每秒1个单位,则时间为0~4秒,动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,路程为8,时间为0~4秒;分两种情况:①当0<t≤2时,如图1,Q在BC上,则△APQ的面积为S= AP•BQ=t2,图象为二次函数的抛物线;②当2<t≤4时,如图2,点Q在CD上,其面积求得为2t,是一条直线;作出判断.二、<b >填空题</b>11、【答案】(﹣3,4)【考点】关于原点对称的点的坐标【解析】【解答】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.12、【答案】80°【考点】圆周角定理【解析】【解答】解:∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°×2=40°,∵点O是△ABC的外心,∴∠BOC=2∠A=40°×2=80°,故答案为:80°.【分析】首先根据等腰三角形的性质可得∠A的度数,然后根据圆周角定理可得∠BOC=2∠A,进而可得答案.13、【答案】y=x2﹣1【考点】二次函数的性质【解析】【解答】解:抛物线的解析式为y=x2﹣1.故答案为:y=x2﹣1(答案不唯一).【分析】抛物线开口向上,二次项系数大于0,然后写出即可.14、【答案】15【考点】旋转的性质【解析】【解答】解:根据旋转的性质△ABC≌△EDB,BC=BD,。
xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.试题2:抛物线y=(x﹣2)2+1的顶点坐标是()A.(﹣2,﹣1) B.(﹣2,1) C.(2,﹣1) D.(2,1)试题3:下列事件为必然事件的是()A.任意掷一枚均匀的硬币,正面朝上B.篮球运动员投篮,投进篮筐C.一个星期有七天D.打开电视机,正在播放新闻试题4:如图,△ABC内接于⊙O,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°试题5:抛物线y=2x2向右平移1个单位,再向上平移5个单位,则平移后的抛物线的解析式为()A.y=2(x+1)2+5 B.y=2(x+1)2﹣5 C.y=2(x﹣1)2﹣5 D.y=2(x﹣1)2+5试题6:.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A.8 B.6 C.4 D.10试题7:如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°,∠B′=110°,则∠BCA′的度数是()A.90° B.80° C.50° D.30°试题8:某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x) B.y=(60﹣x)(300+20x)C.y=300(60﹣20x) D.y=(60﹣x)(300﹣20x)试题9:在平面直角坐标系xOy中,如果⊙O是以原点O(0,0)为圆心,以5为半径的圆,那么点A(﹣3,﹣4)与⊙O的位置关系是()A.在⊙O内 B.在⊙O上 C.在⊙O外 D.不能确定试题10:如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A. B. C.D.试题11:点P(﹣3,4)关于原点对称的点的坐标是.试题12:函数y=(m+1)x|m|+1+4x﹣5是二次函数,则m= .试题13:在一个不透明的袋子中,装有2个红球和3个白球,它们除颜色外其余均相同.现随机从袋中摸出一个球,颜色是白色的概率是.试题14:点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1y2.(填“>”,“<”或“=”)试题15:二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为.试题16:如图,∠ABC=90°,O为射线BC上一点,以点O为圆心,OB长为半径作⊙O,将射线BA绕点B按顺时针方向旋转至BA′,若BA′与⊙O相切,则旋转的角度α(0°<α<180°)等于.试题17:抛物线y=﹣x2+(m﹣1)x+m与y轴交点坐标是(0,3).(1)求出m的值并画出这条抛物线;(2)求抛物线与x轴的交点和抛物线顶点的坐标;(3)当x取什么值时,y的值随x值的增大而减小?试题18:已知如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠A=22.5°,CD=8cm,求⊙O的半径.试题19:已知:如图,A,B,C为⊙O上的三个点,⊙O的直径为4cm,∠ACB=45°,求AB的长.试题20:如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.(1)画出将△ABC向右平移2个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.试题21:.已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0)、(1)填空:抛物线的对称轴为直线x= ,抛物线与x轴的另一个交点D的坐标为;(2)求该抛物线的解析式.试题22:某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?试题23:石头剪子布,又称“猜丁壳”,是一种起源于中国流传多年的猜拳游戏,游戏时的各方每次用一只手做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头”.两人游戏时,若出现相同手势,则不分胜负游戏继续,直到分出胜负,游戏结束,三人游戏时,若三种手势都相同或都不相同,则不分胜负游戏继续,若出现两人手势相同,则视为一种手势与第三人所出手势进行对决,此时,参照两人游戏规则,例如甲、乙二人同时出石头,丙出剪刀,则甲、乙获胜,假定甲、乙、丙三人每次都是随机地做这三种手势,那么:(1)直接写出一次游戏中甲、乙两人出第一次手势时,不分胜负的概率;(2)请你画出树状图求出一次游戏中甲、乙、丙三人出第一次手势时,不分胜负的概率.试题24:如图(1)是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状.抛物线两端点与水面的距离都是1m,拱桥的跨度为10cm.桥洞与水面的最大距离是5m.桥洞两侧壁上各有一盏距离水面4m的景观灯.现把拱桥的截面图放在平面直角坐标系中,如图(2).求:(1)抛物线的解析式;(2)两盏景观灯P1、P2之间的水平距离.试题25:已知:如图,AB为⊙O的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.(1)求∠P的大小;(2)若AB=6,求PA的长.试题26:根据下列要求,解答相关问题.(1)请补全以下求不等式﹣2x2﹣4x>0的解集的过程.①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.试题27:在平面直角坐标系xOy中,抛物线y=mx2﹣8mx+16m﹣1(m>0)与x轴的交点分别为A(x1,0),B(x2,0).(1)求证:抛物线总与x轴有两个不同的交点;(2)若AB=2,求此抛物线的解析式.(3)已知x轴上两点C(2,0),D(5,0),若抛物线y=mx2﹣8mx+16m﹣1(m>0)与线段CD有交点,请写出m的取值范围.试题28:如图1,△ABC和△CDE都是等腰直角三角形,∠C=90°,将△CDE绕点C逆时针旋转一个角度α(0°<α<90°),使点A,D,E在同一直线上,连接AD,BE.(1)①依题意补全图2;②求证:AD=BE,且AD⊥BE;③作CM⊥DE,垂足为M,请用等式表示出线段CM,AE,BE之间的数量关系;(2)如图3,正方形ABCD边长为,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.试题29:在平面直角坐标系xOy中,定义点P(x,y)的变换点为P′(x+y,x﹣y).(1)如图1,如果⊙O的半径为,①请你判断M(2,0),N(﹣2,﹣1)两个点的变换点与⊙O的位置关系;②若点P在直线y=x+2上,点P的变换点P′在⊙O的内,求点P横坐标的取值范围.(2)如图2,如果⊙O的半径为1,且P的变换点P′在直线y=﹣2x+6上,求点P与⊙O上任意一点距离的最小值.试题1答案: D.试题2答案: D.试题3答案: C.试题4答案: B.试题5答案:D.试题6答案:A.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.试题7答案:B【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°.故选:B.【点评】此题主要考查了旋转的性质,关键是熟练掌握旋转前、后的图形全等,进而可得到一些对应角相等.试题8答案:B【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【点评】此题主要考查了根据实际问题列二次函数解析式,关键是正确理解题意,找出题目中的等量关系,再列函数解析式.试题9答案:B【考点】点与圆的位置关系;坐标与图形性质.【分析】根据两点间的距离公式求出AO的长,然后与⊙O的半径比较,即可确定点A的位置.【解答】解:∵点A(﹣3,﹣4),∴AO==5,∵⊙O是以原点O(0,0)为圆心,以5为半径的圆,∴点A在⊙O上,故选:B.【点评】此题主要考查了点与圆的位置关系,关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.试题10答案:B【解答】解:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.【点评】(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.试题11答案:(3,﹣4).【考点】关于原点对称的点的坐标.【分析】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).【点评】这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.试题12答案:1 .【考点】二次函数的定义.【分析】依据二次函数的定义可得到m+1≠0,|m|+1=2,从而可求得m的值.【解答】解:∵函数x|m|+1+4x﹣5是二次函数,∴m+1≠0,|m|+1=2.解得:m=1.故答案为:1.【点评】本题主要考查的是二次函数的定义,掌握二次函数的定义是解题的关键.试题13答案:.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的2个红球和3个白球,共5个,现随机从袋中摸出一个球,颜色是白色的概率是.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.试题14答案:>)【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为﹣3、2时的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣3时,y1=x2﹣5x=24;当x=2时,y2=x2﹣5x=﹣6;∵24>﹣6,∴y1>y2.故答案为:>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.试题15答案:x1=1,x2=﹣3 .【考点】抛物线与x轴的交点.【分析】直接利用抛物线的对称性以及结合对称轴以及抛物线y=ax2+bx+c与x轴的一个交点是(1,0),得出另一个与x 轴的交点,进而得出答案.【解答】解:∵抛物线y=ax2+bx+c与x轴的一个交点是(1,0),对称轴为直线x=﹣1,∴抛物线y=ax2+bx+c与x轴的另一个交点是(﹣3,0),∴方程ax2+bx+c=0(a≠0)的解为:x1=1,x2=﹣3.故答案为:x1=1,x2=﹣3.【点评】此题主要考查了抛物线与x轴的交点,正确得出抛物线与x轴的交点坐标是解题关键.试题16答案:60°或120°.【考点】切线的性质.【分析】当BA′与⊙O相切时,可连接圆心与切点,通过构建的直角三角形,求出∠A′BO的度数,然后再根据BA′的不同位置分类讨论.【解答】解:如图;①当BA′与⊙O相切,且BA′位于BC上方时,设切点为P,连接OP,则∠OPB=90°;Rt△OPB中,OB=2OP,∴∠A′BO=30°;∴∠ABA′=60°;②当BA′与⊙O相切,且BA′位于BC下方时;同①,可求得∠A′BO=30°;此时∠ABA′=90°+30°=120°;故旋转角α的度数为60°或120°.【点评】此题主要考查的是切线的性质,以及解直角三角形的应用;需注意切线的位置有两种情况,不要漏解.试题17答案:【考点】抛物线与x轴的交点.【分析】(1)先把点(0,3)代入抛物线y=﹣x2+(m﹣1)x+m求出m的值即可得出抛物线的解析式,利用描点法画出函数图象即可;(2)、(3)根据函数图象可直接得出结论;【解答】解:(1)∵抛物线y=﹣x2+(m﹣1)x+m与y轴交点坐标是(0,3),∴m=3,∴抛物线的解析式为y=﹣x2+2x+3.列表如下:,函数图象如图;(2)由函数图象可知,抛物线与x轴的交点为(﹣1,0),(3,0),顶点坐标为(1,4);(3)由函数图象可知,当x>1时,y的值随x值的增大而减小.【点评】本题考查的是抛物线与x轴的交点,能根据题意画出函数图象,利用数形结合求解是解答此题的关键.试题18答案:【考点】垂径定理;勾股定理.【分析】连接OC,由圆周角定理得出∠COE=45°,根据垂径定理可得CE=DE=4cm,证出△COE为等腰直角三角形,利用特殊角的三角函数可得答案.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵∠A=22.5°,∴∠COE=2∠A=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,即⊙O的半径为4cm.【点评】此题主要考查了圆周角定理、垂径定理、以及三角函数的应用;关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.试题19答案:【考点】圆周角定理;等腰直角三角形.【分析】首先连接OA,OB,由∠ACB=45°,利用圆周角定理,即可求得∠AOB=90°,再利用勾股定理求解即可求得答案.【解答】解:连接OA,OB,∵∠ACB=45°,∴∠AOB=2∠ACB=90°,∵⊙O的直径为4cm,∴OA=OB=2cm,∴AB==2(cm).【点评】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.试题20答案:【考点】作图-旋转变换;轨迹;作图-平移变换.【分析】(1)根据题意可以画出相应的图形;(2)根据题意和图形,可知线段B1C1旋转到B1C2的过程中,点C1所经过的路径时半径为4的圆周长的四分之一.【解答】解:(1)如右图所示;(2)由题意可得,线段B1C1旋转到B1C2的过程中,点C1所经过的路径长是:2π×4×=2π,即线段B1C1旋转到B1C2的过程中,点C1所经过的路径长2π.【点评】本题考查作图﹣旋转变换、轨迹、平移变换,解题的关键是明确题意,利用数形结合的思想解答.试题21答案:【考点】待定系数法求二次函数解析式;二次函数的性质.【分析】(1)A(0,3)、B(4,3)的纵坐标相同,因而这两点一定是对称点,则可求得函数的对称轴,再根据对称性就可求得抛物线与x轴的另一个交点D的坐标;(2)根据待定系数法即可求得函数的解析式.【解答】解:(1)拋物线的对称轴为直线x=2;拋物线与x轴的另一个交点D的坐标为(3,0);(2)∵拋物线经过点C(1,0)、D(3,0),∴设拋物线的解析式为y=a(x﹣1)(x﹣3)(4分)由拋物线经过点A(0,3),得a=1∴拋物线的解析式为y=x2﹣4x+3(6分)【点评】本题考查了抛物线的对称性、用待定系数法求函数解析式的方法,同时还考查了方程的解法等知识.试题22答案:【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设人行道的宽度为x米,则矩形绿地的长度为:,宽度为:8﹣2x,根据两块绿地的面积之和为60平方米,列方程求解.【解答】解:设人行道的宽度为x米,由题意得,2××(8﹣2x)=60,解得:x1=2,x2=9(不合题意,舍去).答:人行道的宽度为2米.【点评】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.试题23答案:(1)直接写出一次游戏中甲、乙两人出第一次手势时,不分胜负的概率;(2)请你画出树状图求出一次游戏中甲、乙、丙三人出第一次手势时,不分胜负的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)甲、乙两人出第一次手势时,共有9种等可能的结果数,其中出现相同手势的结果数为3,于是根据概率公式可计算出不分胜负的概率;(2)画树状图展示所有27种等可能的结果数,再找出三种手势都相同或都不相同的结果数,然后根据概率公式求解.【解答】解:(1)一次游戏中甲、乙两人出第一次手势时,不分胜负的概率=;(2)画树状图为:共有27种等可能的结果数,其中三种手势都相同或都不相同的结果数为9,所以甲、乙、丙三人出第一次手势时,不分胜负的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.试题24答案:【考点】二次函数的应用.【分析】(1)由图形可知这是一条抛物线,根据图形也可以知道抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1),设出抛物线的解析式将两点代入可得抛物线方程;(2)第二题中要求灯的距离,只需要把纵坐标为4代入,求出x,然后两者相减,就是它们的距离.【解答】解:(1)抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1),设抛物线的解析式是y=a(x﹣5)2+5,把(0,1)代入y=a(x﹣5)2+5,得a=﹣,∴y=﹣(x﹣5)2+5(0≤x≤10);(2)由已知得两景观灯的纵坐标都是4,∴4=﹣(x﹣5)2+5,∴(x﹣5)2=1,∴x1=,x2=,∴两景观灯间的距离为﹣=5米.【点评】本题主要考查了二次函数的应用以及一元二次方程与二次函数的关系,从图象中可以看出的坐标是解题的关键.试题25答案:【考点】切线的性质.【分析】(1)由圆的切线的性质,得∠PAB=90°,结合∠BAC=30°得∠PAC=90°﹣30°=60°.由切线长定理得到PA=PC,得△PAC是等边三角形,从而可得∠P=60°.(2)连接BC,根据直径所对的圆周角为直角,得到∠ACB=90°,结合Rt△ACB中AB=6且∠BAC=30°,得到AC=ABcos∠BAC=3.最后在等边△PAC中,可得PA=AC=3.【解答】解:(1)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,即∠PAB=90°.∵∠BAC=30°,∴∠PAC=90°﹣30°=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC是等边三角形,∴∠P=60°.(2)如图,连接BC.∵AB是直径,∠ACB=90°,∴在Rt△ACB中,AB=6,∠BAC=30°,可得AC=ABcos∠BAC=6×cos30°=3.又∵△PAC是等边三角形,∴PA=AC=3.【点评】本题着重考查了圆的切线的性质定理、切线长定理、直径所对的圆周角、等边三角形的判定与性质和解直角三角形等知识,掌握各知识点的运用是关键,难度适中.试题26答案:【考点】二次函数与不等式(组).【分析】①利用描点法即可作出函数的图象;②当y=0时,解方程求得x的值,当y>0时,就是函数图象在x轴上方的部分,据此即可解得;③仿照上边的例子,首先作出函数y=x2﹣2x+1的图象,然后求得当y=4时对应的x的值,根据图象即可求解.【解答】解:①图所示:;②方程﹣2x2﹣4x=0即﹣2x(x+2)=0,解得:x1=0,x2=﹣2;则方程的解是x1=0,x2=﹣2,图象如图1;③函数y=x2﹣2x+1的图象是:当y=4时,x2﹣2x+1=4,解得:x1=3,x2=﹣1.则不等式的解集是:x≥3或x≤﹣1.【点评】本题考查了二次函数与不等式的关系,理解函数的图象在x轴上方,则函数值大于0是本题的关键.试题27答案:【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)证明△>0即可;(2)利用抛物线与x轴的交点问题,则x1、x2为方程mx2﹣8mx+16m﹣1=0的两根,利用根与系数的关系得到x1+x2=8,x1•x2=,再变形|x1﹣x2|=2得到(x1+x2)2﹣4x1•x2=4,所以82﹣4•=4,然后解出m即可得到抛物线解析式;(3)先求出抛物线的对称轴为直线x=4,利用函数图象,由于抛物线开口向上,则只要当x=2,y≥0时,抛物线与线段CD有交点,于是得到4m﹣16m+16m﹣1≥0,然后解不等式即可.【解答】(1)证明:△=64m2﹣4m•(16m﹣1)=4m,∵m>0,∴△>0,∴抛物线总与x轴有两个不同的交点;(2)根据题意,x1、x2为方程mx2﹣8mx+16m﹣1=0的两根,∴x1+x2=﹣=8,x1•x2=,∵|x1﹣x2|=2,∴(x1+x2)2﹣4x1•x2=4,∴82﹣4•=4,∴m=1,∴抛物线的解析式为y=x2﹣8x+15;(3)抛物线的对称轴为直线x=﹣=4,∵抛物线开口向上,∴当x=2,y≥0时,抛物线与线段CD有交点,∴4m﹣16m+16m﹣1≥0,∴m≥.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了根与系数的关系.试题28答案:【考点】几何变换综合题.【分析】(1)①根据旋转的特性画出图象;②由∠ACD、∠BCE均与∠DCB互余可得出∠ACD=∠BCE,由△ABC和△CDE都是等腰直角三角形可得出AC=BC、DC=EC,结合全等三角形的判定定理SAS即可得出△ADC≌△BEC,从而得出AD=BE,再由∠BCE=∠ADC=135°,∠CED=45°即可得出∠AEB=90°,即证出AD⊥BE;③依照题意画出图形,根据组合图形的面积为两个三角形的面积和可用AE,BE去表示CM;(2)根据题意画出图形,比照(1)③的结论,套入数据即可得出结论.【解答】解:(1)①依照题意补全图2,如下图(一)所示.②证明:∵∠ACD+∠DCB=∠ACB=90°,∠BCE+∠DCB=∠DCE=90°,∴∠ACD=∠BCE.∵△ABC和△CDE都是等腰直角三角形,∴AC=BC,DC=EC.在△ADC和△BEC中,有,∴△ADC≌△BEC(SAS),∴AD=BE,∠BEC=∠ADC.∵点A,D,E在同一直线上,△CDE是等腰直角三角形,∴∠CDE=∠CED=45°,∠ADC=180°﹣∠CDE=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,∴AD⊥BE.③依照题意画出图形,如图(二)所示.∵S△ABC+S△EBC=S△CAE+S△EAB,即AC•BC+BE•CM=AE(CM+BE),∴AC2﹣AE•BE=CM(AE﹣BE).∵△CDE为等腰直角三角形,∴DE=2CM,∴AE﹣BE=2CM.(2)依照题意画出图形(三).其中AB=,DP=1,BD=AB=由勾股定理得:BP==3.结合(1)③的结论可知:AM===1.故点A到BP的距离为1.【点评】本题考查了旋转的性质、全等三角形的判定及性质、三角形的面积公式、角的计算以及勾股定理,解题的关键:(1)①结合题意画出图形;②找出△ADC≌△BEC;③利用分割法求组合图形的面积;(2)利用类比法借助(1)③的算式求出结论.本题属于中档题,(1)①②难度不大;③难度不小,此处用到了分割组合图形求面积来找等式,该小问处切记线段AC当成已知量;(2)利用类比的方法套入(1)③的算式即可.解决该题型题目时,画出图形,注意数形结合是关键.试题29答案:【考点】圆的综合题.【专题】综合题.【分析】(1)①根据新定义得到点M的变换点M′的坐标为(2,2),于是根据勾股定理计算出OM′=2,则根据点与圆的位置关系的判定方法可判断点M的变换点在⊙O上;同样方法可判断点N(﹣2,﹣1)的变换点在⊙O外②利用一次函数图象上点的坐标特征,设P点坐标为(x,x+2),利用新定义得到P点的变换点为P′的坐标为(2x+2,﹣2),则根据勾股定理计算出OP′=,然后利用点与圆的位置关系得到<2,解不等式得﹣2<x<0;(2)设点P′的坐标为(x,﹣2x+6),P(m,n),根据新定义得到m+n=x,m﹣n=﹣2x+6,消去x得3m+n=6,则n=﹣3m+6,于是得到P点坐标为(m,﹣3m+6),则可判断点P在直线y=﹣3x+6上,设直线y=﹣3x+6与x轴相交于点A,与y轴相交于点B,过O点作OH⊥AB于H,交⊙O于C,如图2,易得A(2,0),B(0,6),利用勾股定理计算出AB=2,再利用面积法计算出OH=,所以CH=﹣1,当点P在H点时,PC为点P与⊙O上任意一点距离的最小值.【解答】解:(1)①M(2,0)的变换点M′的坐标为(2,2),则OM′==2,所以点M(2,0)的变换点在⊙O上;N(﹣2,﹣1)的变换点N′的坐标为(﹣3,﹣1),则ON′==>2,所以点N(﹣2,﹣1)的变换点在⊙O外;②设P点坐标为(x,x+2),则P点的变换点为P′的坐标为(2x+2,﹣2),则OP′=,∵点P′在⊙O的内,∴<2,∴(2x+2)2<4,即(x+1)2<1,∴﹣1<x+1<1,解得﹣2<x<0,即点P横坐标的取值范围为﹣2<x<0;(2)设点P′的坐标为(x,﹣2x+6),P(m,n),根据题意得m+n=x,m﹣n=﹣2x+6,∴3m+n=6,即n=﹣3m+6,∴P点坐标为(m,﹣3m+6),∴点P在直线y=﹣3x+6上,设直线y=﹣3x+6与x轴相交于点A,与y轴相交于点B,过O点作OH⊥AB于H,交⊙O于C,如图2,则A(2,0),B(0,6),∴AB==2,∵OH•AB=OA•OB,∴OH==,∴CH=﹣1,即点P与⊙O上任意一点距离的最小值为﹣1.【点评】本题考查了圆的综合题:熟练掌握点与圆的位置关系和一次函数图象上点的坐标特征;会运用勾股定理定理和面积法计算线段的长;提高阅读理解能力.。
北京市一五九中学2015-2016学年度第一学期九年级期中数学试题班姓名 学号得分一、选择题(每小题4分,共40分)1.已知1sin 2A =,则锐角A 的度数是()A .30︒B .45︒C .60︒D .75︒2.已知△ABC ∽△DEF ,且AB :DE =1:2,则△ABC 的周长与△DEF 的周长之比为( ) A .2:1 B .1:2C .1:4 D .4:13.如图,∠1=∠2=∠3,则图中相似三角形共有()A .4对B .3对C .2对D .1对4.如图,点A 、B 、C 都在⊙O 上,若72AOB ∠=︒,则ACB ∠的度数是( ) A .18° B .30° C .36° D .72°5.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一 个条件,不正确...的是( ). A .∠ABD=∠CB.∠ADB=∠ABC C.AD AB AB AC = D .AB CBBD CD=6. 如图,⊙O 的半径为5,AB 为弦,AB OC ⊥,垂足为E ,如果2=CE ,那么AB 的长是( ) A .4B. 6 C. 8 D. 107.如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD BC ⊥于D , 如果:4:3AC BC =,AB=10cm,那么BD 的长为( ) A .3cmB .32cm C .6cm D.12cm8. △ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( ) A .12B .312C .324D .348321EDCBA9.下列说法错误的是( )A .直径是圆中最长的弦B .圆内接平行四边形是矩形C .90°的圆周角所对的弦是直径D .相等的圆周角所对的弧相等10.如图,在边长为1的小正方形组成的网格中,点A 、B 、C 、D 、E 都在小正方形的顶点上. 则tan ∠ADC 的值等于().A .33B .21C .31 D .1010二、填空题(每小题4分,共24分) 11. 若3x =4y ,则y-x yx 的值为 . 12.在□ABCD 中,E 为BC 延长线上一点,AE 交CD 于点F ,若AB =7,CF =3,则CEAD= . 13.△ABC 是半径为2的圆的内接三角形,若BC =,则∠A 的度数为 .14.圆内接四边形ABCD 中,∠A:∠B:∠C=2:3:4,则∠A=,∠B=,∠C=,∠D=。
海淀区九年级第一学期期中测评数学试卷参考答案三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:2320.x x -+=……………………………………………1分0)2)(1(=--x x . ……………………………………………3分∴01=-x 或02=-x .∴2,121==x x . ………………………………………………………5分18.解:∵抛物线a x x y ++=32与x轴只有一个交点,∴0∆=,………………………………………2分即940a -=.……………………………………………4分 ∴49=a .……………………………………………5分19.解:∵点(3, 0)在抛物线上,∴k k -++⨯-=)3(33302.………………………………………2分 ∴9=k .……………………………………………3分 ∴抛物线的解析式为91232-+-=x x y .∴对称轴为2=x .……………………………………………5分20.解:∵PA ,PB 是⊙O 的切线,∴PA =PB .………………………………………1分∴PBA PAB ∠=∠.………………………………………2分k x k x y -++-=)3(32∵AC 为⊙O 的直径, ∴CA ⊥PA .∴90=∠PAC º.………………………………………3分 ∵25=∠BAC º,∴65=∠PAB º.………………………………………4分∴502180=∠-=∠PAB P º.………………………………………5分21.解:∵1=x 是方程0522=+-a ax x 的一个根,∴0512=+-a a .………………………………………2分 ∴152-=-a a .…………………………………………3分 ∴原式7)5(32--=a a ………………………………………4分10-=.………………………………………5分22.解:如图,下降后的水面宽CD 为1.2m ,连接OA , OC ,过点O 作ON⊥CD 于N ,交AB 于M .………………………… 1分∴90ONC ∠=º.∵AB ∥CD ,∴90OMA ONC ∠=∠=º. ∵ 1.6AB =, 1.2CD =, ∴10.82AM AB ==,10.62CN CD ==.…………………………2分 在Rt △OAM 中,∵1OA =,∴0.6OM ==. ………………………………3分 同理可得0.8ON =.………………………………4分 ∴0.2.MN ON OM =-=答:水面下降了0.2米.…………………………5分23.(1)证明:22)3()(34)3(+=-⨯⨯--=∆a a a .……………………………1分∵0>a , ∴2(3)0a +>.即0>∆.∴方程总有两个不相等的实数根.……………………………………………2分(2)解方程,得3,121ax x =-=.……………………………………………4分 ∵方程有一个根大于2,∴23>a. ∴6>a .……………………………………………5分24.解:如图,雕像上部高度AC 与下部高度BC 应有2::BC BC AC =,即AC BC 22=.设BC 为x m.…………………………………1分依题意,得)2(22x x -=..………………………………………3分 解得,511+-=x 512--=x (不符合题意,舍去).……4分1 1.2≈.答:雕像的下部应设计为1.2m .…………………………5分25. 解:如图1,当点D 、C 在AB 的异侧时,连接OD 、BC . ………1分∵AB 是⊙O 的直径, ∴90ACB ∠=º.在Rt △ACB 中,∵2=AB ,AC∴BC =.∴45BAC ∠=º.………………2分∵1OA OD AD ===,∴60BAD ∠=º.………………3分∴105CAD BAD BAC ∠=∠+∠=º.………………4分当点D 、C 在AB 的同侧时,如图2,同理可得45BAC ∠=︒,60BAD ∠=︒.∴15CAD BAD BAC ∠=∠-∠=º.∴CAD ∠为15º或105º.…………………5分26.解:(1)∵直线m x y +-=22经过点B (2,-3),∴m +⨯-=-223.∴1=m .……………………………………………1分 ∵直线22y x m =-+经过点A (-2,n ),∴5n =.……………………………………………2分 ∵抛物线21y x bx c =++过点A 和点B ,∴⎩⎨⎧++=-+-=.243,245c b c b∴⎩⎨⎧-=-=.3,2c b∴3221--=x x y .……………………………………………4分 (2)12-.……………………………………………5分27.(1)证明:连接OC . ……………………………1分∵∠PCD =2∠BAC ,∠POC =2∠BAC ,∴∠POC =∠PCD .……………………………2分 ∵CD ⊥AB 于点D ,∴∠ODC =90︒.∴∠POC+∠OCD =90º. ∴∠PCD+∠OCD =90º. ∴∠OCP =90º. ∴半径OC ⊥CP .∴CP 为⊙O 的切线. ……………………………………………3分 (2)解:①设⊙O 的半径为r. 在Rt △OCP 中,222OC CP OP +=.∵1,BP CP ==∴222(1)r r +=+. ………………………4分解得2r =.∴⊙O 的半径为2. ……………………………………………5分②3. ……………………………………………7分28.解:(1)1x ≤或2x ≥;……………………………………………2分 (2)如图所示:……………………………………5分1342x x x x <<<. .……………………………………………7分29.解:(1)60. ……………………………………………2分(2).……………………………………………3分连接,MQ MP .记,MQ PQ 分别交x 轴于,E F .∵将点M 绕点A 顺时针旋转60︒得到点Q ,将点M 绕点N 顺时针旋转60︒得到点P , ∴△和△均为等边三角形. ………………4分∴,MN MP =,. ∴.∴△≌△. .………………………………5分 ∴. ∵, ∴.∴60α=︒. .…………………………………………….6分 (3)(2,12)或(2-,12-). ………………………8分MAQ MNP MA MQ =60AMQ NMP ∠=∠=︒AMN QMP ∠=∠MAN MQP MAN MQP ∠=∠AEM QEF ∠=∠60QFE AMQ ∠=∠=︒ABC D数学试卷(时间:120分钟总分:120分)姓名:班级:一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.已知,则锐角A 的度数是() A . B .C .D .2.二次函数2(+1)2y x =--的最大值是()A .2-B .1-C .1D .2 3.如图,在△ABC 中,DE ∥BC ,AD ∶DB =1∶2,若DE =2,则BC等于()A .4B .6C .12D .184.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线的解析式为()A .()231y x =+-B .()233y x =++ C .()231y x =-- D .()233y x =-+5.如图,在△ABC 中,D 为AC 边上一点,若∠DBC =∠A ,BCAC =3,则CD 的长为( )A .1B .32 C .2 D .526.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是()1sin 2A =30︒45︒60︒75︒A .512 B .513 C .1213 D .1257. 如图,在边长为1的小正方形组成的网格中,将△BCE 绕点C 旋转得到△ACD ,则cos ∠ABC 的值等于()A. 33B. 21C. 31 D. 1010第7题第8题8.如图,二次函数2y ax bx c =++的图象的对称轴是直线x =1,则下列结论:①0,0,a b <<②20,a b ->③0,a b c ++>④0,a b c -+<⑤当1x >时,y 随x 的增大而减小,其中正确的是()A .①②③B .②③④C .③④⑤D .①③④9. 若抛物线1222-++-=m m mx x y (m 是常数)的顶点是点M ,直线2+=x y 与坐标轴分别交于点A 、B 两点,则△ABM 的面积等于()A .6B .3C .25D .23 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O , AC =6,BD =8,动点P 从点B 出发,沿着B -A -D 在菱形ABCD 的边上运动,运动到点D 停止,点'P 是 点P 关于BD 的对称点,'PP 交BD 于点M ,若BM =x ,'OPP △的面积为y ,则y 与x 之间的函数图象大致为()二、填空题(本题共18分,每小题3分) 11.如果23a b b =-,那么ab=________. MOP'P DBACDAB C12.已知抛物线522+-=x x y 经过两点A (-2,y 1)和),3(2y B ,则1y 与2y 的大小关系是.13.在某一时刻,测得一根高为2m 的竹竿的影长为1m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为m. 14.已知在△ABC 中,tan A =43,AB =5,BC =4,那么AC 的长等于. 15.若关于x 的一元二次方程0142=-+-t x x (t 为实数)在270<<x 的范围内有解,则t 的取值范围是__________.16.在每个小正方形的边长为1的网格中,点A ,B ,C ,D 均在格点上,点E ,F 分别为线段BC ,DB 上的动点,且BE DF =.(1)如图①,当52BE =时,计算AE AF +的值等于; (2)当AE +AF 的值取得最小时,请在图②的网格中,用无刻度的直尺画出线段AE 或AF .三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:23tan30cos 452sin 60︒+︒-︒.18.如图,在△ABC 和△CDE 中,∠B =∠D =90°,C 为线段BD 上一点,且AC ⊥CE .AB =3,DE =2,BC =6.求CD 的长.19.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC于点D ,AC=3.(1)求∠B 的度数;ADC B EF图①图②EADBCBA(2)求AB 及BC 的长.20. 已知:二次函数2y axbx c =++(0)a ≠中的x 和y 满足下表:(1) 可求得m 的值为;(2) 求出这个二次函数的解析式; (3) 当y >3时,x 的取值范围为.21.如图,△ABC 各顶点的坐标分别为A (1,2),B (2,1),C (4,3),在第一象限内,以原点为位似中心,画出△ABC 的位似图形△A 1B 1C 1,使得对应边长变为原来的2倍,并写出点C 1坐标.22.已知:如图,在某旅游地一名游客由山脚A 沿坡角为30°的山坡AB 行走400m ,到达一个景点B ,再由B 地沿山坡BC 行走320米到达山顶C ,如果在山顶C 处观测到景点B 的俯角为60°.求山高CD .23.某宾馆有房间50间供游客居住,当每个房间的定价为每天180元时,房间会全部住满;当每个房间的定价每增加10元时,就会有一间房间空闲.如果游客居住房间,宾馆需对每个的房间每天支出20元的各种费用.房价定为多少元时,宾馆利润最大?24.已知AC ,EC 分别是四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE =90°.(1)如图1,当四边形ABCD 和EFCG 均为正方形时,连接BF . (i )求证:△CAE ∽△CBF ; (ii )若BE =1,AE =2,求CE 的长;k FCEF==时,若BE =1,AE =2,CE =3,则k 的值等于.图1 图225.抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)设点P 是第一象限的抛物线上的一个动点,求出△ABP 面积的最大值;(3)设点Q 是抛物线上的一个动点,若抛物线上有且仅有三个点Q 使m S ABQ =∆,则m 的值等于.AF26. 有这样一个问题:探究函数11-+=x x y 的图象与性质. 小东根据学习函数的经验,对函数11-+=x x y 的图象与性质进行了探究.下面是小东的探究过程,请补充完成: (1)函数11-+=x x y 的自变量x 的取值范围是___________; (2)下表是y 与x 的几组对应值求m 的值;(3)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其他性质(一条即可):________________.27. 在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线1+=x y 交于点A ,点Ax关于直线1-=x 的对称点为B ,抛物线21:C y x bx c =++经过点A ,B . (1)求点A ,B 的坐标;(2)求抛物线1C 的表达式及顶点坐标;(3)若抛物线22:(0)C y ax a =≠与线段AB 恰有一个公共点,结合函数的图象, 求a 的取值范围.28.如图1,△ABC 为等腰直角三角形,∠C =90°,点E ,F 分别是AC ,BC 的中点,线段AF ,BE 交于点P ,将线段AF 绕点A 顺时针旋转α(0°≤α≤180°)得到线段AQ . (1)直接写出APPF的值为; (2)如图2,当α=180°时,延长BE 到D 使得ED =BE ,连接QD ,证明QD ⊥BD ;(3)如图3,在旋转过程中,直线AQ 交直线BE 于点M ,当△AMP 为等腰三角形时,△AMP 的底角正切值为.图1 图2图329.如果抛物线C 1的顶点在抛物线C 2上,同时抛物线C 2的顶点在抛物线C 1上,那么我们称抛物线C 1与C 2关联.(1)已知抛物线①122-+=x x y ,判断下列抛物线②122++-=x x y 、抛物线③122++=x x yE若不存在,请说明理由.参考答案二、填空:16.(Ⅰ);(Ⅱ)如图,取格点H ,K ,连接BH ,CK ,相交于点P .连接AP ,与BC 相交,得点E .取格点M N ,,连接DM ,CN ,相交于点G .连接AG ,与BD 相交,得点F .线段AE ,AF 即为所求.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:23tan30cos 452sin 60︒+︒-︒232=+-⎝⎭……………… 3分12=1.2= ……………… 5分18.解:∵在△ABC 中,∠B =90º,∴∠A +∠ACB = 90º. ∵AC ⊥CE ,∴∠ACB +∠ECD =90º. ∴∠A =∠ECD . ……………………2分∵在△ABC 和△CDE 中,∠A =∠ECD ,∠B =∠D =90º, ∴△ABC ∽△CDE .………………………3分 ∴DEBCCD AB =.……………………4分 ∵AB = 3,DE =2,BC =6,∴CD =1. ……………………5分19.解:(1)∵在△ACD 中,90C ∠=︒,CD =3,AC =3,∴tan 3CD DAC AC∠==.∴∠DAC =30º. ………………………1分∵AD 平分∠BAC ,∴∠BAC =2∠DAC =60º. ……………2分 ∴∠B =30º.…………………………………3分(2) ∵在Rt △ABC 中,∠C =90°,∠B =30º,AC =3, ∴AB =2AC =6.………………………4分tan AC BC B===……………………5分20.解:(1)m 的值为 3 ; 1分(2) 二次函数为y =a (x -2)2−1 2分∵过点(3,0)∴a=1 y =x 2-4x +3 3分(3) 当y >3时,x 的取值范围为x <0或x >4 . 5分21. C 1坐标(8,6).22. 3160200+米23.设房价为(180+10x )元利润y=(180+10x )(50-x)-(50-x)20=-10x 2 +340x+8000当x=17即房间定价为180+170=350的时利润最大.24.(1)(i )证明:∵四边形ABCD 和EFCG 均为正方形,∴∠ACE=∠BCF , ∴△CAE ∽△CBF .(ii )解:∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,AE :BF =AC:BC ,又∵∠CAE+∠CBE=90°, ∴∠CBF+∠CBE=90°, ∴∠EBF=90°, 又∵AE :BF =AC :BC =2,AE=225.(1)322++-=x x y(2)当=x ABP 面积的最大值是827.(3)827x26.(3)292<≤a .28.(1)2;(2)作AH ⊥BD 于D ,证明△APH ∽△QPD ,得证; (3)43,13或3.29.(1)②1分(2)21781218122-+=-+=)x (y ,)x (y 5分 (3)),(),,(),,(C 2411024110310--+-- 8分北京市西城外国语学校2015——2016学年度第一学期九年级数学期中考试试卷2015.11.6班、姓名 、学号 、成绩一、选择题(本题共30分,每小题3分)1.抛物线5)2(2-+-=x y 的顶点坐标是( ) . A .()2,5-B .()2,5C .()25,--D .()52,-2. 如图,⊙O 是△ABC 的外接圆,若∠ABC =40°,则∠AOC的度数为( ).A .20°B .40°C .60°D .80°3. 如图, A 、B 两地被池塘隔开, 小明通过下列方法测出了A 、B 间 的距离: 先在AB 外选一点C , 然后测出AC 、BC 的中点M 、N , 并 测量出MN 的长为12m, 由此他就知道了A 、B 间的距离. 有关他 这次探究活动的描述错误的是( )A. MN ∥ABB. CM : MA = 1 : 2C. △CMN ∽△CABD. AB =24m4.把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( ).A .()1232+-=x y B. ()1232-+=x y C. ()1232--=x y D. ()1232++=x y5.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确...的是( ). A .∠ABD =∠C B. ∠ADB =∠ABC C.AD AB AB AC = D. AB CBBD CD=6. 在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F, 若EC =2BE ,则的值是( ) FDBFN A DFA. B. C. D.7.已知二次函数2y ax bx c=++(0a≠)①240b ac->;②0abc>;③80a c+>;④930a b c++<.其中,正确结论的个数是()A. 1B. 2C. 3D. 48.在同一直角坐标系中一次函数y ax b=+和二次函数2y ax bx=+的图象可能为( )9. 如图,在大小为4×4的正方形网格中,是相似三角形的是()①②③④A.①和②B.②和③C.①和③D.②和④10.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动.设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )A.B.C.D.21314151A.BB.C.D二、填空题(本题共24分,每小题4分)11.请写出一个开口向上,并且与y 轴交于点(0,-1)的抛物线的解析式__________. (结果请化为一般式) 12. 两个相似三角形的面积比是9:5,则它们的周长比是__________. 13.如图,已知⊙O 的半径为5,弦AB 的长为8,半径OD 过AB 的中点C ,则CD 的长为 .14.如图,在△ABC 中,∠A =90°, D 为BC 上一点 , 过D作ED ⊥BC 交AC 于E ,若AB =6,AC =8,ED =3,则CD的长为__________.15. 点A (,)、B (,)在二次函数221y x x =--的图象上,若>>1,则与的大小关系是 .(用“>”、“<”、“=”填空) 16.在△ABC 中, AB =5, AC =4, E 是AB 上一点, AE =2, 在AC 上取一点F , 使以A 、E 、 F 为顶点的三角形与△ABC 相似, 则AF 的长为 .三、解答题(本题共66分)17.(本题5分)已知:二次函数23y x bx =+-的图象经过点(25)A ,. (1)求二次函数的解析式;(2)将(1)中求得的函数解析式用配方法化成2()y x h k =-+的形式 解:(1)18. (本题5分)已知一抛物线过点(-3,0)、(-2,-6),且对称轴是x =-1.求该抛物线的解析式. 解:1x 1y 2x 2y 2x 1x 1y 2y 1y 2y19.(本题5分)如图,在□ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.(1)证明:20.(本题5分)已知二次函数y= x2 -4x+3.(1)求出该函数与x.轴.的交点坐标、与y.轴.的交点坐标;(2)在平面直角坐标系中,用描点法...画出该二次函数的图象;(3)根据图象回答:①当自变量x的取值范围满足什么条件时,y<0?②当0≤x<3时,y的取值范围是多少?解:21. (本题6分)如图,在平面直角坐标系中,A (-1,1),B (-2,-1).(1)以原点O 为位似中心,把线段AB 放大到原来的2倍,请在图中画出放大后的线段CD ; (2)在(1)的条件下,写出点A 的对应点C 的坐标为点B 的对应点D 的坐标为22.(本题6分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w (双)与销售单价x (元)满足(20≤x ≤40),设销售这种手套每天的 利润为y (元).(1)求y 与x 之间的函数关系式;(2)当销售单价定为多少元时, 每天的利润最大?最大利润是多少?23.(本题6分)已知:如图,△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA280w x =-+的延长线于D ,交AB 于E .求证:AM 2=MD •ME .证明:24. (本题6分)如图(1)是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m ,拱桥的跨度为10m ,桥洞与水面的最大距离是5m ,桥洞两侧壁上各有一盏距离水面4m 的景观灯.现把拱桥的截面图放在平面直角坐标系中,如图(2). 求(1)抛物线的解析式;(2)两盏景观灯1P 、2P 之间的水平距离.解:25. (本题6分)阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,图(1)图(1)BF 的延长线交射线CD 于点G . 如果3AF EF =,求CDCG的值. 他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF . 请你回答:(1)AB : EH 的值为 ,CG : EH 的值为 ,CDCG的值为 . (2)如图(2),在原题的其他条件不变的情况下,如果(0)AFa a EF=>,那么CD CG 的值为 (用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F . 如果(00)AB BCm n m n CD BE==>>,,,那么AF EF 的值为 (用含m ,n 的代数式表示).26.(本题8分)对于二次函数232y x x =-+和一次函数24y x =-+,把2(32)(1)(24)y t x x t x =-++--+称为这两个函数的“再生二次函数”,其中t 是不为零的实数,其图象记作抛物线E . 现有点A (2,0)和抛物线E 上的点H(1)ABCDE FG G F E D CBA(2)(3)ABCDEFB (-1,n ),请完成下列任务: 【尝试】(1)当t =2时,抛物线2(32)(1)(24)y t x x t x =-++--+的顶点坐标为 ; (2)点A (填在或不在)在抛物线E 上; (3)n 的值为 .【发现】通过(2)和(3)的演算可知,对于t 取任何不为零的实数,抛物线E 总过定点,坐标为 .【应用】二次函数2352y x x =-++是二次函数232y x x =-+和一次函数24y x =-+的一个“再生二次函数”吗?如果是,求出t 的值;如果不是,说明理由.27. (本题8分)在平面直角坐标系xOy 中,抛物线235y mx x m =+++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C (0 , 4),D 为OC 的中点. (1)求m 的值;(2)抛物线的对称轴与 x 轴交于点E ,在直线AD 上是否存在点F ,使得以点A 、B 、F 为顶点的三角形与ADE ∆ 相似?若存在,请求出点F 的坐标,若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点G,使△GBC中BC G的坐标;若不存在,请说明理由.解:(1)北京市西城外国语学校2015—2016学年度第一学期九年级数学期中考试答案2015.11.6一、选择题(本题共30分,每小题3分)CDBD DBDA CB二、填空题(本题共24分,每小题4分)11、12-=x y .12、3:5 .13、2 .14、4 . 15、 . 16、25,58..三解答题17、(1)∵ 二次函数23y x bx =+-的图象经过点A (2,5),∴ 4235b +-=. ......................................................................................... 1分 ∴ 2b =.∴ 二次函数的解析式为223y x x =+-. .................................................. 2分(2)223y x x =+-2(21)4x x =++-2(1)4x =+-. .................................................................................................... 5分18、 ∵对称轴是x =-1,抛物线过点(-3,0)∴抛物线与x 轴另一交点是(1,0) ---------------------1分∴设抛物线的解析式.:()()13-+=x x a y ---------------------2分 ∵抛物线过点(-2,-6) ∴()()12326--+-=-a∴ 2=a ---------------------4分 ∴()()132-+=x x y 即:6422-+=x x y ------------------5分19、(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC .∴∠B =∠ECF ,∠DAE =∠AEB .……2分 又∵∠DAE =∠F , ∴∠AEB =∠F .∴△ABE ∽△ECF . ................................................................................. 3分 (2)解:∵△ABE ∽△ECF , ∴AB BE EC CF=. .................................................................................................. 4分∵四边形ABCD 是平行四边形,∴BC =AD =8.∴EC =BC -BE =8-2=6.∴526CF=.∴125CF =. ……………………………………………5分20、(1)(3,0)(1,0);(0,3) ……………2分 (2)图象基本正确,列表 ……………3分 (3)①1<x<3 ………4分② -1≤y ≤3 ………5分21、如图,在平面直角坐标系中,A (-1,1),B (-2,-1). (1)以原点O 为位似中心,把线段AB 放大到原来的2倍,请在图中画出放大后的线段CD ;……………2分(2)在(1)的条件下,写出点A 的对应点C 的坐标为(-2,2)或(2,-2), 点B 的对应点D 的坐标为(-4,-2)或(4,2).………6分22、(1)160012022-+-=x x y ;……………3分 (2)200)30(22+--=x y ………6分23、证明△AMD 与△AME 相似 ………6分24、 (1)抛物线的顶点坐标为(5,5),与y 轴交点坐标是(0,1)………1分设抛物线的解析式是y=a(x -5)2+5 ………………………………2分把(0,1)代入y=a(x -5)2+5得a=-425 ………………………3分 ∴y=-425(x -5)2+5(0≤x ≤10)=2481255x x -++………………4分 (2)由已知得两景观灯的纵坐标都是4∴4=-425(x -5)2+5 ∴425(x -5)2=1 ,解得x 1=152,x 2=52………………………………5分 ∴ 两景观灯间的距离为5米. ……………………………………………6分25、(1)3AB EH =,2CG EH =, 32. ……………………… 3分 (2)2a. …………………………………………… 5分 (3)mn . ……………………………………… 6分26、(1)将t=2代入抛物线E 中,得:y=t (x 2-3x+2)+(1-t )(-2x+4)=2x 2-4x=2(x-1)2-2, ∴此时抛物线的顶点坐标为:(1,-2); . ………1分 (2)点A 在抛物线E 上, ………2分理由如下:∵将x=2代入y=t (x 2-3x+2)+(1-t )(-2x+4),得 y=0, ∴点A (2,0)在抛物线E 上. (3)∵点B (-1,0)在抛物线E 上, ∴将x=-1代入抛物线E 的解析式中,得:n=t (x 2-3x+2)+(1-t )(-2x+4)=6. ……4分∵将抛物线E 的解析式展开,得:y=t (x 2-3x+2)+(1-t )(-2x+4)=t (x-2)(x+1)-2x+4 ∴抛物线E 必过定点(2,0)、(-1,6); ……6分 (4)不是.∵将x=-1代入y=-3x 2+5x+2,得y=-6≠6, ∴二次函数y=-3x 2+5x+2的图象不经过点B .∴二次函数y=-3x 2+5x+2不是二次函数y=x 2-3x+2和一次函数y=-2x+4的一个“再生二次函数”. ……8分27、解:(1)抛物线m m mx y +++=532与y 轴交于点C (0 , 4),∴ 5 4.m += ∴ 1.m =- ………1分 (2)抛物线的解析式为 234yx x =-++.可求抛物线与x 轴的交点A (-1,0),B (4,0). 可求点E 的坐标3(,0)2.由图知,点F 在x 轴下方的直线AD 上时,ABF ∆是钝角三角形,不可能与ADE ∆ 相似,所以点F 一定在x 轴上方.此时ABF ∆与ADE ∆有一个公共角,两个三角形相似存在两种情况: ① 当AB AEAF AD=时,由于E 为AB 的中点,此时D 为AF 的中点, 可求 F 点坐标为(1,4). ………3分 ② 当AB AD AF AE =时,55AF AF =解得过F 点作FH ⊥x 轴,垂足为H . 可求 F 的坐标为352(,). …………4分(3) (4)(3) 在抛物线的对称轴上存在符合题意的点G .由题意,可知△OBC 为等腰直角三角形,直线BC 为 4.y x =-+ 可求与直线BCy =-x +9或y =-x -1. ………6分 ∴ 点G 在直线y =-x +9或y =-x -1上. ∵ 抛物线的对称轴是直线23=x , ∴ ⎪⎩⎪⎨⎧+-==.9,23x y x 解得..215,23⎪⎪⎩⎪⎪⎨⎧==y x 或⎪⎩⎪⎨⎧--==.1,23x y x 解得⎪⎪⎩⎪⎪⎨⎧-==.25,23y x ∴ 点G 的坐标为31535(,)-2222或(,). ………8分北京市海淀区2015届九年级上期中考试数学试题及答案(WORD 版)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列图形是中心对称图形的是( )A B C D2.将抛物线2y x =向上平移1个单位,得到的抛物线的解析式为( ) A.21y x =+ B.21y x =- C.()21y x =+D.()21y x =-3.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋子中摸出1个球.下面说法正确的是( ) A.这个球一定是黑球 B.这个球一定是白球C.“摸出黑球”的可能性大D.“摸出黑球”和“摸出白球”的可能性一样大4.用配方法解方程2230x x --=时,配方后得到的方程为( ) A.2(1)=4x - B.2(1)4x -=- C.2(1)=4x + D.2(1)=4x +-5.如图,O 为正五边形ABCDE 的外接圆,O 的半径为2,则AB 的长为( ) A.5π B.25π C.35π D.45πD6.如图,AB 是O 的直径,CD 是O 的弦,59ABD ∠=︒,则C ∠等于( ) A.29︒ B.31︒ C.59︒ D.62︒7.已知二次函数24y x x m =-+(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程240x x m -+=的两个实数根是( ) A.121,1x x ==- B.121,2x x =-= C.121,0x x =-=D.121,3x x ==8.如图,C 是半圆O 的直径AB 上的一个动点(不与A ,B 重合),过C 作AB 的垂线交半圆于点D ,以点D ,C ,O 为顶点作矩形DCOE . 若AB =10,设AC =x ,矩形DCOE 的面积为y ,则下列图象中能表示y 与x 的函数关系的图象大致是( )A B C D二、填空题(本题共16分,每小题4分) 9.如图,PA ,PB 分别与O 相切于点A ,B ,连接AB .60APB ∠=︒,5AB =,则PA 的长是 .10.若关于的一元二次方程240x x k -+=有两个相等的实数根,则的值为_________.11.在平面直角坐标系xOy 中,函数2y x =的图象经过点11(,)M x y ,22(,)N x y 两点,若1 42x -<<-,202x <<,则1y 2y .(用“<”,“=”或“>”号连接)12.如图,正方形ABCD 中,点G 为对角线AC 上一点,AG=AB . ∠CAE =15°且AE=AC ,连接GE .将线段AE 绕点A 逆时针旋转得到 线段AF ,使DF=GE ,则∠CAF 的度数为____________.三、解答题(本题共30分,每小题5分)x k EDCBO A PEDCBA13.解方程:2310x x +-=.14.如图,∠DAB =∠EAC ,AB =AD ,AC =AE .求证:BC =DE .15.已知二次函数的图象经过点(0,1),且顶点坐标为(2,5),求此二次函数的解析式.16.如图,四边形ABCD 内接于⊙O ,∠ABC =130°,求∠OAC 的度数.17.若1x =是关于x 的一元二次方程22420x mx m -+=的根,求代数式()2213+m -的值.18.列方程解应用题:某工厂废气年排放量为450万立方米,为改善空气质量,决定分两期治理,使废气的排放量减少到288万立方米.如果每期治理中废气减少的百分率相同,求每期减少的百分率.四、解答题(本题共20分,每小题5分)19.下图是某市某月1日至15日的空气质量指数趋势图,空气质量指数不大于100表示空气质量优良,空气质量指数大于200表示空气重度污染.(1)由图可知,该月1日至15日中空气重度污染的有 天;(2)小丁随机选择该月1日至15日中的某一天到达该市,求小丁到达该市当天空气质量优良的概率.20.已知关于x 的方程2(3)30ax a x +--=(0)a ≠. (1)求证:方程总有两个实数根;(2)若方程有两个不相等的负整数根,求整数a 的值.21.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,点G 在直径DF 的延长线上,∠D =∠G =30.(1)求证:CG 是⊙O 的切线;(2)若CD =6,求GF 的长.空气质量指数22.阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:123,,x x x ,称为数列123,,x x x .计算1x ,122x x +,1233x x x ++,将这三个数的最小值称为数列123,,x x x 的价值.例如,对于数列2,1-,3,因为22=,2(1)122=+-,2(1)3433+-+=,所以数列2,1-,3的价值为12. 小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列1-,2,3的价值为12;数列3,1-,2的价值为1;….经过研究,小丁发现,对于“2,1-,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为12.根据以上材料,回答下列问题:(1)数列4-,3-,2的价值为______;(2)将“4-,3-,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为______ ,取得价值最小值的数列为___________(写出一个即可); (3)将2,9-,a (1)a >这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a 的值为__________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,抛物线2(1)y x m x m =---(0)m >与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当15ABC S △=时,求该抛物线的表达式;(3)在(2)的条件下,经过点C 的直线l :y kx b =+(0)k <与抛物线的另一个交点为D . 该抛物线在直线l 上方的部分与线段CD 组成一个新函数的图象. 请结合图象回答:若新函数的最小值大于8-,求k 的取值范围.24.将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0120)α得到线段AD,<<连接CD.(1)连接BD,①如图1,若α=80°,则∠BDC的度数为;②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED=90°,求α的值.25.如图,在平面直角坐标系xOy 中,点(,)P a b 在第一象限.以P 为圆心的圆经过原点,与y 轴的另一个交点为A .点Q 是线段OA 上的点(不与O ,A 重合),过点Q 作PQ 的垂线交⊙P 于点(,)B m n ,其中0≥m .(1)若5b =,则点A 坐标是________________; (2)在(1)的条件下,若OQ =8,求线段BQ 的长;(3)若点P 在函数2y x =(0)x >的图象上,且△BQP 是等腰三角形. ①直接写出实数a 的取值范围:__________________; ②在12,PQ 的长度可以为 ,并求出此时点B 的坐标.海淀区九年级第一学期期中练习2014.11数学试卷答案及评分参考阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3. 评分参考中所注分数,表示考生正确做到此步应得的累加分数.二、填空题(本题共16分,每小题4分) 9. 5 ;10. 4 ; 11. >;12. 30°或60°.(注:每个答案2分)三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:∵131a ,b ,c ===-, …………………………………………………………………1分∴2341(1)=13>0∆=-⨯⨯-. … ……………………………………………………2分∴x ==∴12x . ……………………………………………………5分 14.(本小题满分5分)证明:∵∠DAB =∠EAC ,∴∠DAB +∠BAE =∠EAC+∠BAE .∴∠DAE =∠BAC . ………………………………………………………………1分 在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△BAC ≌△DAE . ………………………………………………………………4分 ∴BC =DE . ………………………………………………………………………5分15.(本小题满分5分)解:设二次函数的解析式为()225y a x =-+ (0)a ≠.……………………………1分∵二次函数的图象经过点(0,1).∴()21025a =-+.………………………………………………………………2分 ∴1a =-. …………………………………………………………………………4分 ∴二次函数的解析式为241y x x =-++.………………………………………5分16. (本小题满分5分)解:∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°. …………………………………………………………1分 ∵∠ABC =130°,∴∠ADC =180°-∠ABC =50°. …………………………………………………2分∴∠AOC =2∠ADC =100°. ………………………………………………………3分 ∵OA=OC ,∴∠OAC =∠OCA . ……………………………………………………………4分∴∠OAC =1(180)402AOC -∠= . ……………………………………………… 5分17. (本小题满分5分)解:依题意,得 21420m m -+=. ……………………………………………………2分∴2241m m -=-. ………………………………………………………………3分 ∴()()2222132213245154+=m m m m m --++=-+=-+=. …………5分18. (本小题满分5分)解:设每期减少的百分率为x .…………………………………………………… ……1分 由题意,得()24501288x -=. ……………………………………………… ………2分解方程得 115x =,295x =. ………………………………………………… ……3分经检验,915x =>不合题意,舍去;15x = 符合题意. ……………… …………4分答:每期减少的百分率为20%. ……………………………………………… ………5分四、解答题(本题共20分,每小题5分) 19. (本小题满分5分)解:(1)3. …………………………………………………………………………… 2分(2)小丁随机选择该月1日至15日中的某一天到达该市,则到达该市的日期有15种不同的选择,在其中任意一天到达的可能性相等. ……………3分 由图可知,其中有9天空气质量优良. ………………………………… ……4分 所以,P (到达当天空气质量优良)93155==. …………………… ………5分20. (本小题满分5分) 解:(1)∵0a ≠,∴原方程为一元二次方程.∴()234(3)a a ∆=--⨯⨯- ………………………………………………1分()23a =+.∵()230≥a +.∴此方程总有两个实数根. …………………………………………………2分 (2)解原方程,得 11x =-,23x a=. ……………………………………………3分 ∵此方程有两个负整数根,且a 为整数,∴1a =-或3-. …………………………………………………………………4分 ∵12x x ≠,∴3a ≠-.∴1a =-. ………………………………………………………………………5分 21. (本小题满分5分) (1)证明:连接OC .∵OC=OD ,∠D =30°, ∴∠OCD =∠D = 30°.…………………………………1分 ∵∠G =30°,∴∠DCG =180°-∠D -∠G =120°. ∴∠GCO =∠DCG -∠OCD =90°. ∴OC ⊥CG .又∵OC 是⊙O 的半径.∴CG 是⊙O 的切线.……………………………………2分(2)解:∵AB 是⊙O 的直径,CD ⊥AB ,∴132CE CD ==. ………………………………………………………3分∵在Rt △OCE 中,∠CEO =90°,∠OC E =30°,∴12OE OC =,222OC OE CE =+.设OE x =,则2OC x =. ∴()22223x x =+.解得x =∴OC = ………………………………………………………………4分∴OF =在△OCG 中,∵∠OCG =90°,∠G =30°,∴2OG OC ==∴GF GO OF =-= ……………………………………………………5分22. (本小题满分5分)答:(1)53. …………………………………………………………………………………1分(2)12, ………………………………………………………………………………2分3,2,4--或2,3,4--.(写出一个即可)…………………………………………3分(3)11或4.(每个答案各1分) ……………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (本小题满分7分)解:(1)∵ 抛物线2(1)y x m x m =---(0)m >与x 轴交于A 、B 两点,∴ 令0y =,即 2(1)0x m x m ---=.解得 11x =-,2x m =. …………………………………………………1分 又∵ 点A 在点B 左侧,且0m >,∴ 点A 的坐标为(1,0)-. …………………………………………………2分(2)由(1)可知点B 的坐标为(0)m ,.∵抛物线与y 轴交于点C ,∴点C 的坐标为(0,)m -. ……………………………………………………3分 ∵0m >,∴1AB m =+,OC m =. ∵15△ABC S =,∴1(1)152m m +=. ∴6m =-或5m =.∵0m >, ∴5m =.∴抛物线的表达式为245y x x =--. ………………………4分(3)由(2)可知点C 的坐标为(0,5)-.∵直线l :y kx b =+(0)k <经过点C ,∴5b =-. ………………………………………5分 ∴直线l 的解析式为5y kx =-(0)k <. ∵2245(2)9y x x x =--=--,∴当点D 在抛物线顶点处或对称轴左侧时,新函数的最小值为9-,不符合题意. 当点D 在抛物线对称轴右侧时,新函数的最小值有可能大于8-. 令8y =-,即2458x x --=-.解得 11x =(不合题意,舍去),23x =. ∴抛物线经过点(3,8)-.当直线5y kx =-(0)k <经过点(3,8)-时,可求得1k =-.…………………6分 由图象可知,当10k -<<时新函数的最小值大于8-. ………………………7分24.(本小题满分7分)解:(1)①30°. …………………………………………………………………………1分②不改变,∠BDC 的度数为30.方法一:由题意知,AB=AC=AD .∴点B 、C 、D 在以A 为圆心,AB 为半径的圆上.…………………………2分 ∴∠BDC=12∠BAC =30.……………………………………………………3分 方法二:由题意知,AB=AC=AD . ∵AC =AD ,∠CAD =α,∴1801=9022ADC C αα-==- ∠∠.…………………………………2分 ∵AB=AD ,∠BAD =60α+,∴()18060120160222ADB B ααα-+-====- ∠∠.。
北京市西城区2015— 2016学年度第一学期期末试卷九年级数学2016.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.二次函数()257y x=-+的最小值是().A.7-B.7C.5-D.5【答案】B【解析】当5x=时y取得最小值,最小值为7.2.如图,在Rt ABC△中,90C∠=︒,3AC=,4BC=,则cos A的值为().A.35B.53C.45D.34【答案】A【解析】在Rt ABC△中,由勾股定理得:5AB=.∴3 cos5ACAAB==.3.如图,⊙C与AOB∠的两边分别相切,其中OA边与⊙C相切于点P.若90AOB∠=︒,6OP=,则OC的长为().A.12B.C .D . 【答案】C【解析】如图,连接C 点与切点,则QCPO 为正方形,∴CO ==4.将二次函数265y x x =-+用配方法化成2()y x h k =-+的形式,下列结果中正确的是( ).A .2(6)5y x =-+B .2(3)5y x =-+C .2(3)4y x =--D .2(3)9y x =+-【答案】C【解析】22265(3)95(3)4y x x x x =-+=--+=--.5.若一个扇形的半径是18cm ,且它的弧长是12πcm ,则此扇形的圆心角等于( ). A .30︒ B .60︒ C .90︒ D .120︒ 【答案】D 【解析】∵π180n rl =, ∴18018012π120ππ18l n r ⨯===︒⨯.6.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,2)-,AB x ⊥轴于点B .以原点O 为位似中心,将OAB △放大为原来的2倍,得到11OA B △,且点1A 在第二象限,则点1A 的坐标为( ).A .(2,4)-B .1(,1)2-C .(2,4)-D .(2,4) 【答案】A【解析】将OAB △放大为原来的2倍, 且点A 的坐标为(1,2)-, ∴1A 坐标为(2,4)-.7.如图,一艘海轮位于灯塔P 的南偏东37︒方向,距离灯塔40海里的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的正东方向上的B 处.这时,B 处与灯塔P 的距离BP 的长可以表示为( ).A .40海里B .40tan37︒海里C .40cos37︒海里D .40sin37︒海里【答案】D【解析】由图像知cos 40cos5340sin 37BP AP APB =⋅∠=⋅︒=⋅︒.8.如图,A ,B ,C 三点在已知的圆上,在ABC △中,70ABC ∠=︒,30ACB ∠=︒,D 是BAC 的中点,连接DB ,DC ,则DBC ∠的度数为( ).A .30︒B .45︒C .50︒D .70︒ 【答案】C【解析】由题知18080BAC ABC ACB ∠=︒-∠-∠=︒, ∴80BDC BAC ∠=∠=︒, ∵D 是BAC 的中点, ∴BD CD =, ∴180502BDCDBC ︒-∠∠==︒.9.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为( ).A .60(30020)y x =+B .(60)(30020)y x x =-+C .300(6020)y x =-D .(60)(30020)y x x =-- 【答案】B【解析】由题知y 与x 的关系式为(60)(30020)y x x =-+.10.二次函数228y x x m =-+满足以下条件:当21x -<<-时,它的图象位于x 轴的下方;当67x <<时,它的图象位于x 轴的上方,则m 的值为( ).A .8B .10-C .42-D .24-【答案】D【解析】函数对称轴为直线22bx a=-=. 又当21x -<<-时,它的图象位于x 轴的下方;当67x <<时,∴222(2)8(2)026860m m ⎧⨯--⨯-+⎪⎨⨯-⨯+⎪⎩≤≥, 解得24m =-.二、填空题(本题共18分,每小题3分) 11.若34a b =,则a bb +的值为 . 【答案】74【解析】34a b =,∴34a b =,∴3(1)744ba b b b ++==.12.点1(3,)A y -,2(2,)B y 在抛物线25y x x =-上,则1y 2y .(填“>”,“<”或“=”) 【答案】>【解析】函数对称轴为直线5522x -=-=,且函数开口向上, 3-离对称轴更远,∴12y y >.13.ABC △的三边长分别为5,12,13,与它相似的DEF △的最小边长为15,则DEF △的周长为 . 【答案】90【解析】ABC △与DEF △相似,且DEF △的最小边长为15, ∴相似比为51153=, ∵ABC △的周长为5121330++=, ∴DEF △的周长为33090⨯=.14.如图,线段AB 和射线AC 交于点A ,30A ∠=︒,20AB =.点D 在射线AC 上,且ADB∠是钝角,写出一个满足条件的AD 的长度值:AD = .【答案】10【解析】如图,过点B 作BE AC ⊥交AC 于点E ,∴cos30AE AB =⋅︒=∵点D 在射线AC 上,且ADB ∠是钝角, ∴0AD AE <<. ∴AD 可以为10.15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?” 【注释】1步5=尺. 译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA 是秋千的静止状态,A 是踏板,CD 是地面,点B 是推动两步后踏板的位置,弧AB 是踏板移动的轨迹.已知1AC =尺,10CD EB ==尺,人的身高5BD =尺.设绳索长OA OB x ==尺,则可列方程为____________.【答案】222(4)10x x =-+【解析】∵5EC BD ==尺,1AC =尺,∴514EA EC AC =-=-=尺,(4)OE OA AE x =-=-尺, 在Rt OEB △中,(4)OE x =-尺,OB x =尺,10EB =尺, 根据勾股定理得:222(4)10x x =-+.16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:小敏的作法如下:老师认为小敏的作法正确.请回答:连接OA ,OB 后,可证90OAP OBP ∠=∠=︒,其依据是____________;由此可证明直线PA ,PB 都是⊙O 的切线,其依据是____________.【答案】直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线 【解析】直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:24cos30tan 60sin 45︒⋅︒-︒.18.如图,ABC △中,12AB =,15BC =,AD BC ⊥于点D ,30BAD ∠=︒.求tan C 的值.19.已知抛物线223y x x =-++与x 轴交于A ,B 两点,点A 在点B 的左侧.(1)求A ,B 两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C ,点D 与点C 关于x 轴对称,求四边形ACBD 的面积.20.如图,四边形ABCD 中,AD BC ∥,A BDC ∠=∠. (1)求证:ABD DCB ∽△△;(2)若12AB =,8AD =,15CD =,求DB 的长.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x 米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?22.已知抛物线1C :2124y x x k =-+与x 轴只有一个公共点. (1)求k 的值;(2)怎样平移抛物线1C 就可以得到抛物线2C :222(1)4y x k =+-?请写出具体的平移方法;(3)若点(1,)A t 和点(,)B m n 都在抛物线2C :222(1)4y x k =+-上,且n t <,直接写出m的取值范围.23.如图,AB 是⊙O 的一条弦,且AB =C ,E 分别在⊙xOy 上,且OC AB ⊥于点D ,30E ∠=︒,连接l .(1)求OA 的长;(2)若AF 是⊙P 的另一条弦,且点O 到AF 的距离为BAF ∠的度数.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B 处测得最高塔塔顶A 的仰角为45︒,然后向最高塔的塔基直行90米到达C 处,再次测得最高塔塔顶A 的仰角为58︒.请帮助他们计算出最高塔的高度1P 约为多少米.(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈)25.如图,ABC △内接于⊙O ,AB 是⊙O 的直径.PC 是⊙O 的切线,C 为切点,PD AB⊥于点D ,交AC 于点E . (1)求证:PCE PEC ∠=∠; (2)若10AB =,32ED =,3,求PC 的长.26.阅读下面材料:如图1,在平面直角坐标系xOy 中,直线1y ax b =+与双曲线2ky x=交于(1,3)A 和(3,1)B --两点. 观察图象可知:①当3x =-或1时,12y y =; ②当30x -<<或1x >时,12y y >,即通过观察函 数的图象,可以得到不等式kax b x+>的解集. 有这样一个问题:求不等式32440x x x +-->的解集.某同学根据学习以上知识的经验,对求不等式32440x x x +-->的解集进行了探究. 下面是他的探究过程,请将(2)、(3)、(4)补充完整: (1)将不等式按条件进行转化当0x =时,原不等式不成立;当0x >时,原不等式可以转化为2441x x x +->; 当0x <时,原不等式可以转化为2441x x x+-<; (2)构造函数,画出图象设2341y x x =+-,44y x=,在同一坐标系 中分别画出这两个函数的图象. 双曲线44y x=如图2所示,请在此坐标系中 画出抛物线.....2341y x x =+-; (不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足34y y =的所有x 的值为 ; (4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式32440x x x +-->的解集为 .27.如图,在平面直角坐标系xOy 中,二次函数212y x bx c =-++的图象经过点(1,0)A ,且当0x =和5x =时所对应的函数值相等.一次函数3y x =-+与二次函数212y x bx c =-++的图象分别交于B ,C 两点,点B 在第一象限.(1)求二次函数212y x bx c =-++的表达式;(2)连接AB ,求AB 的长; (3)连接AC ,M 是线段AC 的中点,将点B 绕点M 旋转180︒得到点N ,连接AN ,CN ,判断四边形ABCN 的形状,并证明你的结论.28.在ABC △中,90ACB ∠=︒,4AC BC ==,M 为AB 的中点.D 是射线BC 上一个动点,连接AD ,将线段AD 绕点A 逆时针旋转90︒得到线段AE ,连接ED ,N 为ED 的中点,连接AN ,MN .(1)如图1,当2BD =时,AN = _______,NM 与AB 的位置关系是____________; (2)当48BD <<时,①依题意补全图2;②判断(1)中NM 与AB 的位置关系是否发生变化,并证明你的结论;(3)连接ME ,在点D 运动的过程中,当BD 的长为何值时,ME 的长最小?最小值是多少?请直接写出结果.29.在平面直角坐标系xOy 中,过⊙C 上一点P 作⊙C 的切线l .当入射光线照射在点P 处时,产生反射,且满足:反射光线与切线l 的夹角和入射光线与切线l 的夹角相等,点P 称为反射点.规定:光线不能“穿过”⊙C ,即当入射光线在⊙C 外时,只在圆外进行反射;当入射光线在⊙C 内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线在⊙C 外反射的示意图如图1所示,其中12∠=∠.(1)自⊙C 内一点出发的入射光线经⊙C 第一次反射后的示意图如图2所示,1P 是第1个反射点.请在图2中作出光线经⊙C 第二次反射后的反射光线; (2)当⊙O 的半径为1时,如图3,①第一象限内的一条入射光线平行于x 轴,且自⊙O 的外部照射在其上点P 处,此光线经⊙O 反射后,反射光线与y 轴平行,则反射光线与切线l 的夹角为__________︒;②自点(1,0)A -出发的入射光线,在⊙O 内不断地反射.若第1个反射点1P 在第二象限,且第12个反射点12P 与点A 重合,则第1个反射点1P的坐标为______________;(3)如图4,点M 的坐标为(0,2),⊙M 的半径为1.第一象限内自点O 出发的入射光线经⊙M 反射后,反射光线与坐标轴无公共点,求反射点P 的纵坐标的取值范围.北京市西城区2015— 2016学年度第一学期期末试卷九年级数学参考答案及评分标准2016.1一、选择题(本题共30分,每小题3分)三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式24= 162=- 112=.18.解:∵AD BC ⊥于点D , ∴90ADB ADC ∠=∠=︒.∵在Rt ABD △中,12AB =,30BAD ∠=︒, ∴162BD AB ==, cos 12cos30AD AB BAD =⋅∠=⋅︒=∵15BC =,∴ 1569CD BC BD ==-=-. ∴在Rt ADC △中,tan AD C CD ===19.解:(1)令0y =,则2230x x -++=.解得 11x =-,23x =. ∵点A 在点B 的左侧,∴(1,0)A -,(3,0)B .对称轴为直线1x =. (2)∵当1x =时,4y =,∴顶点C 的坐标为(1,4). ∵点C ,D 关于x 轴对称,∴点D 的坐标为(1,4)-. ∵4AB =,∴1=442162ACB DCB ACBD S S S +=⨯⨯⨯=四边形△△.20.(1)证明:∵AD BC ∥,∴ADB DBC ∠=∠. ∵A BDC ∠=∠, ∴ABD DCB ∽△△.(2)解:∵ABD DCB ∽△△,∴AB ADDC DB=. ∵12AB =,8AD =,15CD =, ∴12815DB =. ∴10DB =. 21.解:根据题意,得(213)(82)60x x --=.整理得211180x x -+=.解得12x =,29x =. ∵9x =不符合题意,舍去,∴2x =.答:人行通道的宽度是2米.22.解:(1)∵抛物线1C :2124y x x k =-+与x 轴有且只有一个公共点,∴方程2240x x k -+=有两个相等的实数根. ∴2(4)420k ∆=--⨯=. 解得 2k =.(2)∵抛物线1C :21242y x x =-+22(1)x =-,顶点坐标为(1,0),抛物线2C :222(1)8y x =+-的顶点坐标为(1,8)--,∴将抛物线1C 向左平移2个单位长度,再向下平移8个单位长度就可以得到抛物线2C .(3)31m -<<. 23.解:(1)∵OC AB ⊥于点D ,∴AD DB =,90ADO ∠=︒.∵AB =∴AD =∵2AOD E ∠=∠,30E ∠=︒, ∴60AOD ∠=︒.∵在Rt AOD △中,sin ADAOD OA∠=,∴4sin AD OA AOD ===∠.(2)75BAF ∠=︒或15︒.24.解:(1)∵在Rt ADB △中,90ADB ∠=︒,45B ∠=︒,∴9045BAD B ∠=︒-∠=︒. ∴BAD B ∠=∠. ∴AD DB =. 设AD x =,∵在Rt ADC △中,tan ADACD DC∠=,58ACD ∠=︒, ∴tan58xDC =︒.∵ DB DC CB AD =+=,90CB =,∴90tan58xx +=︒.将tan58 1.60︒≈代入方程, 解得240x ≈.答:最高塔的高度AD 约为240米.25.(1)证明:连接OC ,如图1.∵PC 是⊙O 的切线,C 为切点, ∴OC PC ⊥.∴1290PCO ∠=∠+∠=︒. ∵PD AB ⊥于点D , ∴90EDA ∠=︒.∴390A ∠+∠=︒. ∵OA OC =, ∴1A ∠=∠. ∴23∠=∠. ∵34∠=∠, ∴24∠=∠. 即PCE PEC ∠=∠.(2)解:作PF EC ⊥于点F ,如图2.∵AB 是⊙O 的直径, ∴90ACB ∠=︒.∵在Rt ABC △中,10AB =,3sin 5A =, ∴sin 6BC AB A =⋅=.∴8AC ==. ∵在Rt AED △中,32ED =, ∴5sin 2ED AE A ==. ∴112EC AC AE =-=. ∵24∠=∠, ∴PE PC =.∵PF EC ⊥于点F ,∴11124FC EC ==,90PFC ∠=︒.∴2590∠+∠=︒.∵21290A ∠+∠=∠+∠=︒. ∴5A ∠=∠. ∴3sin 55∠=. ∴在Rt PFC △中,55sin 512FC PC ==∠. 26.解:(2)抛物线如图所示;(3)x =4-,1-或1; (4)41x -<<-或1x >.27.解:(1)∵二次函数212y x bx c =-++,当0x =和5x =时所对应的函数值相等,∴二次函数212y x bx c =-++的图象的对称轴是直线52x =. ∵二次函数212y x bx c =-++的图象经过点(1,0)A ,∴10252b c b ⎧=-++⎪⎪⎨⎪=⎪⎩.解得 252c b =-⎧⎪⎨=⎪⎩.∴二次函数的表达式为215222y x x =-+-.(2)过点B 作BD x ⊥轴于点D ,如图1.∵一次函数3y x =-+与二次函数212y x bx c =-++的图象分别交于B ,C 两点,∴2153222x x x -+=-+-.解得 12x =,25x =. ∴交点坐标为(2,1),(5,2)-. ∵点B 在第一象限,∴点B 的坐标为(2,1). ∴点D 的坐标为(2,0).在Rt ABD △中,1AD =,1BD =,∴AB(3)结论:四边形ABCN 的形状是矩形.证明:设一次函数3y x =-+的图象与x 轴交于点E ,连接MB ,MN ,如图2.∵点B 绕点M 旋转180︒得到点N ,∴M 是线段BN 的中点.∴ MB MN =.∵M 是线段AC 的中点, ∴ MA MC =. ∴四边形ABCN 是平行四边形.∵一次函数3y x =-+的图象与x 轴交于点E , 当0y =时,3x =. ∴点E 的坐标为(3,0). ∴1 DE DB ==.∴在Rt BDE △中,45DBE DEB ∠=∠=︒. 同理45DAB DBA ∠=∠=︒. ∴90ABE DBA DBE ∠=∠+∠=︒. ∴四边形ABCN 是矩形.28.解:(1(2)①补全图形如图所示;②结论:(1)中NM 与AB 的位置关系不变. 证明:∵90ACB ∠=︒,AC BC =, ∴45CAB B ∠=∠=︒. ∴ 45CAN NAM ∠+∠=︒.∵AD 绕点A 逆时针旋转90︒得到线段AE , ∴AD AE =,90DAE ∠=︒. ∵N 为ED 的中点,∴1452DAN DAE ∠=∠=︒,AN DE ⊥. ∴ 45CAN DAC ∠+∠=︒,90AND ∠=︒. ∴ NAM DAC ∠=∠.在Rt AND △中,cos cos 45AN DAN AD =∠=︒=在Rt ACB △中,cos cos 45AC CAB AB =∠=︒=. ∵M 为AB 的中点,∴2AB AM =.∴2AC AC AB AM ==.∴AM AC =. ∴AN AD =AMAC. ∴ANM ADC ∽△△.∴AMN ACD ∠=∠.∵点D 在线段BC 的延长线上, ∴18090ACD ACB ∠=︒-∠=︒. ∴90AMN ∠=︒. ∴NM AB ⊥.(3)当BD 的长为6时,ME 的长的最小值为2.29.解:(1)所得图形,如图1所示.(2)①45︒;②1(,)2或1(2-. (3)①如图5,直线OQ 与⊙M 相切于点Q ,点Q 在第一象限,连接MQ ,过点Q 作QH x ⊥轴于点H . ∵直线OQ 与⊙M 相切于点Q , ∴MQ OQ ⊥.∴90MQO ∠=︒. ∵2MO =,1MQ =, ∴在Rt MQO △中,1sin 2MQ MOQ MO ∠==. ∴30MOQ ∠=︒.∴OQ OM cos MOQ =⋅∠= ∵QH x ⊥轴, ∴90QHO ∠=︒.∵9060QOH MOQ ∠=︒-∠=︒,∴在Rt QOH △中,3sin 2QH OQ QOH =⋅∠=. …………………………6分 ②如图6,当反射光线PN 与坐标轴平行时,连接MP 并延长交x 轴于点D ,过点P 作PE OD ⊥于点E ,过点O 作OF PD ⊥于点F .∵直线l 是⊙M 的切线, ∴MD l ⊥.∴12 90OPD NPD ∠+∠=∠+∠=︒. ∵12∠=∠,∴OPD NPD ∠=∠. ∵PN x ∥轴,∴NPD PDO ∠=∠.∴OPD PDO ∠=∠. ∴OP OD =. ∵OF PD ⊥,∴ 90MFO ∠=︒,PF FD =.∵cos OMF ∠=MF MOMO MD=, 设PF FD x ==,而2MO =,1M P =, ∴12212x x+=+.解得x =. ∵0x >,∴x =∵PE OD ⊥,∴ 90PED MOD ∠=︒=∠. ∴PE MO ∥.∴ EPD OMF ∠=∠.∴cos cos EPD OMF ∠=∠. ∴PE MFPD MO=. ∴MFPE PD MO=⋅ 122xx +=⋅ (1)x x =+=可知,当反射点P 从②中的位置开始,在⊙M 上沿逆时针方向运动,到与①中的点Q 重合之前,都满足反射光线与坐标轴无公共点,所以反射点P 的纵32P y <.。
2015年北京市西城区示范校九年级上学期人教版数学第二次月考试卷一、选择题(共10小题;共50分)1.二次函数的图象的顶点坐标是A. B. C. D.2.已知函数的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移个单位,那么所得到的新抛物线的解析式是A.C.B.D.3.二次函数的最大值为A. B. C. D.4.若二次函数的图象过,,三点,则,,的大小关系正确的是A. B. C. D.5.图(1)是一个横断面为抛物线形状的拱桥,当水面在时,拱顶(拱桥洞的最高点)离水面,水面宽.如图(2)建立平面直角坐标系,则抛物线的关系式是A. B. C. D.6.抛物线与抛物线关于轴对称,则抛物线的解析式为()A. B. C. D.7.函数与的图象可能是A. B.C. D.8.已知二次函数的图象如图所示,给出以下结论:①因为,所以函数有最大值;②该函数的图象关于直线对称;③当时,函数的值等于;④当或时,函数的值都等于.其中正确结论的个数是A. B. C. D.9.已知二次函数的图象与轴有两个交点,则的取值范围是A.C.且B.D.且10.已知函数,则使成立的值恰好有三个,则的值为A. B. C. D.二、填空题(共8小题;共40分)11.若把函数化为的形式,其中,为常数,则.12.函数与轴的交点坐标为,与轴的交点的坐标为,.13.抛物线的图象如图所示,则此抛物线的解析式为.14.请写出符合以下三个条件的一个函数的解析式.①过点;②当时,随的增大而减小;③当自变量的值为时,函数值小于.15.已知二次函数的部分图象如图,则关于的一元二次方程的解是.16.如图,是二次函数的图象的一部分,给出下列命题:①;②;③的两根分别为和;④.其中正确的命题是.(只要求填写正确命题的序号)17.将抛物线的图象向上平移个单位,则平移后的抛物线的解析式为,再将以其顶点为中心,旋转度所得抛物线的解析式为,再将关于直线对称的抛物线的解析式为.18.抛物线上部分点的横坐标,纵坐标的对应值如表:从表可知,下列说法中正确的是.(填写序号)①抛物线与轴的一个交点为;②函数的最大值为;③抛物线的对称轴是直线;④在对称轴左侧,随增大而增大.三、解答题(共4小题;共52分)19.已知二次函数.(1)用配方法将化成的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当取何值时,随的增大而减少?(4)当取何值时,,,.(5)当时,求的取值范围;(6)求函数图象与两坐标轴交点所围成的三角形的面积.20.二次函数的图象与轴交于,两点,与轴交于点.(1)根据图象确定,,的符号,并说明理由;(2)如果点的坐标为,,,求这个二次函数的解析式.21.如图,有一座抛物线形拱桥,已知桥下在正常水位时,水面宽,水位上升,就达到警戒水位,这时水面宽,若洪水到来时,水位以每小时的速度上升,求水过警戒水位后几小时淹到桥拱顶.22.已知抛物线:的顶点到轴的距离为,与轴交于,两点.(1)求顶点的坐标;(2)若点在抛物线上,且,求点的坐标.答案第一部分1.B6.D2.A7.C3.A8.C4.B9.C5.C10.D第二部分11.12.;;13.14.(答案不唯一)15.,16.①③17.;;18.①③④第三部分19.(1)(2)当,则,解得:,,故图象与轴交点坐标为:,,当,,故图象与轴交点坐标为:,如图所示:(3)当时,随的增大而减少.(4)当或时,,当或时,,当时,.(5)当时,时,,时,,故的取值范围是:.(6)如图所示:函数图象与两坐标轴交点所围成的三角形的面积为:.20.(1)抛物线开口向上,.又对称轴在轴的左侧,,.又抛物线交轴的负半轴,.(2)连接,,在中,,,,,又在中,,,,设二次函数的解析式为,由题意:所求二次函数的解析式为.21.根据题意建立坐标系如下:设抛物线解析式为:,又因为,,所以解得:所以,所以,即,所以,则(小时).答:水过警戒线后小时淹到拱桥顶.22.(1)抛物线顶点的坐标为,由于顶点到轴的距离为,,或,抛物线与轴交于,两点,舍去.,抛物线顶点的坐标为.(2)抛物线的解析式为,抛物线与轴交,两点的坐标为,,,点在抛物线上,,设,则,把代入到抛物线的解析式为,解得或,把代入到抛物线的解析式为,解得或,点坐标为或或或.。
2015-2016学年北京市西城区九年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.二次函数y=(x-5)2+7的最小值是()A. B. 7 C. D. 52.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cos A的值为()A.B.C.D.3.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A. 12B.C.D.4.将二次函数y=x2-6x+5用配方法化成y=(x-h)2+k的形式,下列结果中正确的是()A. B. C. D.5.若一个扇形的半径是18cm,且它的弧长是12πcm,则此扇形的圆心角等于()A. B. C. D.6.如图,在平面直角坐标系xOy中,点A的坐标为(-1,2),AB⊥x轴于点B.以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,则点A1的坐标为()A.B.C.D.7.如图,一艘海轮位于灯塔P的南偏东37°方向,距离灯塔40 海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的正东方向上的B处.这时,B处与灯塔P的距离BP的长可以表示为()A. 40海里B. 海里C. 海里D. 海里8.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A.B.C.D.9.某商品现在的售价为每件60元,每星期可卖出300件市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为A. B.C. D.10.二次函数y=2x2-8x+m满足以下条件:当-2<x<-1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A. 8B.C.D.二、填空题(本大题共6小题,共18.0分)11.若,则的值为______.12.点A(-3,y1),B(2,y2)在抛物线y=x2-5x上,则y1______y2.(填“>”,“<”或“=”)13.△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为______.14.如图,线段AB和射线AC交于点A,∠A=30°,AB=20.点D在射线AC上,且∠ADB是钝角,写出一个满足条件的AD的长度值:AD=______.15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=116.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是______;由此可证明直线PA,PB都是⊙O的切线,其依据是______.三、解答题(本大题共13小题,共72.0分)17.计算:4cos30°•tan60°-sin245°.18.如图,△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,求tan C的值.19.已知抛物线y=-x2+2x+3与x轴交于A,B两点,点A在点B的左侧.(1)求A,B两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.20.如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?22.已知抛物线C1:y1=2x2-4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2-4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2-4k上,且n<t,直接写出m的取值范围.23.如图,AB是⊙O的一条弦,且AB=.点C,E分别在⊙O上,且OC⊥AB于点D,∠E=30°,连接OA.(1)求OA的长;(2)若AF是⊙O的另一条弦,且点O到AF的距离为,直接写出∠BAF的度数.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)25.如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.(1)求证:∠PCE=∠PEC;(2)若AB=10,ED=,sin A=,求PC的长.26.阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(-3,-1)两点.观察图象可知:①当x=-3或1时,y1=y2;②当-3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2-x-4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2-x-4>0的解集进行了探究.下面是他的探究过程,请将(2)、(3)、(4)补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x-1>;当x<0时,原不等式可以转化为x2+4x-1<;(2)构造函数,画出图象设y3=x2+4x-1,y4=,在同一坐标系中分别画出这两个函数的图象.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x-1;(不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为______;(4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2-x-4>0的解集为______.27.如图,在平面直角坐标系xOy中,二次函数y=-+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=-x+3与二次函数y=-+bx+c 的图象分别交于B,C两点,点B在第一象限.(1)求二次函数y=-+bx+c的表达式;(2)连接AB,求AB的长;(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.28.在△ABC中,∠ACB=90°,AC=BC=4,M为AB的中点.D是射线BC上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.(1)如图1,当BD=2时,AN=______,NM与AB的位置关系是______;(2)当4<BD<8时,①依题意补全图2;②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小29.在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.(1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;(2)当⊙O的半径为1时,如图3,①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为______°;②自点A(-1,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为______;(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.答案和解析1.【答案】B【解析】解:∵y=(x-5)2+7∴当x=5时,y有最小值7.故选B.根据二次函数的性质求解.本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-,函数最小值y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-,函数最大值y=.2.【答案】A【解析】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理,得AB==5.cosA==,故选:A.根据勾股定理,可得AB的长,根据锐角的余弦等于邻边比斜边,可得答案.本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.【答案】C【解析】解:连接CP,∵OA边与⊙C相切于点P,∴CP⊥AO,∴∠POC=45°,∴OP=CP=6,∴OC==6,故选:C.连接CP,由切线的性质可得CP⊥AO,再由切线长定理可得∠POC=45°,进而可得△POC是等腰直角三角形,利用勾股定理即可求出OC的长.本题考查了切线的性质定理、切线长定理以及勾股定理的运用,能够正确的判定△POC是等腰直角三角形是解题关键.4.【答案】C【解析】解:y=x2-6x+5=x2-6x+9-4=(x-3)2-4,故选:C.运用配方法把一般式化为顶点式即可.本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键.5.【答案】D【解析】解:根据弧长的公式l=,得n===120°,故选:D.把弧长公式进行变形,代入已知数据计算即可.本题考查的是弧长的计算,掌握弧长的公式l=是解题的关键.6.【答案】A【解析】解:∵点A的坐标为(-1,2),以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,∴点A1的坐标为(-2,4).直接利用位似图形的性质以及结合A点坐标直接得出点A1的坐标.此题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.7.【答案】D【解析】解:∵一艘海轮位于灯塔P的南偏东37°方向,∴∠BAP=37°,∵AP=40海里,∴BP=AP•sin37°=40sin37°海里;故选D.根据已知条件得出∠BAP=37°,再根据AP=40海里和正弦定理即可求出BP的长.本题考查解直角三角形,用到的知识点是方位角、直角三角形、锐角三角函数的有关知识,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.8.【答案】C【解析】解:∵∠ABC=70°,∠ACB=30°,∴∠A=80°,∴∠D=∠A=80°,∵D是的中点,∴,∴BD=CD,∴∠DBC=∠DCB==50°,故选:C.根据三角形的内角和定理得到∠A=80°,根据圆周角定理得到∠D=∠A=80°,根据等腰三角形的内角和即可得到结论.本题考查了圆周角定理,圆心角、弧、弦的关系,等腰三角形的性质,熟练掌握圆周角定理是解题的关键.9.【答案】B【解析】解:降价x元,则售价为(60-x)元,销售量为(300+20x)件,根据题意得,y=(60-x)(300+20x),故选:B.根据降价x元,则售价为(60-x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.此题主要考查了根据实际问题列二次函数解析式,关键是正确理解题意,找出题目中的等量关系,再列函数解析式.10.【答案】D【解析】不如先通过顶点坐标位置特征求出m的范围,将A选项剔除后,将B、C、D 选项带入其中,并根据二次函数对称周两侧图象增减性特点令x=-2时y值小于零和x=6时y值大于零去取舍各位合理.忘老师能够采纳.解:∵抛物线y=2x2-8x+m=2(x-2)2-8+m的对称轴为直线x=2,而抛物线在-2<x<-1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,∴m<0,当m=-10时,则y=2x2-8x-10,令y=0,则2x2-8x-10=0,解得x1=-1,x2=5,则有当-2<x<-1时,它的图象位于x轴的上方;当m=-42时,则y=2x2-8x-42,令y=0,则2x2-8x-42=0,解得x1=-3,x2=7,则有当6<x<7时,它的图象位于x轴的下方;当m=-24时,则y=2x2-8x-24,令y=0,则2x2-8x-24=0,解得x1=-2,x2=6,则有当-2<x<-1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方;故选:D.根据抛物线顶点式得到对称轴为直线x=2,通过顶点坐标位置特征求出m的范围,将A选项剔除后,将B、C、D选项带入其中,并根据二次函数对称性和增减性特点判断是否合理.本题考查了抛物线与x轴的交点以及抛物线的轴对称性:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11.【答案】【解析】解:根据比例的合比性质,已知=,则=.已知的比值,根据比例的合比性质即可求得.熟练应用比例的合比性质.12.【答案】>【解析】解:当x=-3时,y1=x2-5x=24;当x=2时,y2=x2-5x=-6;∵24>-6,∴y1>y2.故答案为:>.分别计算自变量为-3、2时的函数值,然后比较函数值的大小即可.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.13.【答案】90【解析】解:∵△ABC的三边长分别为5,12,13,∴△ABC的周长为:5+12+13=30,∵与它相似的△DEF的最小边长为15,∴△DEF的周长:△ABC的周长=15:5=3:1,∴△DEF的周长为:3×30=90.故答案为90.由△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,即可求得△ABC的周长以及相似比,又由相似三角形的周长的比等于相似比,即可求得答案.此题考查了相似三角形的性质.熟练掌握相似三角形的周长比等于相似比是解题关键.14.【答案】10【解析】解:过B作BE⊥AC于E,∵∠A=30°,AB=20,∴AE=10,∵∠ADB是钝角,∴∠ADB>∠AEB,∴0<AD<10,∴AD=10,故答案为:10.过B作BE⊥AC于E,由∠A=30°,AB=20,得到AE=10,推出∠ADB>∠AEB,即可得到结论.本题考查了含30°角的直角三角形的性质,熟记直角三角形的性质是解题的关键.15.【答案】102+(x-5+1)2=x2【解析】解:设绳索长OA=OB=x尺,由题意得,102+(x-5+1)2=x2.故答案为:102+(x-5+1)2=x2.设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理列出方程.本题考查了由实际问题抽象出一元二次方程,考查学生理解题意能力,关键是能构造出直角三角形,用勾股定理来求解.16.【答案】直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线【解析】解:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是:直径所对的圆周角是90°;由此可证明直线PA,PB都是⊙O的切线,其依据是:经过半径外端,且与半径垂直的直线是圆的切线.故答案为:直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线.分别利用圆周角定理以及切线的判定方法得出答案.此题主要考查了切线的判定以及圆周角定理,正确把握切线的判定方法是解题关键.17.【答案】解:原式=4××-()2=6-=.【解析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.【答案】解:∵△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,∴∠ADB=∠ADC=90°,∴AB=2BD,∴BD=6,∴CD=BC-BD=15-6=9,∴AD=,∴tan C=.即tan C的值是.【解析】根据在△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,可以求得BD、AD、CD的长,从而可以求得tanC的值.本题考查解直角三角形,解题的关键是计算出题目中各边的长,找出所求问题需要的条件.19.【答案】解:(1)令y=0,则-x2+2x+3=0,解得:x1=-1,x2=3.则A的坐标是(-1,0),B的坐标是(3,0).y=-x2+2x+3=-(x-1)2+4,则对称轴是x=1,顶点C的坐标是(1,4);(2)D的坐标是(1,-4).AB=3-(-1)=4,CD=4-(-4)=8,则四边形ACBD的面积是:AB•CD=×4×8=16.【解析】(1)令y=0解方程即可求得A和B的横坐标,然后利用配方法即可求得对称轴和顶点坐标;(2)首先求得D的坐标,然后利用面积公式即可求解.本题考查了待定系数法求函数解析式以及配方法确定二次函数的对称轴和顶点坐标,正确求得A和B的坐标是关键.20.【答案】(1)证明:∵AD∥BC,∴∠ADB=∠DBC.∵∠A=∠BDC,∴△ABD∽△DCB;(2)∵△ABD∽△DCB,AB=12,AD=8,CD=15,∴=,即=,解得DB=10,DB的长10.【解析】(1)根据平行线的性质,可得∠ADB与∠DBC的关系,根据两个角对应相等的两个三角形相似,可得答案;(2)根据相似三角形的性质,可得答案.本题考查了相似三角形的判定与性质,利用了两个角对应相等的两个三角形相似,利用相似三角形的对应边成比例是解题关键.21.【答案】解:设人行道的宽度为x米,由题意得,2××(8-2x)=60,解得:x1=2,x2=9(不合题意,舍去).答:人行道的宽度为2米.【解析】设人行道的宽度为x米,则矩形绿地的长度为:,宽度为:8-2x,根据两块绿地的面积之和为60平方米,列方程求解.本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22.【答案】解:(1)根据题意得:△=16-8k=0,解得:k=2;(2)C1是:y1=2x2-4x+2=2(x-1)2,抛物线C2是:y2=2(x+1)2-8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2-8=0,即t=0.在y2=2(x+1)2-8中,令y=0,解得:x=1或-3.则当n<t时,即2(x+1)2-8<0时,m的范围是-3<m<1.【解析】(1)抛物线与x轴只有一个公共点,则判别式△=0,据此即可求得k的值;(2)把C1化成顶点式的形式,利用函数平移的法则即可确定;(3)首先求得t的值,然后求得等y=t时C2中对应的自变量的值,结合函数的性质即可求解.本题考查抛物线与x轴的交点的个数的确定,以及函数的平移方法,根据函数的性质确定m的范围是关键.23.【答案】解:(1)∵OC⊥AB,AB=,∴AD=DB=2,∵∠E=30°,∴∠AOD=60°,∠OAB=30°,∴OA==4;(2)如图,作OH⊥AF于H,∵OA=4,OH=2,∴∠OAF=45°,∴∠BAF=∠OAF+∠OAB=75°,则∠BAF′=∠OAF′-∠OAB=15°,∴∠BAF的度数是75°或15°.【解析】(1)根据垂径定理求出AD的长,根据圆周角定理求出∠AOD的度数,运用正弦的定义解答即可;(2)作OH⊥AF于H,根据勾股定理和等腰直角三角形的性质求出∠OAF的度数,分情况计算即可.本题考查的是垂径定理、圆周角定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键,注意分情况讨论思想的应用.24.【答案】解:∵∠B=45°,AD⊥DB,∴∠DAB=45°,∴BD=AD,设DC=x,则BD=BC+DC=90+x,∴AD=90+x,∴tan58°===1.60,解得:x=150,∴AD=90+150=240(米),答:最高塔的高度AD约为240米.【解析】根据已知条件求出BD=AD,设DC=x,得出AD=90+x,再根据tan58°=,求出x的值,即可得出AD的值.本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.25.【答案】解:(1)∵PC是圆O的切线,∴∠PCA=∠B.∵AB是圆O的直径,∴∠ACB=90°.∴∠A+∠B=90°.∵PD⊥AB,∴∠A+∠AED=90°.∴∠AED=∠B.∵∠PEC=∠AED,∴∠PCE=∠PEC.(2)如图所示,过点P作PF⊥AC,垂足为F.∵AB=10,sin A=,∴BC=AB•=6.∴AC==8.∵DE=,sin A=,∴AE=.∴EC=AC-AE=8-=.∵PC=PE,PF⊥EC,∴EF=.∵∠AED=∠PEF,∠EDA=∠EFP,∴△AED∽△PEF.∴,.解得:EP=.∴PC=.【解析】(1)由弦切角定理可知∠PCA=∠B,由直角所对的圆周角等于90°可知∠ACB=90°.由同角的余角相等可知∠AED=∠B,结合对顶角的性质可知∠PCE=∠PEC;(2)过点P作PF⊥AC,垂足为F.由锐角三角函数的定义和勾股定理可求得AC=8,AE=,由等腰三角形三线合一的性质可知EF=,然后证明△AED∽△PEF,由相似三角形的性质可求得PE的长,从而得到PC的长.本题主要考查的是切线的性质、圆周角定理、锐角三角函数的定义、勾股定理、相似三角形的性质和判定、等腰三角形的性质,证得△AED∽△PEF是解题的关键.26.【答案】±1和-4;x>1或-4<x<-1【解析】解:(2);(3)两个函数图象公共点的横坐标是±1和-4.则满足y3=y4的所有x的值为±1和-4.故答案是:±1和-4;(4)不等式x3+4x2-x-4>0即当x>0时,x2+4x-1>,此时x的范围是:x>1;当x<0时,x2+4x-1<,则-4<x<-1.故答案是:x>1或-4<x<-1.(2)首先确定二次函数的对称轴,然后确定两个点即可作出二次函数的图象;(3)根据图象即可直接求解;(4)根据已知不等式x3+4x2-x-4>0即当x>0时,x2+4x-1>,;当x<0时,x2+4x-1<,根据图象即可直接写出答案.本题考查了二次函数与不等式,正确理解不等式x3+4x2-x-4>0即当x>0时,x2+4x-1>,;当x<0时,x2+4x-1<,分成两种情况讨论是本题的关键.27.【答案】解:(1)当x=0时,y=c,即(0,c).由当x=0和x=5时所对应的函数值相等,得(5,c).将(5,c)(1,0)代入函数解析式,得,解得.故抛物线的解析式为y=-x2+x-2;(2)联立抛物线与直线,得,解得,,即B(2,1),C(5,-2).由勾股定理,得AB==;(3)如图:,四边形ABCN是平行四边形,证明:∵M是AC的中点,∴AM=CM.∵点B绕点M旋转180°得到点N,∴BM=MN,∵M是线段AC的中点,∴MA=MC.∴四边形ABCN是平行四边形.一次函数y=-x+3的图像于x轴交于点E.当y=0时,x=3.∴点E的坐标为(3,0)∴DE=1=DB.在Rt BDE中,DBE=DEB=45同理DAB=DBA=450∴ABE=DBA+DBE=900∴四边形ABCN是矩形.【解析】(1)根据当x=0和x=5时所对应的函数值相等,可得(5,c),根据待定系数法,可得函数解析式;(2)联立抛物线与直线,可得方程组,根据解方程组,可得B、C点坐标,根据勾股定理,可得AB的长;(3)根据线段中点的性质,可得M点的坐标,根据旋转的性质,可得MN与BM的关系,根据平行四边形的判定,可得答案.本题考查了二次函数综合题,利用函数值相等得出点(5,c)是解题关键,又利用了待定系数法求函数解析式;利用解方程组得出交点坐标,又利用了勾股定理;利用了平行四边形的判定:对角线互相平分的四边形是平行四边形.28.【答案】;垂直;BD为6,ME最小为7.【解析】解:(1)∵∠ACB=90°,AC=BC=4,BD=2,∴CD=2,∴AD==2,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴△ADE是等腰直角三角形,∴DE=AD=2,∵N为ED的中点,∴AN=DE=,∵M为AB的中点,∴AM=AB=2,∵=,==,∴,∵∠CAB=∠DAN=45°,∴∠CAD=∠MAN,∴△ACD∽△AMN,∴∠AMN=∠C=90°,∴MN⊥AB,故答案为:,垂直;(2)①补全图形如图2所示,②(1)中NM与AB的位置关系不发生变化,理由:∵∠ACB=90°,AC=BC,∴∠CAB=∠B=45°,∴∠CAN+∠NAM=45°,∵线段AD绕点A逆时针旋转90°得到线段AE,∴AD=AE,∠DAE=90°,∵N为ED的中点,∴,AN⊥DE,∴∠CAN+∠DAC=45°,∴∠NAM=∠DAC,在Rt△AND中,DAN=cos45°=,同理=,∴,∵∠DAC=45°-∠CAN=∠MAN,∴△ANM∽△ADC,∴∠AMN=∠ACD,∵D在BC的延长线上,∴∠ACD=180°-∠ACB=90°,∴∠AMN=90°,∴MN⊥AB;(3)连接ME,EB,过M作MG⊥EB于G,过A作AK⊥AB交BD的延长线于K,则△AKB等腰直角三角形,在△ADK与△ABE中,,∴△ADK≌△ABE,∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵BC=4,∴AB=4,MB=2,∴MG=2,∵∠G=90°,∴ME≥MG,∴当ME=MG时,ME的值最小,∴ME=BE=2,∴DK=BE=2,∵CK=BC=4,∴CD=2,∴BD=6,∴BD的长为6时,ME的长最小,最小值是7.(1)根据已知条件得到CD=2,根据勾股定理得到AD==2,根据旋转的性质得到△ADE是等腰直角三角形,求得DE=AD=2,根据直角三角形的性质得到AN=DE=,AM=AB=2,推出△ACD∽△AMN,根据相似三角形的性质即可得到结论;(2)①根据题意补全图形即可;②根据等腰直角三角形的性质得到∠CAB=∠B=45°,求得∠CAN+∠NAM=45°根据旋转的性质得到AD=AE,∠DAE=90°,推出△ANM△ADC,由相似三角形的性质得到∠AMN=∠ACD,即可得到结论;(3)连接ME,EB,过M作MG⊥EB于G,过A作AK⊥AB交BD的延长线于K,得到△AKB等腰直角三角形,推出△ADK≌△ABE,根据全等三角形的性质得到∠ABE=∠K=45°,证得△BMG是等腰直角三角形,求出BC=4,AB=4,MB=2,由ME≥MG,于是得到当ME=MG时,ME的值最小,根据等量代换即可得到结论.本题考查了旋转的性质,勾股定理,全等三角形的性质和判定,相似三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形的性质,正确的作出辅助线是解题的关键.29.【答案】45;(-,【解析】解:(1)答案如图:(2)①由题意:∠1=∠2,∠APB=90°,∴∠1=45°,∴反射光与切线的夹角为45°.②由题意:这些反射点组成的多边形是正十二边形,∴入射光线与反射光线夹角为150°,∴∠AOP1=30°,∵OP1=1,∴P1(-,).(3)如图:当反射光PA∥X轴时,反射光线与坐标轴没有交点.作PD⊥OC,PN⊥OM垂足分别为M,N,设PD=m.∵∠GPO=∠HPA,∠GPC=∠HPC=90°,∴∠OPC=∠APC=∠PCO,∴OP=OC,在RT△PON中,∵ON=PD=m,PN2=1-(2-m)2,∴PO2=m2+1-(2-m)2,∵PD∥OM,∵,∴CP=,CD2=()2-m2,∴OC=PN+CD,OC2=(+)2,由:PO2=OC2得到:()2-m2=(+)2,∴m1=2-,(m2=2+,m3=4,不合题意舍弃),∴根据左右对称性得到:满足条件的反射点P的纵坐标:1.(1)(2)两个问题,要根据题意,画出图象,可以解决.(3)当反射光线平行X轴时,反射光线与坐标轴没有交点,只要求出这样的反射点,就可以解决这个问题了.这是个几何,代数综合题.考查的知识点比较多,用到数形结合的思想,要求作图能力强,学会用方程的思想去思考.。
2015-2016学年北京市西城区月坛中学九年级(上)期中数学试卷一、选择题(本题共30分,每小题3分)1.(3分)如果,那么x的值是()A.B.C.D.2.(3分)已知∠A是锐角,且sinA=,那么∠A等于()A.30°B.45°C.60°D.75°3.(3分)抛物线y=(x+2)2﹣3的对称轴是()A.直线x=﹣3 B.直线x=3 C.直线x=2 D.直线x=﹣24.(3分)若△ABC∽△DEF,△ABC与△DEF的相似比为1:3,则S△ABC:S△DEF 为()A.1:3 B.1:9 C.1:D.3:15.(3分)已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AC等于()A.6 B.C.10 D.126.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.7.(3分)将抛物线y=3x2如何平移得到抛物线y=3(x﹣5)2+1()A.向左平移5个单位,向下平移1个单位B.向左平移5个单位,向上平移1个单位C.向右平移5个单位,向下平移1个单位D.向右平移5个单位,向上平移1个单位8.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是()A.﹣1<x<3 B.x>3 C.x<﹣1 D.x>3或x<﹣19.(3分)如图为二次函数y=ax2+bx+c的图象,此图象与x轴的交点坐标分别为(﹣1,0)、(3,0).下列说法正确的个数是()①ac<0②a+b+c>0③方程ax2+bx+c=0的根为x1=﹣1,x2=3④当x>1时,y随着x的增大而增大.A.1 B.2 C.3 D.410.(3分)如图,矩形ABCD中,BC=4,AB=3,E为边AD上一点,DE=1,动点P、Q同时从点C出发,点P沿CB运动到点B时停止,点Q沿折线CD﹣DE﹣EB 运动到点B时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△CPQ的面积为y cm2.则y与t的函数关系图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.(3分)若二次函数y=x2+2m﹣1的图象经过原点,则m的值是.12.(3分)如图,∠DAB=∠CAE,要使△ABC∽△ADE,则补充的一个条件可以是(注:只需写出一个正确答案即可).13.(3分)如图,DE与BC不平行,当=时,△ABC与△ADE相似.14.(3分)如图,在河两岸分别有A、B两村,现测得三点A、B、D在一条直线上,A、C、E在一条直线上,若BC∥DE,DE=90米,BC=70米,BD=20米,那么A、B两村间的距离为米.15.(3分)若(x,y,z均不为0),则的值为.16.(3分)我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形”.已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.(1)如图1,四边形CDEF是△ABC的内接正方形,则正方形CDEF的边长a1是;(2)如图2,四边形DGHI是(1)中△EDA的内接正方形,则第2个正方形DGHI 的边长a2=.三、解答题(本题共72分,第17-26题,每小题5分.第27题7分,第28题7分,第29题8分)17.(5分)计算:2sin45°+sin60°﹣cos30°+tan260°.18.(5分)已知二次函数的解析式是y=x2﹣2x﹣3(1)用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)在直角坐标系中,用五点法画出它的图象;(3)当x为何值时,函数值y<0.19.(5分)已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD 的长和tanB的值.20.(5分)如图,某人在点A处测量树高,点A到树的距离AD为21米,将一长为2米的标杆BE在与点A相距3米的点B处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,求树CD的高.21.(5分)二次函数y=ax2+bx+c的部分对应值如表:(1)二次函数图象所对应的顶点坐标为.(2)当x=4时,y=.22.(5分)已知抛物线y=x2﹣2x﹣8.(1)试说明该抛物线与x轴一定有两个交点.(2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.23.(5分)如图,在△ABD和△AEC中,E为AD上一点,若∠DAC=∠B,∠AEC=∠BDA.求证:AE•AB=AC•BD.24.(5分)如图,在△ACD中,B为AC上一点,且∠ADB=∠C,AC=4,AD=2,求:AB的长.25.(5分)如图,在正方形网格中,△ABC的顶点和O点都在格点上.(1)在图1中画出与△ABC关于点O对称的△A′B′C′;(2)在图2中以点O为位似中心,将△ABC放大为原来的2倍(只需画出一种即可).26.(5分)如图,二次函数y1=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B (1,0),交y轴于点C,C、D是二次函数图象上的一对对称点,一次函数y2=mx+n 的图象经过B、D两点.(1)求二次函数的解析式及点D的坐标;(2)根据图象写出y2>y1时,x的取值范围.27.(7分)已知关于x一元二次方程x2﹣2(k+1)x+k2﹣2k﹣3=0有两个不相等的实数根(1)求k取值范围;(2)当k最小的整数时,求抛物线y=x2﹣2(k+1)x+k2﹣2k﹣3的顶点坐标以及它与x轴的交点坐标;(3)将(2)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线y=x+m有三个不同公共点时m值.28.(7分)如图,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(不与A、D重合),PE⊥BP,PE交DC于点E.(1)△ABP与△DPE是否相似?请说明理由;(2)设AP=x,DE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;(3)请你探索在点P运动的过程中,四边形ABED能否构成矩形?如果能,求出AP的长;如果不能,请说明理由.29.(8分)定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,若F1:y=x2,经过变换后,得到F2:y=x2+bx,点C的坐标为(2,0),则:①b的值等于;②四边形ABCD的面积为;(2)如图2,若F1:y=ax2+c,经过变换后,点B的坐标为(2,c﹣1),求出△ABD的面积;(3)如图3,若F1:y=x2﹣x+,经过变换后,AC=2,点P是直线AC上的动点,则点P到点D的距离和到直线AD的距离之和的最小值为.2015-2016学年北京市西城区月坛中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.(3分)如果,那么x的值是()A.B.C.D.【解答】解:∵,∴3x=5×2,∴x=.故选:C.2.(3分)已知∠A是锐角,且sinA=,那么∠A等于()A.30°B.45°C.60°D.75°【解答】解:∵∠A是锐角,且sinA=,∴∠A=45°.故选:B.3.(3分)抛物线y=(x+2)2﹣3的对称轴是()A.直线x=﹣3 B.直线x=3 C.直线x=2 D.直线x=﹣2【解答】解:根据抛物线的顶点式可知,顶点横坐标x=2,所以对称轴是x=﹣2.故选:D.4.(3分)若△ABC∽△DEF,△ABC与△DEF的相似比为1:3,则S△ABC:S△DEF 为()A.1:3 B.1:9 C.1:D.3:1【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:3,∴S△ABC :S△DEF=1:9.故选:B.5.(3分)已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AC等于()A.6 B.C.10 D.12【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=8,∴tanA=,AC==6.故选:A.6.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【解答】解:已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.7.(3分)将抛物线y=3x2如何平移得到抛物线y=3(x﹣5)2+1()A.向左平移5个单位,向下平移1个单位B.向左平移5个单位,向上平移1个单位C.向右平移5个单位,向下平移1个单位D.向右平移5个单位,向上平移1个单位【解答】解:抛物线y=3x2的顶点坐标为(0,0),抛物线y=3(x﹣5)2+1的顶点坐标为(5,1),∵点(0,0)向右平移5个单位,再向上平移1个单位可得到(5,1),∴将抛物线y=3x2向右平移5个单位,再向上平移1个单位得到抛物线y=3(x﹣5)2+1.故选:D.8.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是()A.﹣1<x<3 B.x>3 C.x<﹣1 D.x>3或x<﹣1【解答】解:∵依题意得图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3,∴x的取值范围﹣1<x<3.故选A.9.(3分)如图为二次函数y=ax2+bx+c的图象,此图象与x轴的交点坐标分别为(﹣1,0)、(3,0).下列说法正确的个数是()①ac<0②a+b+c>0③方程ax2+bx+c=0的根为x1=﹣1,x2=3④当x>1时,y随着x的增大而增大.A.1 B.2 C.3 D.4【解答】解:①∵该抛物线的开口方向向上,∴a>0;又∵该抛物线与y轴交于负半轴,∴c<0,∴ac<0;故本选项正确;②∵根据抛物线的图象知,该抛物线的对称轴是x==1,∴当x=1时,y<0,即a+b+c<0;故本选项错误;③∵二次函数y=ax2+bx+c的图象与x轴的交点是(﹣1,0)、(3,0),∴方程ax2+bx+c=0的根为x1=﹣1,x2=3故本选项正确;④由②知,该抛物线的对称轴是x=1,∴当x>1时,y随着x的增大而增大;故本选项正确;综上所述,以上说法正确的是①③④,共有3个;故选:C.10.(3分)如图,矩形ABCD中,BC=4,AB=3,E为边AD上一点,DE=1,动点P、Q同时从点C出发,点P沿CB运动到点B时停止,点Q沿折线CD﹣DE﹣EB 运动到点B时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△CPQ的面积为y cm2.则y与t的函数关系图象大致是()A.B.C.D.【解答】解:在矩形ABCD中,BC=4,AB=CD=3.则在直角△ABE中,根据勾股定理得到BE===3①当0≤t≤3,即点P在线段BC上,点Q在线段CD上时,y=t2,此时,该函数图象是开口向上的抛物线在第一象限的部分.故D错误;②当3<t≤4,即点P在线段BC上,点Q在线段DE上时,y=PC×CD=t×3=t,该函数图象是y随x增大而增大的直线的一部分.故A错误;③当4<t≤4+3,即点P在线段BC上,点Q在线段BE上时,y=PC×=6﹣t,该函数图象是直线的一部分.故C错误;综上所述,B正确.故选:B.二、填空题(本题共18分,每小题3分)11.(3分)若二次函数y=x2+2m﹣1的图象经过原点,则m的值是.【解答】解:∵二次函数y=x2+2m﹣1的图象经过点(0,0),∴2m﹣1=0,∴m=.故答案为.12.(3分)如图,∠DAB=∠CAE,要使△ABC∽△ADE,则补充的一个条件可以是∠B=∠D(注:只需写出一个正确答案即可).【解答】解:根据相似三角形的判定:两角对应相等,两三角形相似;两边对应成比例且夹角相等,两三角形相似.已知∠DAB=∠CAE,则∠DAE=∠BAC,要使△ABC∽△ADE,则补充的一个条件可以是∠B=∠D或∠AED=∠ACB、AD:AB=AB:AC.13.(3分)如图,DE与BC不平行,当=时,△ABC与△ADE相似.【解答】解:∵∠A=∠A,∴当=时,△ABC∽△ADE.故答案为:=.14.(3分)如图,在河两岸分别有A、B两村,现测得三点A、B、D在一条直线上,A、C、E在一条直线上,若BC∥DE,DE=90米,BC=70米,BD=20米,那么A、B两村间的距离为70米.【解答】解:由题意可得,△ABC∽△ADE,∴,即,解得AB=70米.15.(3分)若(x,y,z均不为0),则的值为1.【解答】解:已知(x,y,z均不为0),由比例的性质得:==,=,则=+2•﹣=+﹣1=1,故答案为:1.16.(3分)我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形”.已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.(1)如图1,四边形CDEF是△ABC的内接正方形,则正方形CDEF的边长a1是2;(2)如图2,四边形DGHI是(1)中△EDA的内接正方形,则第2个正方形DGHI的边长a2=.【解答】解:(1)∵四边形CDEF是正方形,∴EF=FC,EF∥FC,∴△BFE∽△BCA,∴=,设EF=FC=a,∴=,∴a=2,故答案是:2;(2)∵四边形DGHI是正方形,∴IH=ID,IH∥AD,∴△EIH∽△EDA,∴=,设IH=ID=b,AD=4,DE=2,∴=,∴b=.故答案是:.三、解答题(本题共72分,第17-26题,每小题5分.第27题7分,第28题7分,第29题8分)17.(5分)计算:2sin45°+sin60°﹣cos30°+tan260°.【解答】解:2sin45°+sin60°﹣cos30°+tan260°.=,=.故答案为:+3.18.(5分)已知二次函数的解析式是y=x2﹣2x﹣3(1)用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)在直角坐标系中,用五点法画出它的图象;(3)当x为何值时,函数值y<0.【解答】解:(1)y=x2﹣2x﹣3=x2﹣2x+1﹣3﹣1=(x﹣1)2﹣4;(2)函数的图象如图所示:(3)当y<0时,函数图象上的点都在x轴的下方,此时﹣1<x<3.19.(5分)已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD 的长和tanB的值.【解答】解:∵CD⊥AB,∴∠CDA=90°…(1分)∵sinA=∴AC=15.…(2分)∴AD=9.…(3分)∴BD=4.…(4分)∴tanB=…(5分)20.(5分)如图,某人在点A处测量树高,点A到树的距离AD为21米,将一长为2米的标杆BE在与点A相距3米的点B处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,求树CD的高.【解答】解:∵EB∥CD,∴△ABE∽△ADC,∴=,即=,解得CD=14(m).答:树CD的高为14m.21.(5分)二次函数y=ax2+bx+c的部分对应值如表:(1)二次函数图象所对应的顶点坐标为(1,﹣4).(2)当x=4时,y=5.【解答】解:(1)由表格可知点(0,﹣3)、(2,﹣3)是一对对应点,∴抛物线的对称轴为x=1.∴顶点坐标为(1,﹣4).(2)∵抛物线的对称轴为x=1,∴点(﹣2,5)关于x=1对称点为(4,5).∴当x=4时,y=5.故答案为:(1)(1,﹣4);(2)5.22.(5分)已知抛物线y=x2﹣2x﹣8.(1)试说明该抛物线与x轴一定有两个交点.(2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.【解答】解:(1)解方程x2﹣2x﹣8=0,得x1=﹣2,x2=4.故抛物线y=x2﹣2x﹣8与x轴有两个交点.(2)由(1)得A(﹣2,0),B(4,0),故AB=6.由y=x2﹣2x﹣8=x2﹣2x+1﹣9=(x﹣1)2﹣9,故P点坐标为(1,﹣9);过P作PC⊥x轴于C,则PC=9,∴S=AB•PC=×6×9=27.△ABP23.(5分)如图,在△ABD和△AEC中,E为AD上一点,若∠DAC=∠B,∠AEC=∠BDA.求证:AE•AB=AC•BD.【解答】证明:∵∠DAC=∠B,∠AEC=∠BDA.∴△ABD∽△CAE,∴,∴AE•AB=AC•BD.24.(5分)如图,在△ACD中,B为AC上一点,且∠ADB=∠C,AC=4,AD=2,求:AB的长.【解答】解:在△ADB和△ACD中,∵∠A=∠A,∠ADB=∠C,∴△ADB∽△ACD.∴.∴AD2=AC•AB.∵AD=2,AC=4,∴22=4•AB.解得AB=1.所以AB的长为1.25.(5分)如图,在正方形网格中,△ABC的顶点和O点都在格点上.(1)在图1中画出与△ABC关于点O对称的△A′B′C′;(2)在图2中以点O为位似中心,将△ABC放大为原来的2倍(只需画出一种即可).【解答】解(1)如图1所示:(2)如图2所示:26.(5分)如图,二次函数y1=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B (1,0),交y轴于点C,C、D是二次函数图象上的一对对称点,一次函数y2=mx+n 的图象经过B、D两点.(1)求二次函数的解析式及点D的坐标;(2)根据图象写出y2>y1时,x的取值范围.【解答】解:(1)二次函数y1=ax2+bx+3的图象经过点A(﹣3,0),B(1,0);∴,解得;∴二次函数图象的解析式为y1=﹣x2﹣2x+3;(2分)∴点D的坐标为(﹣2,3);(3分)(2)y2>y1时,x的取值范围是x<﹣2或x>1.(5分)27.(7分)已知关于x一元二次方程x2﹣2(k+1)x+k2﹣2k﹣3=0有两个不相等的实数根(1)求k取值范围;(2)当k最小的整数时,求抛物线y=x2﹣2(k+1)x+k2﹣2k﹣3的顶点坐标以及它与x轴的交点坐标;(3)将(2)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线y=x+m有三个不同公共点时m值.【解答】解:(1)由题意,得△=4(k+1)2﹣4(k2﹣2k﹣3)=16k+16>0,∴k>﹣1,∴k的取值范围为k>﹣1;(2)∵k>﹣1,且k取最小的整数,∴k=0.∴y=x2﹣2x﹣3=(x﹣1)2﹣4,则抛物线的顶点坐标为(1,﹣4),∵y=x2﹣2x﹣3的图象与x轴相交,∴0=x2﹣2x﹣3,∴解得:x=﹣1或3,∴抛物线与x轴相交于A(﹣1,0),B(3,0);(3)翻折后所得新图象如图所示.平移直线y=x+m知:直线位于l1和l2时,它与新图象有三个不同的公共点.①当直线位于l1时,此时l1过点A(﹣1,0),∴0=﹣1+m,即m=1.②当直线位于l2时,此时l2与函数y=﹣x2+2x+3的图象有一个公共点,∴方程x+m=﹣x2+2x+3,即x2﹣x﹣3+m=0有两个相等实根,∴△=1﹣4(m﹣3)=0,即m=.当m=时,x 1=x2=满足﹣1≤x≤3,由①②知m=1或m=.28.(7分)如图,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(不与A、D重合),PE⊥BP,PE交DC于点E.(1)△ABP与△DPE是否相似?请说明理由;(2)设AP=x,DE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;(3)请你探索在点P运动的过程中,四边形ABED能否构成矩形?如果能,求出AP的长;如果不能,请说明理由.【解答】解:(1)△ABP与△DPE相似,理由为:∵∠APB+∠ABP=90°,∠APB+∠DPE=90°,∴∠ABP=∠DPE,∵∠A=∠D=90°,∴△ABP∽△DPE;(2)∵△ABP∽△DPE,∴=,即=,整理得:y=﹣x2+x(0<x<5);(3)存在,若四边形ABED为矩形,则有AB=DE,即2=﹣x2+x,解得:x=1或x=4.则AP=1或AP=4.29.(8分)定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,若F1:y=x2,经过变换后,得到F2:y=x2+bx,点C的坐标为(2,0),则:①b的值等于﹣2;②四边形ABCD的面积为2;(2)如图2,若F1:y=ax2+c,经过变换后,点B的坐标为(2,c﹣1),求出△ABD的面积;(3)如图3,若F1:y=x2﹣x+,经过变换后,AC=2,点P是直线AC上的动点,则点P到点D的距离和到直线AD的距离之和的最小值为.【解答】解:(1)当x=2时,22+2b=0,解得b=﹣2,F2的解析式为y=x2﹣2x=(x﹣1)2﹣1,即B点坐标为(1,﹣1),当x=1时,y=12=1,即D(1,1),BD=1﹣(﹣1)=2,AC=2.S四边形ABCD=AC•BD=×2×2=2,故答案为:﹣2,2;(2)y=ax2+c的顶点A坐标是(0,c).∵F2的解析式为y=a(x﹣2)2+c﹣1,而A(0,c)在F2上,得a=.当x=2时,y=1+c,即D(2,1+c),∴DB=(1+c)﹣(c﹣1)=2,=×2×2=2.∴S△ABD(3)当点C在点A的右侧时(如图1),设AC与BD交于点N,抛物线y=x2﹣x+,配方得y=(x﹣1)2+2,其顶点坐标是A(1,2),∵AC=2,∴点C的坐标为(1+2,2).∵F2过点A,∴F2解析式为y=(x﹣1﹣)2+1,∴B(1+,1),∴D(1+,3),∴NB=ND=1,∵点A与点C关于直线BD对称,∴AC⊥DB,且AN=CN∴四边形ABCD是菱形.∴PD=PB.作PH⊥AD交AD于点H,则PD+PH=PB+PH.要使PD+PH最小,即要使PB+PH最小,此最小值是点B到AD的距离,即△ABD边AD上的高h.∵ND=1,AN=,DB⊥AC,∴∠DAN=30°,故△ABD是等边三角形.∴h=AD=,∴最小值为.当点C在点A的左侧时(如图2),同理,最小值为.综上,点P到点D的距离和到直线AD的距离之和的最小值为.,故答案为:.。