安徽省安庆市望江县2017-2018学年八年级上期末考试数学试题(专家解析)
- 格式:docx
- 大小:235.60 KB
- 文档页数:15
数学试题 第1页(共10页) 数学试题 第2页(共10页)绝密八年级数学(考试时间:120分钟 试卷满分:120分)一、选择题(本大题共15小题,每小题3分,共45分.) 1.数字0.0000036用科学记数法表示为 ( ) A .53.610-⨯B .63.610-⨯C .63610-⨯D .50.3610-⨯2.下列分解因式正确的是 ( ) A .3(1)(1)m m m m m -=-+ B .26(1)6x x x x --=-- C .22(2)a ab a a a b ++=+D .222()x y x y -=-3.下列长度的三条线段能组成三角形的是 ( ) A .1.5 cm ,2 cm ,2.5 cm B .2 cm ,5 cm ,8 cm C .1 cm ,3 cm ,4 cmD .5 cm ,3 cm ,1 cm4.若正多边形的一个外角是40°,则这个正多边形是 ( ) A .正七边形B .正八边形C .正九边形D .正十边形5.若分式2424x x --的值为零,则x 等于 ( )A .2B .2-C .2±D .06.如图,△ABC ≌△DEF ,DF 和AC ,FE 和CB 是对应边,若∠A =100°,∠F =47°,则∠DEF 等于 ( ) A .100°B .53°C .47°D .33°6图 7图 8图7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是 ( ) A .SASB .SSSC .AASD .ASA8.如图,在△ABC 和△DEC 中,AB DE =,若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是 ( ) A .BC EC =,B E ∠=∠B .A D ∠=∠,AC DC = C .B E ∠=∠,BCE DCA ∠=∠D .BC EC =,A D ∠=∠9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交费,设每天应多做x 件,则x 应满足的方程为 ( ) A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+ 10.如图,∥AB CD ,∥AD BC ,AC 与BD 交于点O ,AE BD ⊥于E ,CF BD ⊥于F ,那么图中全等的三角形有 ( )A .5对B .6对C .7对D .8对10图 11图 12图11.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,BM 为∠ABC 的角平分线,l 与BM 相交于P点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为 ( ) A .24°B .30°C .32°D .36°12.如图,在△ABC 中,65CAB ∠=︒,在同一平面内,将△ABC绕点A逆时针旋转到△AB C''的位置,使得C C '∥AB ,则B AB ∠'等于 ( )A .50︒B .60︒C .65︒D .70︒13.“十一”期间,几名同学包租一辆面包车前去某景区旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 ( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=-D .18018032x x -=+ 14.如果分式方程11x mx x =++无解,则m 的值为 ( ) A .-2B .-1C .0D .115.如图△ABC 与△CDE 都是等边三角形,且∠EBD =65°,则∠AEB 的度数是 ( )A .115°B .120°C .125°D .130°数学试题 第3页(共10页) 数学试题 第4页(共10页)二、填空题(本大题共6小题,每小题3分,共18分) 16.计算:22224a b ab c c÷=__________.17.点P (-4,-3)关于x 轴对称的点的坐标是__________. 18.已知35x =,98y =,则23x y -=__________.19.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为__________°.20.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,若BC =5 cm ,则BD +DE =__________.21.如图,点O 为线段AB 上的任意一点(不与A ,B 重合),分别以AO ,BO 为一腰在AB 的同侧作等腰△AOC 和等腰△BOD ,OA =OC ,OB =OD ,∠AOC 与∠BOD 都是锐角,且∠AOC =∠BOD ,AD 与BC 相交于点P ,∠COD =110°,则∠APB =__________°.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)计算与求值:(1)计算:22(2)(2)a a b a b ---;(2)运用乘法公式计算:2201720152019-⨯.23.(本小题满分7分)先化简,再求值:(1)2[(2)(2)(2)8]4x y x y x y xy x -+-++÷,其中142x y =-=;(2)22213÷(1)11x x x x -+--+,其中x =0. 24.(本小题满分8分)如图所示的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A ,B 两点的坐标;(2)作出△ABC 关于y 轴对称的△A 1B 1C 1,再把△A 1B 1C 1向上平移2个单位长度得到△A 2B 2C 2,写出 点A 2,B 2,C2三点的坐标; (3)请求出△A 2B 2C 2的面积.25.(本小题满分8分)果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26.(本小题满分9分)如图,AD 为△ABC 的高,BE 为△ABC 的角平分线,若∠EBA =34°,∠AEB =72°.(1)求∠CAD 和∠BAD 的度数;(2)若点F 为线段BC 上任意一点,当△EFC 为直角三角形时,试求∠BEF 的度数.27.(本小题满分9分)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE ,CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.28.(本小题满分9分)在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上时,若∠BAC =90°,则∠BCE =__________°; (2)设∠BAC =α,∠BCE =β.数学试题 第5页(共10页) 数学试题 第6页(共10页)①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.数学试题第7页(共10页)数学试题第8页(共10页)数学试题 第9页(共10页) 数学试题 第10页(共10页)。
安徽省安庆市望江县八年级(上)期末数学试卷一、选择题(本大题共8小题,每小题4分,满分32分,在每小题给出的四个选项中,只有一项是符合题意的,)1.函数y=1﹣的自变量x的取值范围是()A.x≤1 B.x≥0 C.x>0 D.x≤0【分析】依据二次根式中的被开方数为非负数,即可得到结论.x≥0,∴函数y=1﹣的自变量x的取值范围是x≥0,故选:B.【点评】本题主要考查了函数自变量的取值范围,当表达式的分母中含有自变量时,自变量取值要使分母不为零;当函数的表达式是二次根式时,自变量的取值范围必须使被开方数不小于零.2.给出下列函数,其中y随着x的增大而减小的函数是()A.y=﹣3+x B.y=5+0.01x C.y=3x D.y=29﹣13x【分析】根据一次函数的性质可以判断哪个选项中的函数符合题意,本题得以解决.【解答】解:∵y=﹣3+x=x﹣3,y=5+0.01x=0.01x+5,y=3x,1>0,0.01>0,3>0,∴上述三个函数中y都随x的增大而增大,故选项A、B、C都不符合题意,∵y=29﹣13x中的﹣13<0,∴该函数y随x的增大而减小,故选项D符合题意,故选:D.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.3.“两条直线相交只有一个交点”的题设是()A.两条直线B.相交C.只有一个交点D.两条直线相交【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【解答】解:“两条直线相交只有一个交点”的题设是两条直线相交.故选:D.【点评】要区分一个命题的题设和结论,通常把命题改写成“如果…,那么…”的形式,以“如果”开始的部分是题设,以“那么”开始的部分是结论.4.若△ABC≌△MNP,∠A=∠M,∠C=∠P,AB=4cm,BC=2cm,则NP=()A.2cm B.3cm C.4cm D.6cm【分析】根据全等三角形的对应边相等,即可解答出;【解答】解:∵△ABC≌△MNP,∠A=∠M,∠C=∠P,∴∠B=∠N,BC=NP,∵BC=2,∴NP=2.故选:A.【点评】本题主要考查了全等三角形的性质,即全等三角形的对应边相等.5.下列说法中,正确的是()A.两腰对应相等的两个等腰三角形全等B.两锐角对应相等的两个直角三角形全等C.两角及其夹边对应相等的两个三角形全等D.面积相等的两个三角形全等【分析】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.【解答】解:A、两腰对应相等的两个等腰三角形,只有两边对应相等,所以不一定全等;B、两锐角对应相等的两个直角三角形,缺少对应的一对边相等,所以不一定全等;C、两角及其夹边对应相等的两个三角形全等,符合ASA;D、面积相等的两个三角形不一定全等.故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.函数y=ax+b(a,b为常数,a≠0)的图象如图所示,则关于x的不等式ax+b>0的解集是()A.x>4 B.x<0 C.x<3 D.x>3【分析】利用函数图象,写出直线y=ax+b在x轴上方所对应的自变量的范围即可.【解答】解:关于x的不等式ax+b>0的解集为x<3.故选:C.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.直线y=kx+b与直线132y x=+交点的纵坐标为5,而与直线y=3x﹣9的交点的横坐标也是5,则直线y=kx+b与两坐标轴围成的三角形面积为()A.32B.52C.1 D.12【分析】根据题意把y=5代入y=12x+3可确定直线y=kx+b 与直线132y x =+的交点坐标为(4,5);把x=5代入y=3x ﹣9 可确定直线kx+b 与直线y=3x ﹣9的交点坐标为(5,6);再利用待定系数法确定直线y=kx+b 的解析式,然后分别确定该直线与坐标轴的交点坐标,再利用三角形面积公式求解.【解答】解:把y=5代入y=12x+3得12x+3=5,解得x=4,即直线y=kx+b 与直线132y x =+的交点坐标为(4,5); 把x=5代入y=3x ﹣9得y=6,即直线y=kx+b 与直线y=3x ﹣9的交点坐标为(5,6);把(4,5)和(5,6)代入y=kx+b 得4556k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=⎩, 所以y=x +1,当x=0时,y=1;当y=0时,x+1=0,解得x=﹣1,所以直线y=x+1与x 轴和y 轴的交点坐标分别为(﹣1,0)、(0,1),所以直线y=x+1与两坐标轴围成的三角形面积=12×1×1=12. 故选:D .【点评】本题考查了两直线平行或相交的问题:直线y =k 1x+b 1(k 1≠0)和直线y =k 2x+b 2(k 2≠0)平行,则k 1=k 2;若直线y =k 1x+b 1(k 1≠0)和直线y =k 2x+b 2(k 2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.8.已知:如图,下列三角形中,AB=AC ,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A .①③④B .①②③④C .①②④D .①③【分析】顶角为:36°,90°,108°的四种等腰三角形都可以用一条直线把这四个等腰三角形每个都分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:A.【点评】本题考查了等腰三角形的判定;在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形相似才有可能.二、填空题(本大题共5小题,每小题4分,满分20分)9.如图中的B点的坐标是(﹣3,2).【分析】首先写横坐标,再写纵坐标即可.【解答】解:B点的坐标是(﹣3,2),故答案为:(﹣3,2).【点评】此题主要考查了点的坐标,关键是掌握点的坐标的表示方法.10.已知y﹣3与x﹣1成正比例,当x=3时,y=7,那么y与x的函数关系式是y=2x+1 .【分析】设y﹣3=k(x﹣1)(k≠0).把x、y的值代入该解析式,列出关于k的方程,通过解方程可以求得k的值;【解答】解:设y﹣3=k(x﹣1)(k≠0).∵当x=3时,y=7,∴7﹣3=k(3﹣1),解得,k=2.∴y﹣3=2x﹣2∴y与x之间的函数关系式是y=2x+1;故答案为:y=2x+1【点评】本题考查了待定系数法求一次函数解析式.求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.11.三角形三边长分别为3,1﹣2a,8,则a的取值范围是﹣5<a<﹣2 .【分析】直接根据三角形的三边关系即可得出结论.【解答】解:∵三角形三边长分别为3,1﹣2a,8,∴8﹣3<1﹣2a<8+3,解得﹣5<a<﹣2.故答案为:﹣5<a<﹣2.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.12.如图,在△ABC中,∠A=40°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是30° .【分析】已知∠A=40°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.【解答】解:∵∠A=40°,AB=AC,∴∠ABC=∠ACB=70°,又∵DE垂直平分AB,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.【点评】此题主要考查了等腰三角形的性质以及线段垂直平分线的性质.主要了解线段垂直平分线的性质即可求解.13.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP 垂直平分RS.其中正确结论的序号是①②④ (请将所有正确结论的序号都填上).【分析】根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△ QSP;连接R S,与AP交于点D,先证△ARD≌△ASD,则RD=SD,∠ADR=∠ ADS=90°.【解答】解:①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt △ARP 和Rt △ASP 中,由勾股定理得:AR 2=AP 2﹣PR 2,A S 2=AP 2﹣P S 2,∵AD=AD ,PR=PS ,∴AR=AS ,∴①正确;②∵AQ=QP ,∴∠QAP=∠QPA ,∵∠QAP=∠BAP ,∴∠QPA=∠BAP ,∴QP ∥AR ,∴②正确;③在Rt △BRP 和Rt △QSP 中,只有PR=PS ,不满足三角形全等的条件,故③错误;④如图,连接R S ,与AP 交于点D .在△ARD 和△ASD 中,AR AS RAP SAP AD AD =⎧⎪∠=∠⎨⎪=⎩,所以△ARD ≌△ASD .∴RD=SD ,∠ADR=∠ADS=90°.所以AP 垂直平分RS ,故④正确.故答案为:①②④.【点评】本题考查了全等三角形的性质和判定,平行线的判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题(本大题共7小题,共68分)解答应写明大字说明和运算步14.(8分)如图,AC=BD ,AB=DC .求证:∠B=∠C .【分析】边结A D ,利用SSS 判定△ABD ≌△DCA ,根据全等三角形的对应角相等即证.【解答】证明:连接AD ,在△ABD和△DCA中,AB CD AC BD AD DA=⎧⎪=⎨⎪=⎩,∴△ABD≌△DCA(SSS),∴∠B=∠C.【点评】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、AAS、HL.15.(8分)在给出的坐标系中作出要求的图象(1)作出y=2x﹣4 的图象l1;(2)作出l1关于y轴对称的图象l2;(3)作出l1先向右平移2个单位,再向上平移1个单位的图象l3.【分析】(1)分别令x=0求得y、令y=0求得x,从而得出直线l1的解析式;(2)关键关于y轴对称画出图象即可;(3)将l1先向右平移2个单位,再向上平移1个单位可得直线l3.【解答】解:(1)如图所示:(2)如图所示;(3)如图所示:【点评】此题考查一次函数与几何变换,关键是令x=0求得y、令y=0求得x,从而得出直线l1的解析式.,﹣5)16.(10分)已知直线l1经过点A(5,0)和点B(52(1)求直线l1的表达式;(2)设直线l2的解析式为y=﹣2x+2,且l2与x轴交于点D,直线l1交l2于点C,求△CAD 的面积.【分析】(1)把A、B的坐标代入函数解析式,即可求出答案;(2)分别求出C、D的坐标,根据三角形的面积公式求出即可.【解答】解:(1)设直线l1的表达式为y=kx+b,把A、B的坐标代入得:05552k bk b=+⎧⎪⎨-=+⎪⎩,解得:k=2,b=﹣10,即直线l1的表达式是y=2x﹣10;(2)y=﹣2x+2,当y=0时,x=1,即D点的坐标为(1,0),解方程组21022y xy x=-⎧⎨=-+⎩得:34xy=⎧⎨=-⎩,即C点的坐标为(3,﹣4),y2=﹣2x+2,当y=0时,x=1,即OD=1,∵A(5,0),∴OA=5,∴AD=5﹣1=4,∴△CAD的面积是1442⨯⨯=8.【点评】本题考查了两函数的相交问题、一次函数的性质、用待定系数法求一次函数的解析式等知识点,能求出函数的解析式是解此题的关键.17.(10分)已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G 分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.【分析】利用“HL”证明Rt△PFD和Rt△PGE全等,根据全等三角形对应边相等可得PD=PE,再根据到角的两边距离相等的点在角的平分线上证明即可.【解答】证明:在Rt△PFD和Rt△PGE中,PF PG DF EG=⎧⎨=⎩,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并求出全等三角形是解题的关键.18.(10分)(1)叙述并证明三角形内角和定理(证明用图1);(2)如图2是七角星形,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.【分析】(1)要证明三角形的三个内角的和为180°,可以把三角形三个角转移到一个平角上,利用平角的性质证明即可.(2)先根据三角形外角的性质得出∠A+∠E=∠1,∠G+∠D=∠2,∠C+∠F=∠3,再根据三角形的内角和是180°进行解答.【解答】(1)定理:三角形的内角和是180°.已知:△ABC的三个内角分别为∠BAC,∠B,∠C;求证:∠BAC+∠B+∠C=180°.证明:如图,过点A作直线MN,使MN∥BC,,∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)∵∠MAB+∠NAC+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换)∴∠BAC+∠B+∠C=180°.(2)解:如图2,∵∠A+∠E=∠DME,∠G+∠D=∠ANG,∠C+∠F=∠BHC,∵∠DME+∠ANG=∠BPH,∴∠A+∠E+∠G+∠D=∠BPH,∵∠B+∠BHC+∠BPH=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.【点评】本题考查了平行线的性质,平角的定义,三角形外角的性质及三角形的内角和,熟知三角形的内角和是180 度是解答此题的关键.19.(10分)如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接A E.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.【分析】(1)根据等边三角形各内角为60°和各边长相等的性质可证∠ECA=∠DC B,A C=B C,EC=DC,即可证明△EC A≌△DC B;(2)根据△ECA≌△DCB可得∠EAC=60°,根据内错角相等,平行线平行即可解题.【解答】证明:(1)∵△ABC、△DCE为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=∠DBC=60°,∵∠ACD+∠ACB=∠DCB,∠ECD+∠ACD=∠ECA,∴∠ECA=∠DCB,在△ECA和△DCB中,AC BCECA DCBEC DC=⎧⎪∠=∠⎨⎪=⎩,∴△ECA≌△DCB(SAS);(2)∵△ECA≌△DCB,∴∠EAC=∠DBC=60°,又∵∠ACB=∠DBC=60°,∴∠EAC=∠ACB=60°,∴AE∥BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ECA≌△DCB是解题的关键.20.(12分)一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离为y1千米,轿车离甲地的距离为y2千米,y1、y2关于x的函数图象如图.(1)根据图象,直接写出y1、y2关于x的函数关系式;(2)当两车相遇时,求此时客车行驶的时间;(3)两车相距200 千米时,求客车行驶的时间.【分析】(1)根据图象得出点的坐标,进而利用待定系数法求一次函数解析式得出即可;(2)当两车相遇时,y 1=y 2,进而求出即可;(3)分别根据若相遇前两车相距200千米,则y 2﹣y 1=200,若相遇后相距200千米,则y 1﹣y 2=200,分别求出即可.【解答】解:(1)设y 1=kx ,则将(10,600)代入得出:600=10k ,解得:k=60,∴y 1=60x (0≤x ≤10),设y 2=ax+b ,则将(0,600),(6,0)代入得出:60600a b b +=⎧⎨=⎩解得:100600a b =-⎧⎨=⎩∴y 2=﹣100x+600 (0≤x ≤6);(2)当两车相遇时,y 1=y 2,即60x=﹣100x+600解得:154x =; ∴当两车相遇时,求此时客车行驶了154小时;(3)若相遇前两车相距200 千米,则y 2﹣y 1=200,∴﹣100x+600﹣60x=200,解得:52x =,若相遇后相距200 千米,则y1﹣y2=200,即60x+100x﹣600=200,解得:x=5∴两车相距200 千米时,客车行驶的时间为52x 小时或5小时.【点评】此题主要考查了待定系数法求一次函数解析式,综合运用性质进行计算是解此题的关键,通过做此题培养了学生的分析问题和解决问题的能力,注意:分段求函数关系式,题目较好,但是有一定的难度.。
2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。
2017—2018学年度第一学期期末测试试题八年级数学(考试时间:120分钟 满分150分)请注意:1.本试卷分选择题和非选择题两部分.2.所有试题的答案写在答题纸上,写在试卷上无效.3.作图必须用2B 铅笔,且加粗加黑.第一部分 选择题(共18分)一、选择题(本大题共有6题,每题3分,共18分.在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在答题..纸.相应的...表格中...) 1.下面四个关于银行的标志中,不是..轴对称图形的是(▲)A B C D2. 若分式2926x x -+的值为0,则x 的取值为(▲)A .3B .3-C .±3 D .不存在 3.不改变分式的值,使式子221323x y x y++分子中的系数不含有分数,下列四个选项中正确的是(▲)A . 2223x y x y++ B . 22323x y x y ++ C . 22369x y x y ++ D . 22363x y x y ++4. 若2933x x x -=+⋅-,则x 的取值范围是(▲)A .x ≥3B .x ≤-3C .-3≤x ≤3D .不存在5.如图,数轴上的点A 表示的数是-1,点B 表示的数是1,CB ⊥AB 于点B ,且BC =2,以点A 为 圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为(▲)A .2.8B .22C .22-1D .221+6.一次函数(0)y kx b k =+≠的图像如图所示,则一元一次不等式0kx b -+>的的解集为(▲) A .x >-2 B .x <-2 C . 2x > D . 2x <(第5题图) (第6题图) (第14题图)第二部分 非选择题(共132分)二、填空题(本大题共有10题,每题3分,共30分.请将正确答案填写在答题卡相应的位置上.........) 7. 4的平方根为 ▲ .8. 若点(34)P -,和点()Q a b ,关于x 轴对称,则2a b += ▲ . 9. 2+18= ▲ .10.截止到2017年11月份,泰兴市人口总数达到1 212 200人,则1 212 200人精确到10 000人 应表示为 ▲ .11.泰兴某企业有m 吨煤,计划用n 天,为积极响应市政府“节能减排”的号召,现打算多用5天, 则现在比原计划每天少用煤 ▲ 吨.12.请写出一个经过点(-1,2)且y 随x 的增大而减小的一次函数表达式 ▲ . 13. 若2(23)32a a -=-,则a 的取值范围是 ▲ .14. 如图,一圆柱形容器(厚度忽略不计),已知底面半径为6cm ,高为16cm .现将一根长度为25cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是 ▲ cm . 15. 若关于x 的分式方程321x mx -=-的解是正数,则m 的取值范围为 ▲ . 16. △ABC 是等腰三角形,腰上的高为8cm ,面积为40cm 2,则该三角形的周长是 ▲ cm .三、解答题(本大题共有小题,共102分.请在答题纸指定区域作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分12分)x y y =kx +b O-2DCB A O -11(1)计算:(3223)(3223)+- ; (2)解方程:34533262x x x x -+=++.18.(本题满分8分)化简并求值:223242a a a a a a---÷++,其中32a =-.19.(本题满分8分)如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足.试说明:DE =DF .20. (本题满分8分)如图,△ABC .(1)用直尺和圆规作∠A 的平分线所在的直线1l 和边BC 的垂直平分线2l (要求:不写作法,保留画图痕迹);(2)设(1)中的直线1l 和直线2l 交于点P ,过点P 作PE ⊥AB ,垂足为点E ,过点P 作PF ⊥AC 交AC 的延长线于点F .请探究BE 和CF 的数量关系,并说明理由.21. (本题满分10分)BCAAF BE DC随着交通的飞速发展,中国的铁路运输能力得到大幅度提升.已知泰州距离南京大约180千米,乘坐动车可以比乘坐长途大巴节省40分钟.若动车平均速度比长途大巴提升了50% ,请分别求出动车和长途大巴的平均速度.22. (本题满分10分)已知实数a b c 、、满足27|52|(1)0a b c -+-+-=. (1)求a b c 、、的值;(2)判断以a b c 、、为边能否构成三角形?若能构成三角形,判别此三角形的形状,并求出三角 形的面积;若不能,请说明理由.23. (本题满分10分)如图,△ABC 中,AC =BC ,∠C =90°,点D 是AB 的中点.(1)如图1,若点E 、F 分别是AC 、BC 上的点,且AE =CF ,请判别△DEF 的形状,并说明理由; (2)若点E 、F 分别是CA 、BC 延长线上的点,且AE =CF ,则(1)中的结论是否仍然成立?请 说明理由.图1 备用图24. (本题满分10分)FCDA BECDBA如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速倒入乙容器中. 图2中,线段AB 、线段CD 分别表示容器中的水的深度h (厘米)与倒入时间t (分钟)的函数图像. (1)请说出点C 的纵坐标的实际意义;(2)经过多长时间,甲、乙两个容器中的水的深度相等? (3)如果甲容器的底面积为10cm 2,求乙容器的底面积. 图1 图225. (本题满分12分)在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式. 比如:2224233231(3)2311(31)-=-+=-⨯⨯+=-.善于动脑的小明继续探究:当a b m n 、、、为正整数时,若22(2)a b m n +=+,则有222(2)+22a b m n mn +=+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若23(3)a b m n +=+,请用含有m n 、的式子分别表示a b 、,得:a = ▲ ,b = ▲ ;(2)填空:1343-=( ▲ - ▲ 23);(3)若265(5)a m n +=+,且a m n 、、为正整数,求a 的值.26. (本题满分14分)th (分钟)(厘米)D43212015105OABC 乙甲如图,在平面直角坐标系xOy 中,点A 的坐标为(5,0),点B 的坐标为(3,2),直线111l y k x =:经过原点和点B ,直线222l y k x b =+:经过点A 和点B . (1)求直线1l ,2l 的函数关系式;(2)根据函数图像回答:不等式120y y ⋅<的解集为 ▲ ;(3)若点P 是x 轴上的一动点,经过点P 作直线m ∥y 轴,交直线1l 于点C ,交直线2l 于点D ,分别经过点C ,D 向y 轴作垂线,垂足分别为点E , F ,得长方形CDFE .①若设点P 的横坐标为m ,则点C 的坐标为(m , ▲ ),点D 的坐标为(m , ▲ );(用含字母m 的式子表示)②若长方形CDFE 的周长为26,求m 的值. 备用图1 备用图2xyl 2l 1AB Ox yl 2l 1AB Oxy l 2l 1mFEC DABO P。
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
2017—2018学年度第一学期期末检测试卷八年级数学A 卷 B 卷题号一二三2324252627总 分得分A 卷(100分)一、选择题(每小题4分,共40分)1、-8的立方根为 ( )A .2B .-2C .±2D .±42、实数, -π, , , 0, 3 , 0.1010010001……中,无理数的71132-4个数是 ( )A .2B .3C .4D .53、下列图形中是中心对称图形的为 ( )4、下列运算正确的是 ( )A. B. C. D.623a a a =⨯633x x =)(1055x x x =+3325b a ab ab -=-÷-)()(5、分解因式结果正确的是 ( )32b b a -A 、B 、C 、D 、)(22b a b -2)(b a b -))((b a b ab -+))((b a b a b -+6、通过估算,估计 76 的大小应在 ( )A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间7、下列图形中是旋转对称图形有 ( )①正三角形 ②正方形 ③三角形 ④圆 ⑤线段A.个B.个C.个D.个54328、已知a 、b 、c 是三角形的三边长,如果满足,则0108)6(2=-+-+-c b a 三角形的形状是 ( )A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形9、如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为 ( )A .5B .10C .6D .810、如图,□ABCD 中,对角线AC 和BD 交于O ,若AC =8,BD =6,则AB 长的取值范围是 ( )A .B .71<<AB 42<<AB C .D .86<<AB 43<<AB 二、填空题(每小题4分,共32分)11、的算术平方根是________;3612、.计算: .()[]=+-222322221n m mn n m 13、多项式是完全平方式,则m = .6422++mx x 14、如图,在平行四边形ABCD 中,EF∥AD,GH∥AB,EF 、GH10题图9题图相交于点O,则图中共有____ 个平行四边形.15、已知,如图,网格中每个小正方形的边长为1,则四边形ABCD 的面积为 .16、已知:等腰梯形的两底分别为和,一腰长为,则它的对cm 10cm 20cm 89角线的长为 .cm 17、□中,是对角线,且,,则ABCD BD BD BC =︒=∠70CBD =∠ADC 度.三、解答题(共28分)19、(每小题4分,共8分)因式分解(1) (2)22916y x -22242y xy x +-20、(本题8分) 先化简,再求值:,其中()()()()224171131x x x x +--++-12x =-15题图18题图A B CD 14题H G F EO21、(每小题3分,共6分)在如图的方格中,作出△ABC 经过平移和旋转后的图形:(1)将△ABC 向下平移4个单位得△;C B A '''(2)再将平移后的三角形绕点顺时针方向旋转90度。
A B C D 2017--2018学年度八年级 (上)数学期末测试一、选择题(每小题3分,共36分)1.下列平面图形中,不是轴对称图形的是 ( )2.下列运算中,正确的是( )A 、 (x 2)3=x 5B 、3x 2÷2x=xC 、 x 3·x 3=x 6D 、(x+y 2)2=x 2+y 43.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :DC =9:7,则D 到AB 边的距离为 ( )A .18B .16C .14D .124.下列各式由左边到右边的变形中,是分解因式的为( )A 、a (x + y) =a x + a yB 、x 2-4x+4=x(x -4)+4C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x 5.如图,C F BE ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE 6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .1、2、3B .2、3、4C .3、4、5D .4、5、6 7.已知m 6x =,3n x =,则2m n x-的值为( ) A 、9 B 、 12 C 、 43 D 、34 8.已知:如图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .6(第8题) (第9题) (第10题)9.如图,在∠AOB 的两边上截取AO=BO ,CO=DO ,连接AD ,BC 交于点P ,那么在结论①△AOD ≌△BOC ;②△APC ≌△BPD ;③点P 在∠AOB 的平分线上.其中正确的是 ( )A .只有①B . 只有②C . 只有①②D . ①②③ABE CF D O D C A B P A B D CE α γ β A BF E C D10.如图,D ,E 分别是△ABC 的边BC ,AC ,上的点,若AB=AC ,AD=AE ,则 ( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值11.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为( )A 、14B 、18C 、24D 、18或2412.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2二、填空题(每小题3分,共24分)13.用科学记数法表示—0.000 000 0314= .14.如图,△ABC ≌△ADE ,∠EAC =25°,则∠BAD = °15.如图,D ,E 是边BC 上的两点,AD =AE ,请你再添加一个条件: 使△ABE ≌△ACD 16.计算(-3a 3)·(-2a 2)=________________17.已知,2,522-=+=+b ab ab a 那么=-22b a . 18.等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角的度数为 °.19.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为__________cm .20.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,CF 平分∠ACB ,CF ,BE 交于点P ,AC =4cm ,BC =3cm ,AB =5cm ,则△CPB 的面积为 2cm三、解答题(本大题共60分)21.①(5分) 因式分解:33ab b a -B AC D E A C B F E P (第20题) A D B E C B D E C A (第14题) (第15题) (第19题)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a22.(5分)如图,A 、B 、C 三点表示3个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到3个村庄的距离相等,请你在图中有尺规确定学校的位置.(保留作图痕迹,不写画法)23.(7分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?24.(8分)如图,BD 平分∠MBN ,A ,C 分别为BM ,BN 上的点,且BC >BA ,E 为BD 上的一点,AE =CE ,求证 ∠BAE +∠BCE =180°C A B · · · B C NDE MAA D BE FC 25.(8分) 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.26.(10分)如图,已知AC ⊥CB ,DB ⊥CB ,AB ⊥DE ,AB =DE ,E 是BC 的中点.(1)观察并猜想BD 和BC 有何数量关系?并证明你猜想的结论.(2)若BD =6cm ,求AC 的长.27.(12分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB •交CE 于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)FG =FE .A D C B2017--2018学年度八年级 (上)数学期末测试3参考答案一、选择题(每小题3分,共36分)ACACACBBDACD二、填空题(每小题3分,共24分)13.-3.14×610-14.25°15.∠B=∠C16.65a17.918.5019.19cm20.1.5三、解答题(本大题共60分) 21.①(5分) 因式分解: 33ab b a -=ab(2a -2b )=ab(a+b)(a-b)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a 解:原式=[]{})24(32522222b a ab ab b a b a ----=ab(5a-b)=138.522.答案略23.设江水的流速为x 千米/时,则可列方程xx -=+306030100 解得:x=7.5答:江水的流速为7.5千米/时.24.提示(过E 点分别BA 与BC 的垂线,即可证明)25.∠A=36°,∠ABC=∠C=72°26.解(1)BD 和BC 相等。
2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
2017—2018学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.(7,9); 12.89-; 13.±8; 14.4; 15.九; 16.80°; 17.1.9; 18.72°. 三、解答题:(共46分)19.解:222693293x x x x x x-+-÷--+=2(3)(3)2(3)(3)3x x x x x x -+-+-- ……………………………………… 4分 = 2x -. ………………………………………… 5分 当2018x =-时,原式=-2018-2=-2020. ……………………………… 6分20.解:(1)23215)()ab ab a b --÷-( =362215a b a b a b --÷ ………………………………… 2分=321625a b ---- ………………………………… 3分 =1b. ………………………………… 4分(2)222)()()6x y x y x y y +-+--( =22222446x xy y x y y ++-+- ………………………………………6分 =24xy y -. ………………………………………7分 21.解:(1)4811m -=22(91)(91)m m +- ………………………………… 2分 =2(91)(31)(31)m m m ++-. ………………………………… 4分 (2)43242025ab ab ab -+=22(42025)ab b b -+ ………………………………… 5分=22(25)ab b - . ………………………………… 7分22.解:设第二组的攀登速度为x m/min ,根据题意,列出方程600600201.2x x+=………………………………… 3分 解得 x =20 ………………………………… 4分经检验,x =20是原方程的解. ………………………………… 5分此时,1.2x =24 ………………………………… 6分 答:第一组的速度为24m/min 第二组的速度为20m/min ;如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则第一组的速度为ah h t -m/min 第二组的速度为ah hat-m/min. …………………………… 8分 23.(1)解:∵△AOB 和△BCE 是等边三角形,∴BE =BC ,BA =BO ,∠EBC =∠ABO =∠AOB =60°,………………………… 3分 ∴∠EBC +∠ABC =∠ABO +∠ABC ,即∠EBA =∠CBO ,…………………… 4分 ∴△EBA ≌△CBO (SAS) ……………………………………… 5分 ∴∠EAB =∠AOB =60°. ……………………………………… 6分(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 保持不变 . ……………………………………… 8分24. (1)图中共有 2 个等腰三角形,共有 6 对全等三角形;………2分 (2)证明:∵AD ⊥BC ,BE ⊥AC ,∴∠AEF =∠CEF =90°, ∠BDF =∠CDF =90°,∴∠CEF =∠CDF =90°, ∠AEF =∠BDF =90°,………………3分 在△CEF 和△CDF 中90,CEF CDF EF DF CF CF ∠=∠=︒⎧⎪=⎨⎪=⎩,∴△CEF ≌△CDF (HL) ……………………………………… 5分 ∴∠ACG =∠BCG ,CE =CD . …………………………………… 6分 在△AEF 和△BDF 中90,AEF BDF EF DF EFA DFB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BDF (ASA) ……………………………………… 8分 ∴AE =BD ,∴CE +AE =CD +BD ,即AC =BC ,……………………………… 9分 又∠ACG =∠BCG ,∴CG 垂直平分AB . ……………………………………… 10分。
2017-2018学年八年级(上)期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分)1.下面实数中无理数是()A.0.3333 B.πC. D.2.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,63.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)4.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣45.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角6.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°7.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,98.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC的长度为()A.1 B.2 C.3 D.410.点A(﹣5,y1)和B(﹣2,y2)都在直线y=﹣3x+2上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y211.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.912.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.二、填空题(本题共6个小题,每小题3分,共18分)13.25的算术平方根是______.14.等边三角形ABC中,边长AB=6,则高AD的长度为______.15.当k=______时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.16.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=______.17.如图,直线L是一次函数y=kx+b的图象,b=______,k=______,当x>______时,y >0.18.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为______.三、解答题(本题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.完成下列各题(1)+(1﹣)0(2)解方程组.20.完成下列各题(1)如图1△ABC中∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于E.求证:△ACD≌△AED.(2)如图2,∠1与∠D互余,CF⊥DF.求证:AB∥CD.21.在如图所示的平面直角坐标系中,将坐标是(1,0),(0,4),(2,4),(4,4),(3,0),的点用线段依次连接起来形成一个图案.(1)在下列坐标系中画出这个图案;(2)图形中哪些点的坐标在坐标轴上,它们的坐标分别有什么特点?(3)图中的哪几个点连接的线段所在的直线与坐标轴平行?此线段上的点的纵坐标有什么特点?22.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;23.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.24.“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)25.如图,一次函数y=﹣x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为______,点B的坐标为______;(2)求OC的长度;(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.26.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.2017-2018学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.下面实数中无理数是()A.0.3333 B.πC. D.【考点】无理数.【分析】根据无理数是无限不循环小数小数,逐项判断即可.【解答】解:A、0.3333是有理数,故A选项不符合题意;B、π是无理数,故B选项符合题意;C、=4,是有理数,故C选项不符合题意;D、是有理数,故D选项不符合题意;故选B.2.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,6【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、72+242=252,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、62+82=102,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、92+122=152,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、32+42≠62,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选D.3.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点P(3,﹣5)关于y轴对称的点的坐标为(﹣3,﹣5),故选:A.4.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4【考点】二次根式的混合运算.【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.5.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.6.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.7.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,9【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.8.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选D.9.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC的长度为()A.1 B.2 C.3 D.4【考点】线段垂直平分线的性质.【分析】根据ED为AC上的垂直平分线,得出AE=CE,再根据AB=5,△BCE的周长为AB+BC=8,即可求得BC.【解答】解:∵ED为AC上的垂直平分线,∴AE=EC,∵AB=AE+EB=5,△BCE的周长=AE+BE+BC=AB+BC=8,∴BC=8﹣5=3,故选C.10.点A(﹣5,y1)和B(﹣2,y2)都在直线y=﹣3x+2上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,将点A(﹣5,y1)和B(﹣2,y2)分别代入直线方程y=﹣3x+2,分别求得y1与y2的值,然后进行比较.【解答】解:根据题意,得y1=﹣3×(﹣5)+2=17,即y1=17,y2=﹣3×(﹣2)+2=8;∵8<17,∴y1>y2.故选D.11.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.9【考点】解三元一次方程组.【分析】先用含a的代数式表示x,y,即解关于x,y的方程组,再代入3x﹣5y﹣7=0中可得a的值.【解答】解:由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7故选C.12.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.【考点】一次函数综合题.【分析】根据直线解析式分别求出点E、F的坐标,然后利用三角形的面积公式求解即可.【解答】解:当y=0时,x﹣=0,解得x=1,∴点E的坐标是(1,0),即OE=1,∵OC=4,∴EC=OC﹣OE=4﹣1=3,∴点F的横坐标是4,∴y=×4﹣=2,即CF=2,∴△CEF的面积=×CE×CF=×3×2=3.故选B.二、填空题(本题共6个小题,每小题3分,共18分)13.25的算术平方根是5.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果,算术平方根只有一个正根.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.14.等边三角形ABC中,边长AB=6,则高AD的长度为3.【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可解题.【解答】解:由等边三角形三线合一,∴D为BC的中点,∴BD=DC=3,在Rt△ABD中,AB=6,BD=3,∴AD==3.故答案为3.15.当k=﹣3时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.【考点】二元一次方程的定义.【分析】根据二元一次方程满足的条件,即只含有2个未知数,未知数的项的次数是1的整式方程,即可求得k的值.【解答】解:根据题意,得k2﹣9=0且k﹣3≠0,解得k=﹣3.故当k=﹣3时,方程(k2﹣9)x2+(k﹣3)x﹣7y=1是关于x,y的二元一次方程.故答案为:﹣3.16.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=80°.【考点】三角形的外角性质;三角形内角和定理.【分析】先根据角平分线求得∠DAE的度数,再根据∠DAE是△ABD的外角,求得∠D的度数,最后根据三角形内角和定理,求得∠ACD的度数.【解答】解:∵AD平分∠CAE,∠CAD=65°,∴∠DAE=65°,∵∠DAE是△ABD的外角,∴∠D=∠DAE﹣∠B=65°﹣30°=35°,∴△ACD中,∠ACD=180°﹣65°﹣35°=80°.故答案为:80°17.如图,直线L是一次函数y=kx+b的图象,b=﹣3,k=,当x>2时,y >0.【考点】待定系数法求一次函数解析式.【分析】根据图形确定直线所经过的两点的坐标,代入一次函数y=kx+b可求出k和b的值.【解答】如图所示直线L过(2,0),(0,﹣3),根据题意列出方程组,解得,则当x>2时,y>0.18.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).三、解答题(本题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.完成下列各题(1)+(1﹣)0(2)解方程组.【考点】解二元一次方程组;零指数幂;二次根式的混合运算.【分析】(1)根据二次根式混合运算的法则进行计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:(1)原式=+1+1=4+1+1=6;(2),①×2﹣②得,x=2,把x=2代入①得,4﹣y=,解得y=﹣1,故方程组的解为.20.完成下列各题(1)如图1△ABC中∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于E.求证:△ACD≌△AED.(2)如图2,∠1与∠D互余,CF⊥DF.求证:AB∥CD.【考点】全等三角形的判定;平行线的判定.【分析】(1)根据角平分线的性质得出DC=DE,由HL定理得出△ACD≌△AED;(2)根据平角的定义得出∠1+∠CFD+∠2=180°,再由∠1与∠D互余,CF⊥DF得∠1=∠C,从而得出AB∥CD.【解答】证明:(1)∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DC=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED,(2)∵CF⊥DF,∴∠C+∠D=90°,∵∠1与∠D互余,∴∠1=∠C,∵∠1+∠CFD+∠2=180°,∴AB∥CD.21.在如图所示的平面直角坐标系中,将坐标是(1,0),(0,4),(2,4),(4,4),(3,0),的点用线段依次连接起来形成一个图案.(1)在下列坐标系中画出这个图案;(2)图形中哪些点的坐标在坐标轴上,它们的坐标分别有什么特点?(3)图中的哪几个点连接的线段所在的直线与坐标轴平行?此线段上的点的纵坐标有什么特点?【考点】坐标与图形性质.【分析】(1)根据点的坐标标出各点,依次连接可得;(2)由图可知位于坐标轴上的点,由坐标可得其特点;(3)观察图象即可得知.【解答】解:(1)如图,(2)点(1,0)、(3,0)在x轴上,x轴上的点纵坐标为0;点(0,4)在y轴上,y轴上的点横坐标为0;(3)(0,4),(2,4),(4,4)三点所在直线与x轴平行,此线段上点的纵坐标相等,都等于4.22.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;3【考点】条形统计图;算术平均数;中位数;众数.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.【解答】解:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),众数85(分);高中部中位数80(分).(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵= [(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+2]=70,= [(70﹣85)2+2+2+(75﹣85)2+(80﹣85)2]=160.∴<,因此,初中代表队选手成绩较为稳定.23.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元)方案二需租金:5×100+4×120=980(元)方案三需租金:1×100+7×120=940(元)∵1020>980>940∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.24.“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)【考点】一次函数的应用.【分析】(1)由图可知:10﹣14小时的时间段内小明全家在旅游景点游玩,因此时间应该是4小时;(2)可根据14小时和15小时两个时间点的数值,用待定系数法求出函数的关系式;(3)可根据8小时和10小时两个时间段的数值求出函数关系式,那么这个函数关系式应该是s=90x﹣720,那么出发时的15升油,可行驶的路程是15÷=135千米,代入函数式中可得出x=9.5,因此9:30以前必须加一次油,如果刚出发就加满油,那么可行驶的路程=35÷=315千米>180千米,因此如果刚出发就加满油,到景点之前就不用再加油了.也可以多次加油,但要注意的是不要超出油箱的容量.【解答】解:(1)由图象可知,小明全家在旅游景点游玩了4小时;(2)设s=kt+b,由(14,180)及(15,120)得,解得∴s=﹣60t+1020(14≤t≤17)令s=0,得t=17.答:返程途中s与时间t的函数关系是s=﹣60t+1020,小明全家当天17:00到家;(3)答案不唯一,大致的方案为:①9:30前必须加一次油;②若8:30前将油箱加满,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量至少为25升.25.如图,一次函数y=﹣x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为(4,0),点B的坐标为(0,3);(2)求OC的长度;(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.【考点】一次函数综合题.【分析】(1)令y=0求出x的值,再令x=0求出y的值即可求出A、B两点的坐标;(2)OC=x,根据翻折变换的性质用x表示出BC的长,再根据勾股定理求解即可;(3)根据x轴上点的坐标特点设出P点的坐标,再根据两点间的距离公式解答即可.【解答】解:(1)令y=0,则x=4;令x=0,则y=3,故点A的坐标为(4,0),点B的坐标为(0,3).(每空1分)(2)设OC=x,则AC=CB=4﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,32+x2=(4﹣x)2,解得,∴OC=.(3)设P点坐标为(x,0),当PA=PB时,=,解得x=;当PA=AB时,=,解得x=9或x=﹣1;当PB=AB时,=,解得x=﹣4.∴P点坐标为(,0),(﹣4,0),(﹣1,0),(9,0).26.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM 是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN 全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.2016年9月19日第21页(共21页)。
2017-2018 学年安徽省安庆市望江县八年级(上)期末数学试卷一、选择题(本大题共8 小题,每小题4 分,满分32 分,在每小题给出的四个选项中,只有一项是符合题意的,)1.函数y=1﹣x x 的取值范围是()A.x≤1 B.x≥0 C.x>0 D.x≤0【分析】依据二次根式中的被开方数为非负数,即可得到结论.【解答】解:∵x x≥0,∴函数y=1﹣x x 的取值范围是x≥0,故选:B.【点评】本题主要考查了函数自变量的取值范围,当表达式的分母中含有自变量时,自变量取值要使分母不为零;当函数的表达式是二次根式时,自变量的取值范围必须使被开方数不小于零.2.给出下列函数,其中y 随着x 的增大而减小的函数是()A.y=﹣3+x B.y=5+0.01x C.y=3x D.y=29﹣1 3 x【分析】根据一次函数的性质可以判断哪个选项中的函数符合题意,本题得以解决.【解答】解:∵y=﹣3+x=x﹣3,y=5+0.01x=0.01x+5,y=3x,1>0,0.01>0,3>0,∴上述三个函数中y 都随x 的增大而增大,故选项A、B、C 都不符合题意,∵y=29﹣13x 中的﹣13<0,∴该函数y 随x 的增大而减小,故选项D 符合题意,故选:D.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.3.“两条直线相交只有一个交点”的题设是()A.两条直线B.相交C.只有一个交点D.两条直线相交【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【解答】解:“两条直线相交只有一个交点”的题设是两条直线相交.故选:D.【点评】要区分一个命题的题设和结论,通常把命题改写成“如果…,那么…”的形式,以“如果”开始的部分是题设,以“那么”开始的部分是结论.4.若△ABC≌△MNP,∠A=∠M,∠C=∠P,AB=4cm,BC=2cm,则NP=()A.2cm B.3cm C.4cm D.6cm【分析】根据全等三角形的对应边相等,即可解答出;【解答】解:∵△ABC≌△MNP,∠A=∠M,∠C=∠P,∴∠B=∠N,BC=NP,∵BC=2,∴NP=2.故选:A.【点评】本题主要考查了全等三角形的性质,即全等三角形的对应边相等.5.下列说法中,正确的是()A.两腰对应相等的两个等腰三角形全等B.两锐角对应相等的两个直角三角形全等C.两角及其夹边对应相等的两个三角形全等D.面积相等的两个三角形全等【分析】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.【解答】解:A、两腰对应相等的两个等腰三角形,只有两边对应相等,所以不一定全等;B、两锐角对应相等的两个直角三角形,缺少对应的一对边相等,所以不一定全等;C、两角及其夹边对应相等的两个三角形全等,符合ASA;D、面积相等的两个三角形不一定全等.故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.函数y=ax+b(a,b 为常数,a≠0)的图象如图所示,则关于x 的不等式ax+b >0 的解集是()A.x>4 B.x<0 C.x<3 D.x>3【分析】利用函数图象,写出直线y=ax+b 在x 轴上方所对应的自变量的范围即可.【解答】解:关于x 的不等式ax+b>0 的解集为x<3.故选:C.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0 的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.7.直线y=kx+b 与直线132y x=+交点的纵坐标为5,而与直线y=3x﹣9 的交点的横坐标也是5,则直线y=kx+b 与两坐标轴围成的三角形面积为()A.32B.52C.1 D.12【分析】根据题意把y=5 代入y=12x+3 可确定直线y=kx+b 与直线132y x=+的交点坐标为(4,5);把x=5 代入y=3x﹣9 可确定直线kx+b 与直线y=3x﹣9 的交点坐标为(5,6);再利用待定系数法确定直线y=kx+b 的解析式,然后分别确定该直线与坐标轴的交点坐标,再利用三角形面积公式求解.【解答】解:把y=5 代入y=12x+3 得12x+3=5,解得x=4,即直线y=kx+b 与直线132y x=+的交点坐标为(4,5);把x=5 代入y=3x﹣9 得y=6 ,即直线y=kx+b 与直线y=3x﹣9 的交点坐标为(5,6);把(4,5)和(5,6)代入y=kx+b 得4556k bk b+=⎧⎨+=⎩,解得11kb=⎧⎨=⎩,所以y=x+1,当x=0 时,y=1;当y=0 时,x+1=0,解得x=﹣1,所以直线y=x+1 与x 轴和y 轴的交点坐标分别为(﹣1,0)、(0,1),所以直线y=x+1 与两坐标轴围成的三角形面积=12×1×1=12.故选:D.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.8.已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③【分析】顶角为:36°,90°,108°的四种等腰三角形都可以用一条直线把这四个等腰三角形每个都分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:A.【点评】本题考查了等腰三角形的判定;在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形相似才有可能.二、填空题(本大题共5 小题,每小题4 分,满分20 分)9.如图中的B 点的坐标是(﹣3,2).【分析】首先写横坐标,再写纵坐标即可.【解答】解:B 点的坐标是(﹣3,2),故答案为:(﹣3,2).【点评】此题主要考查了点的坐标,关键是掌握点的坐标的表示方法.10.已知y﹣3 与x﹣1 成正比例,当x=3 时,y=7,那么y 与x 的函数关系式是y=2x+1 .【分析】设y﹣3=k(x﹣1)(k≠0).把x、y 的值代入该解析式,列出关于k 的方程,通过解方程可以求得k 的值;【解答】解:设y﹣3=k(x﹣1)(k≠0).∵当x=3 时,y=7,∴7﹣3=k(3﹣1),解得,k=2.∴y﹣3=2x﹣2∴y 与x 之间的函数关系式是y=2x+1;故答案为:y=2x+1【点评】本题考查了待定系数法求一次函数解析式.求正比例函数,只要一对x,y 的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y 的值.11.三角形三边长分别为3,1﹣2a,8,则a 的取值范围是﹣5<a<﹣2 .【分析】直接根据三角形的三边关系即可得出结论.【解答】解:∵三角形三边长分别为3,1﹣2a,8,∴8﹣3<1﹣2a<8+3,解得﹣5<a<﹣2.故答案为:﹣5<a<﹣2.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.12.如图,在△ABC 中,∠A=40°,AB=AC,AB 的垂直平分线DE 交AC 于D,则∠DBC 的度数是 30°.【分析】已知∠A=40°,AB=AC 可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.【解答】解:∵∠A=40°,AB=AC,∴∠AB C=∠ACB=70°,又∵DE 垂直平分AB,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.【点评】此题主要考查了等腰三角形的性质以及线段垂直平分线的性质.主要了解线段垂直平分线的性质即可求解.13.如图,△ABC 中,P、Q 分别是BC、AC 上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP 垂直平分RS.其中正确结论的序号是①②④ (请将所有正确结论的序号都填上).【分析】根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB 即可;在Rt△BRP 和Rt△QSP 中,只有PR=PS.无法判断△BRP≌△ QSP;连接R S,与AP 交于点D,先证△ARD≌△ASD,则RD=SD,∠ADR=∠ ADS=90°.【解答】解:①∵PR⊥AB,PS⊥AC,PR=PS,∴点P 在∠A 的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP 和Rt△A SP 中,由勾股定理得:AR2=AP2﹣PR2,A S2=AP2﹣P S2,∵AD=AD,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP 和Rt△QSP 中,只有PR=PS,不满足三角形全等的条件,故③错误;④如图,连接 R S ,与 AP 交于点 D . 在△ARD 和△ASD 中,AR AS RAP SAP AD AD =⎧⎪∠=∠⎨⎪=⎩, 所以△ARD ≌△ASD .∴RD=SD ,∠ADR=∠ADS=90°. 所以 AP 垂直平分 RS ,故④正确. 故答案为:①②④.【点评】本题考查了全等三角形的性质和判定,平行线的判定,角平分线性质的 应用,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题(本大题共 7 小题,共 68 分)解答应写明大字说明和运算步 14.(8 分)如图,AC=BD ,AB=DC .求证:∠B=∠C .【分析】边结 A D ,利用 SSS 判定△ABD ≌△DCA ,根据全等三角形的对应角相等 即证. 【解答】证明:连接 AD ,在△ABD 和△DCA 中, AB CDAC BD AD DA=⎧⎪=⎨⎪=⎩,∴△ABD ≌△DCA (SSS ), ∴∠B= ∠C .【点评】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、AAS、HL.15.(8 分)在给出的坐标系中作出要求的图象(1)作出y=2x﹣4 的图象l1;(2)作出l1 关于y 轴对称的图象l2;(3)作出l1 先向右平移2 个单位,再向上平移1 个单位的图象l3.【分析】(1)分别令x=0 求得y、令y=0 求得x,从而得出直线l1 的解析式;(2)关键关于y 轴对称画出图象即可;(3)将l1 先向右平移2 个单位,再向上平移1 个单位可得直线l3.【解答】解:(1)如图所示:(2)如图所示;(3)如图所示:【点评】此题考查一次函数与几何变换,关键是令x=0 求得y、令y=0 求得x,从而得出直线l1 的解析式.,﹣5)16.(10 分)已知直线l1 经过点A(5,0)和点B(52(1)求直线 l 1 的表达式;(2)设直线 l 2 的解析式为 y =﹣2x +2,且 l 2 与 x 轴交于点 D ,直线 l 1 交 l 2 于点 C , 求△CAD 的面积.【分析】(1)把 A 、B 的坐标代入函数解析式,即可求出答案; (2)分别求出 C 、D 的坐标,根据三角形的面积公式求出即可.【解答】解:(1)设直线 l 1 的表达式为 y=kx +b ,把 A 、B 的坐标代入得: 05552k bk b =+⎧⎪⎨-=+⎪⎩, 解得:k=2,b=﹣10,即直线 l 1 的表达式是 y=2x ﹣10;(2)y=﹣2x +2, 当 y=0 时,x=1,即 D 点的坐标为(1,0), 解方程组21022y x y x =-⎧⎨=-+⎩得:34x y =⎧⎨=-⎩,即 C 点的坐标为(3,﹣4),y 2=﹣2x +2,当 y=0 时,x=1,即 OD=1, ∵A (5,0), ∴OA=5, ∴AD=5﹣1=4,∴△CAD 的面积是1442⨯⨯=8.【点评】本题考查了两函数的相交问题、一次函数的性质、用待定系数法求一次函数的解析式等知识点,能求出函数的解析式是解此题的关键.17.(10 分)已知:如图,P 是OC 上一点,PD⊥OA 于D,PE⊥OB 于E,F、G 分别是OA、OB 上的点,且PF=PG,DF=EG.求证:OC是∠AOB 的平分线.【分析】利用“HL”证明Rt△PFD 和Rt△PGE 全等,根据全等三角形对应边相等可得PD=PE,再根据到角的两边距离相等的点在角的平分线上证明即可.【解答】证明:在Rt△PFD 和Rt△PGE 中,PF PG DF EG=⎧⎨=⎩,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P 是OC 上一点,PD⊥OA,PE⊥OB,∴OC 是∠AOB 的平分线.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并求出全等三角形是解题的关键.18.(10 分)(1)叙述并证明三角形内角和定理(证明用图1);(2)如图2 是七角星形,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数.【分析】(1)要证明三角形的三个内角的和为180°,可以把三角形三个角转移到一个平角上,利用平角的性质证明即可.(2)先根据三角形外角的性质得出∠A+∠E=∠1,∠G+∠D=∠2,∠C+∠F=∠3,再根据三角形的内角和是180°进行解答.【解答】(1)定理:三角形的内角和是180°.已知:△ABC 的三个内角分别为∠BAC,∠B,∠C;求证:∠BAC+∠B+∠C=180°.证明:如图,过点A 作直线MN,使MN∥BC,,∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)∵∠MAB+∠NAC+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换)∴∠BAC+∠B+∠C=180°.(2)解:如图2,∵∠A+∠E=∠DME,∠G+∠D=∠ANG,∠C+∠F=∠BHC,∵∠DME+∠ANG=∠BPH,∴∠A+∠E+∠G+∠D=∠BPH,∵∠B+∠BHC+∠BPH=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.【点评】本题考查了平行线的性质,平角的定义,三角形外角的性质及三角形的内角和,熟知三角形的内角和是180 度是解答此题的关键.19.(10 分)如图,△ABC 为等边三角形,D 为边BA 延长线上一点,连接CD,以CD 为一边作等边三角形CDE,连接A E.(1)求证:△CBD≌△CAE.(2)判断AE 与BC 的位置关系,并说明理由.【分析】(1)根据等边三角形各内角为60°和各边长相等的性质可证∠ECA=∠DC B,A C=B C,EC=DC,即可证明△EC A≌△DC B;(2)根据△ECA≌△DCB 可得∠EAC=60°,根据内错角相等,平行线平行即可解题.【解答】证明:(1)∵△ABC、△DCE 为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=∠DBC=60°,∵∠ACD+∠ACB=∠DCB,∠ECD+∠ACD=∠ECA,∴∠ECA=∠DCB,在△ECA 和△DCB中,AC BCECA DCBEC DC=⎧⎪∠=∠⎨⎪=⎩,∴△ECA≌△DCB(SAS);(2)∵△ECA≌△DCB,∴∠EAC=∠DBC=60°,又∵∠ACB=∠DBC=60°,∴∠EAC=∠ACB=60°,∴AE∥BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ECA≌△DCB 是解题的关键.20.(12 分)一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x 小时后,记客车离甲地的距离为y1 千米,轿车离甲地的距离为y2 千米,y1、y2 关于x 的函数图象如图.(1)根据图象,直接写出y1、y2 关于x 的函数关系式;(2)当两车相遇时,求此时客车行驶的时间;(3)两车相距 200 千米时,求客车行驶的时间.【分析】(1)根据图象得出点的坐标,进而利用待定系数法求一次函数解析式得 出即可;(2)当两车相遇时,y 1=y 2,进而求出即可;(3)分别根据若相遇前两车相距 200 千米,则 y 2﹣y 1=200,若相遇后相距 200千米,则 y 1﹣y 2=200,分别求出即可.【解答】解:(1)设 y 1=kx ,则将(10,600)代入得出:600=10k , 解得:k=60,∴y 1=60x (0≤x ≤10),设 y 2=ax +b ,则将(0,600),(6,0)代入得出:60600a b b +=⎧⎨=⎩解得:100600a b =-⎧⎨=⎩∴y 2=﹣100x +600 (0≤x ≤6);(2)当两车相遇时,y 1=y 2,即 60x=﹣100x +600解得:154x =; ∴当两车相遇时,求此时客车行驶了154小时;(3)若相遇前两车相距 200 千米,则 y 2﹣y 1=200,∴﹣100x +600﹣60x =200, 解得:52x =,若相遇后相距200 千米,则y1﹣y2=200,即60x+100x﹣600=200,解得:x=5∴两车相距200 千米时,客车行驶的时间为52x 小时或5 小时.【点评】此题主要考查了待定系数法求一次函数解析式,综合运用性质进行计算是解此题的关键,通过做此题培养了学生的分析问题和解决问题的能力,注意:分段求函数关系式,题目较好,但是有一定的难度.。