随机变量及其分布列.版块三.离散型随机变量的期望与方差3.学生版
- 格式:pdf
- 大小:299.70 KB
- 文档页数:7
1. 离散型随机变量及其分布列⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列将离散型随机变量X 所有可能的取值x 与该取值对应的概率p (1,2,,)i n =列表表示:X 1x 2x … i x … n x P1p2p…i p…n pX 的分布列.2.几类典型的随机分布⑴两点分布如果随机变量X 的分布列为X 1 0 P p q其中01p <<,1q p =-X 服从参数为p 的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布.X 1P 0.8 0.2两点分布又称01-布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.知识内容数学期望⑶二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)kk n k n n P k p p -=-(0,1,2,,)k n =. 2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =.于是得到由式0111()CC CC nn n k kn k nn nnn nq p pq pq p q p q--+=++++ 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑷正态分布1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑷若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.3.离散型随机变量的期望与方差1.离散型随机变量的数学期望定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++,叫做这个离散型随机变量X 的均值或数学期望(简称期望).离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平. 2.离散型随机变量的方差一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-叫做这个离散型随机变量X 的方差.离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).()D X 叫做离散型随机变量X 的标准差,它也是一个衡量离散型随机变量波动大小的量.3.X 为随机变量,a b ,为常数,则2()()()()E aX b aE X b D aX b a D X +=++=,; 4. 典型分布的期望与方差:⑴二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np .⑵二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑶超几何分布:若离散型随机变量X 服从参数为N M n ,,的超几何分布,则()nME X N=,2()()()(1)n N n N M M D X N N --=-.4.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.5.条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =).【例1】 投掷1枚骰子的点数为ξ,则ξ的数学期望为( )A .3B .3.5C .4D .4.5【例2】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .40【例3】 从123456,,,,,这6个数中任取两个,则两数之积的数学期望为 .【例4】 一射手对靶射击,直到第一次命中为止,每次命中率为0.6,现共有4颗子弹,命中后尚余子弹数目ξ的期望为( )A .2.44B .3.376C .2.376D .2.4【例5】 一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、()01c ∈,),已知他投篮一次得分的数学期望为2(不计其它得分情况),则ab 的最大值为( )A .148B .124C .112D .16【例6】 一家保险公司在投保的50万元的人寿保险的保单中,估计每一千保单每年有15个理赔,若每一保单每年的营运成本及利润的期望值为200元,试求每一保单的保费.【例7】 甲乙两人独立解出某一道数学题的概率依次为1212()P P P P >,,已知该题被甲或乙解出的概率为0.8,甲乙两人同时解出该题的概率为0.3,求:⑴12P P ,; ⑵解出该题的人数X 的分布列及EX .典例分析【例8】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是12,且面试是否合格互不影响.求签约人数ξ的数学期望.【例9】某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:⑴⑵已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.【例10】某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.【例11】某同学如图所示的圆形靶投掷飞镖,飞镖落在靶外(环数记为0)的概率为0.1,飞镖落在靶内的各个点是椭机的.已知圆形靶中三个圆为同心圆,半径分别为30cm、20cm、10cm,飞镖落在不同区域的环数如图中标示.设这位同学投掷一次一次得到的环数这个随机变量X,求X的分布列及数学期望.8910【例12】某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.⑴求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A;⑵求η的分布列及期望Eη.【例13】学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且7Pξ>=.(0)10⑴求文娱队的人数;⑵写出ξ的概率分布列并计算期望.【例14】一接待中心有A、B、C、D四部热线电话.已知某一时刻电话A、B占线的概率为0.5,电话C、D占线的概率为0.4,各部电话是否占线相互之间没有影响.假设该时刻有X部电话占线,试求随机变量X的概率分布和它的期望.【例15】某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.40.50.6,,,且客人是否游览哪个景点互不影响,设X表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.求X的分布及数学期望.【例16】某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45、35、25,且各轮问题能否正确回答互不影响.⑴求该选手被淘汰的概率;⑵该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.(注:本小题结果可用分数表示)【例17】在某次测试中,甲、乙、丙三人能达标的概率分别为0.4,0.5,0.8,在测试过程中,甲、乙、丙能否达标彼此间不受影响.⑴求甲、乙、丙三人均达标的概率;⑵求甲、乙、丙三人中至少一人达标的概率;⑶设X表示测试结束后达标人数与没达标人数之差的绝对值,求X的概率分布及数学期望EX.【例18】在1,2,3,…,9这9个自然数中,任取3个数.⑴求这3个数中恰有1个是偶数的概率;⑵设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【例19】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为12,乙、丙面试合格的概率都是13,且面试是否合格互不影响.求:⑴至少有1人面试合格的概率;⑵签约人数X的分布列和数学期望.【例20】某公司“咨询热线”电话共有8路外线,经长期统计发现,在8点到10点这段时间内,外线电话同时打入情况如下表所示:①求至少一种电话不能一次接通的概率;②在一周五个工作日中,如果至少有三个工作日的这段时间(8点至10点)内至少一路电话不能一次接通,那么公司的形象将受到损害,现用该事件的概率表示公司形象的“损害度”,求上述情况下公司形象的“损害度”.⑵求一周五个工作日的这段时间(8点至10点)内,电话同时打入数ξ的期望.【例21】某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率,如图.(例如:A C D→→算作两个路段:路段AC发生堵车事件的概率为110,路段CD发生堵车事件的概率为115).记路线A C F B→→→中遇到堵车次数为随机变量X,求X的数学期望()E X.11510【例22】口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球;求在前三次摸球中,甲摸得红球的次数ξ的分布列及数学期望.【例23】 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X 表示甲、乙两人摸球后获得的奖金总额.求:⑴X 的概率分布;⑵X 的期望.【例24】 如图所示,甲、乙两只小蚂蚁分别位于一个单位正方体的A 点和1C 点处,每只小蚂蚁都可以从每一个顶点处等可能地沿各条棱向每个方向移动,但不能按原路线返回.如:甲在A 时可沿AB ,AD ,1AA 三个方向移动,概率都是13,到达B 点时,可沿BC ,1BB 两个方向移动,概率都是12.已知小蚂蚁每秒钟移动的距离为1个单位.⑴如果甲、乙两只小蚂蚁都移动1秒,则它们所走的路线是异面直线的概率是多少?⑵若乙蚂蚁不动,甲蚂蚁移动3秒后,甲、乙两只小蚂蚁间的距离的期望值是多少?D1C1(乙)B1A(甲)B CDA1【例25】从集合{}12345,,,,的所有非空子集....中,等可能地取出一个.⑴记性质:γ集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;⑵记所取出的非空子集的元素个数为ξ,求ξ的分布列和数学期望Eξ.【例26】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B 肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12.同样也假定D受A、B和C感染的概率都是13.在这种假定之下,B、C、D中直接..受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).【例27】⑴用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?⑵用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.求恰有两个区域用红色鲜花的概率.⑶条件同⑵,记花圃中红色鲜花区域的块数为X,求它的分布列及其数学期望EX.图二图一【例28】有甲、乙两个箱子,甲箱中有6张卡片,其中有2张写有数字0,2张写有数字1,2张写有数字2;乙箱中有6张卡片,其中3张写有数字0,2张写有数字1,1张写有数字2.⑴如果从甲箱中取出1张卡片,乙箱中取出2张卡片,那么取得的3张卡片都写有数字0的概率是多少?⑵从甲、乙两个箱子中各取一张卡片,设取出的2张卡片数字之积为X,求X的分布列和期望.【例29】 A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛的统计,对阵队员之间胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分.设A 队、B 队最后总分分别为ξη,.求ξη,的期望.【例30】 连续抛掷同一颗均匀的骰子,令第i 次得到的点数为i a ,若存在正整数k ,使126k a a a ++=,则称k 为你的幸运数字.⑴求你的幸运数字为4的概率;⑵若1k =,则你的得分为6分;若2k =,则你的得分为4分;若3k =,则你的得分为2分;若抛掷三次还没找到你的幸运数字则记0分.求得分ξ的分布列和数学期望.【例31】 在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A 处的命中率1q 为0.25,在B 处的命中率为2q ,该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为⑴ 2⑵ 求随机变量ξ的数学期望E ξ;⑶ 试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.【例32】 在奥运会射箭决赛中,参赛号码为1~4号的四名射箭运动员参加射箭比赛.⑴通过抽签将他们安排到1~4号靶位,试求恰有两名运动员所抽靶位号与其参赛号码相同的概率;⑵记1号、2号射箭运动员射箭的环数为ξ(ξ所有取值为01210,,,,)的概率分别为1P 、2P .根据教练员提供的资料,其概率分布如下表:②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.【例33】某人有10万元,准备用于投资房地产或购买股票,如果根据盈利表进行决策,那么,合理的投资方案应该是哪种?【例34】甲、乙两名工人加工同一种零件,分别检测5个工件,结果分别如下:试比较他们的加工水平.【例35】一软件开发商开发一种新的软件,投资50万元,开发成功的概率为0.9,若开发不成功,则只能收回10万元的资金,若开发成功,投放市场前,召开一次新闻发布会,召开一次新闻发布会不论是否成功都需要花费10万元,召开新闻发布会成功的概率为0.8,若发布成功则可以销售100万元,否则将起到负面作用只能销售60万元,而不召开新闻发布会则可销售75万元.⑴求软件成功开发且成功在发布会上发布的概率.⑵如果开发成功就召开新闻发布会的话,求开发商的盈利期望.⑶如果不召开新闻发布会,求开发商盈利的期望值,并由此决定是否应该召开新闻发布会.【例36】某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用.单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85.若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)【例37】 最近,李师傅一家三口就如何将手中的10万块钱投资理财,提出了三种方案:第一种方案:将10万块钱全部用来买股票.据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为12; 第二种方案:将10万块钱全部用来买基金.据分析预测:投资基金一年可能获利20%,也可能损失10%,也可能不赔不赚,且三种情况发生的概率分别为311555,,; 第三种方案:将10万块钱全部存入银行一年,现在存款利率为4%,存款利息税率为5%.针对以上三种投资方案,请你为李师傅家选择一种合理的理财方法,并说明理由.【例38】 某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令(12)i i ξ=,表示方案i实施两年后柑桔产量达到灾前产量的倍数.⑴写出12ξξ,的分布列;⑵实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?⑶不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?【例39】某企业准备投产一批特殊型号的产品,已知该种产品的成本C与产量q的函数关系式为3232010(0)3qC q q q=-++>,该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格p与产量q的函数关系式如下表所示:123k q ,而市场前景无法确定的利润. ⑴分别求利润123L L L ,,与产量q 的函数关系式;⑵当产量q 确定时,求期望k E ξ;⑶试问产量q 取何值时,市场无法确定的利润取得最大值.【例40】 某电器商由多年的经验发现本店出售的电冰箱的台数ξ是一个随机变量,它的分布列1()(1212)12P k ξξ===,,,,设每售出一台电冰箱,该台冰箱可获利300元,若售不出则囤积在仓库,每台需支付保管费100元/月,问:该电器商月初购进多少台电冰箱才能使自己的月平均收入最大?【例41】 某鲜花店每天以每束2.5元购入新鲜玫瑰花并以每束5元的价格销售,店主根据以往的销售统计得到每天能以此价格售出的玫瑰花数ξ的分布列如表所示,若某天所购进的玫瑰花未售完,则当天未售出的玫瑰花将以每束1.5元的价格降价处理完毕.⑴若某天店主购入玫瑰花40束,试求该天其从玫瑰花销售中所获利润的期望; ⑵店主每天玫瑰花的进货量x (3050x ≤≤,单位:束)为多少时,其有望从玫瑰花销售中获取最大利润?21。
离散型随机变量的分布列与期望和方差考点一:离散型随机变量的分布列 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量 (2)方差:称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,其算术平方根()X D 为随机变量X 的标准差.(3)均值与方差的性质 1.E(aX +b)=aE(X)+b. 2.D(aX +b)=a2D(X)(a ,b 为常数). 考点二:超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k=0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,如果随机变量X 的分布列具有下表形式,考点三:二项分布二项分布;在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 基础练习1.在某公司的两次投标工作中,每次中标可以获利14万元,没有中标损失成本费8000元.若每次中标的概率为0.7,每次投标相互独立,设公司这两次投标盈利为X 万元,则EX =( ) A .18.12B .18.22C .19.12D .19.222.设服从二项分布B (n ,p )的随机变量X 的期望与方差分别是10和8,则n ,p 的值分别是( ) A .B .C .D .3.已知X 的分布列为X ﹣1 0 1 P且Y =aX +3,E (Y )=,则a 为( ) A .1B .2C .3D .44.设随机变量X ∼N(1,δ2),且P(X>2)=51,则P(0<X<1)=___.5.已知离散型随机变量x 的取值为0,1,2,且()()(),2,1,410b x p a x p x p ======若()1=X E ,则 ()=X D .6.若随机变量,且,,则当 .(用数字作答)7.已知随机变量X 满足(23)7E X +=,(23)16D X +=,则下列选项正确的是( ) A .7()2E X =,13()2D X = B .()2E X =,()4D X = C .()2E X =,()8D X = D .7()4E X =,()8D X = 超几何分布VS 二项分布1.“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望;(2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望.2.某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50~(,)X B n p 52EX =54DX =(1)P X ==条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:(1)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(2)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X ,求x 的分布列和数学期望.3.假设某种人寿保险规定,投保人没活过65岁,保险公司要赔偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概率都为0.9,随机抽取4个投保人,设其中活过65岁的人数为X ,保险公司支出给这4人的总金额为Y 万元(参考数据:40.90.6561=) (1)指出X 服从的分布并写出Y 与X 的关系; (2)求(22)≥P Y .(结果保留3位小数)考点四:正太分布1.已知随机变量ξ服从正态分布)9,5(N ,若)2()2(-<=+>c p c p ξξ,则c 的值为( )A .4B .5C .6D .72.已知随机变量服从正态分布即,且,若随机变量,则( )A .0.3413B .0.3174C .0.1587D .0.15863.已知随机变量X ∼N (2,1),其正态分布密度曲线如图所示,若向长方形OABC 中随机投掷1点,则该点恰好落在阴影部分的概率为( )A .0.1359B .0.7282C .0.8641D .0.932054.某市高三年级第二次质量检测的数学成绩X 近似服从正态分布N (82,σ2),且P (74<X <82)=0.42.已知我市某校有800人参加此次考试,据此估计该校数学成绩不低于90分的人数为( ) A .64B .81C .100D .1215.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .X 2~(,)X N μσ()0.6826P X μσμσ-<≤+=~(5,1)X N (6)P X ≥=①利用该正态分布,求(187.8212.2)P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求()E X .12.2≈.若2(,)Z N μσ~,则()0.6826P Z μσμσ-<<+=,(22)P Z μσμσ-<<+0.9544=.。
离散型随机变量的分布列、期望、方差复习指导学习要求:了解随机变量,离散型随机变量的意义,会求简单的离散型随机变量,掌握离散型随机变量的分布列,会求出期望、方差。
知识总结:一、离散型随机变量的分布列1.随机变量:如果一个随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,可以按一定次序列出的随机变量叫做离散型随机变量,常用ξ,等希腊字母表示2.离散型随机变量的分布列:若离散型随机变量ξ的一切可能取值为:a1, a2, ……, a n, ……, 相应取这些值的概率为:p1,P2,……, P n, ……,则称下表:为离散型随机变量ξ的概率分布列,简称ξ的分布列。
离散型随机变量的分布列具有的两个性质:①P i0(i=1,2,……,n,……) ②P1+P2+……+P n+……=1 一种典型的离散型随机变量的分布列:二项分布:设重复独立地进行n次随机试验A,在每一次试验中,P(A)=P(0<P<1),ξ为n次试验中A 发生的次数,则ξ的分布列为:称ξ服从二项分布,记作ξ~B(n,P)注:是二项展开式[P+(1-P)]n=++……++……+中的第k+1项。
P1+P2+……+P n=++……+=[P+(1-P)]n=1。
二、离散型随机变量的期望与方差1.期望:设离散型随机变量ξ的分布列是:ξa1a2……a n……p p1p2……p n……称a1p1+a2p2+……+a n p n+……为ξ的数学期望,简称期望,记作Eξ。
期望的性质:①若=aξ+b (a,b均为常数), 则E=aEξ+b。
②E(ξ1+ξ2)=Eξ1+Eξ2。
③若ξ~B(n, p), 则Eξ=np注:期望Eξ是反映随机变量ξ集中趋势的指标,也反映了ξ取值的平均水平。
2.方差:设离散型随机变量ξ的分布列是ξa1a2……a n……p p1p2……p n……称(a1-Eξ)2p1+(a2-Eξ)2p2+……+(a n-Eξ)2p n+……为随机变量ξ的均方差,简称方差,记作Dξ。
高三数学离散型随机变量的分布列、期望与方差【本讲主要内容】离散型随机变量的分布列、期望与方差求解某些简单的离散型随机变量的分布列、期望与方差.【知识掌握】【知识点精析】1. 离散型随机变量的分布列(1)随机变量的概念:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.随机变量常用希腊字母ξ、η表示.例如课本上的两个例子:①某人射击一次可能出现的命中环数ξ是一个随机变量,ξ可取值为:0,1,2, (10)②某次产品检验所取4件产品中含有的次品数η是一个随机变量,η可取值为:0,1,2,3,4.③一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球, 被取出的球的最大数ξ是一个随机变量,ξ可取值为3,4,5.ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或 2,4,5或3,4,5.随机变量最常见的两种类型:①离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.②连续型随机变量:如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量.(2)离散型随机变量的分布列:设离散型随机变量ξ的可能取值为x 1,x 2,…,x i ,…,ξ取每一个值x i (i =1,2,…)的概率P (=x i )=p i ,则表例如抛掷一个色骰子得到的点数ξ可能取值为1,2,3,4,5,6.ξ取各值的概率都等于61.此表从概率的角度指出了随机变量在随机试验中取值的分布状况. 离散型随机变量的分布列具有下列性质: ①,2,1(0=≥i p i ...);②p 1+p 2+ (1)一般地,离散型随机变量在某一取值X 围内取值的概率等于它取值这个X 围内各值的概率之和.(3)常见的离散型随机变量的分布①0—1例如,任意抛掷一枚硬币的实验结果:ξ=0表示正面向上;ξ=1表示正面向下.②二项分布:如果在一次试验中某事件A发生的概率是p ,那么在n 次独立重复试验中事件A恰好发生k 次的概率是P (ξ=k ).kn k k n qp C )k (P -==ξ,其中k =1,2,3,…,n ,q =1-p ,于是得到随机变量ξ的概率分布如下:kn k k n qp C -=b(k ;n ,p). 例如,抛掷一个骰子,得到任一确定的点数(比如2点)的概率是61.重复抛掷骰子n 次,得到此确定点数的次数ξ服从二项分布,ξ~B(n ,61) 显然,当n =1时,二项分布即为0—1分布. ③几何分布:在独立重复试验中,某次事件第一次发生时所做试验的次数ξ也是一个取值为正整数的离散型随机变量.“ξ=k ”表示在第k 次独立试验时事件第一次发生.如果把第k 次试验时事件A 发生记为A k ,事件A 不发生记为k A ,p A P k =)(,q A P k =)(,那么p q A P A P A P A P A P A A A A A P k P k k k k k 113211321)()()()()()()(---==== ξ.(k =1,2,3,…)于是得到随机变量ξ的概率分布如下:,…,分布列的表达式可有如下几种:(1)表格形式;(2)一组等式;(3)压缩为一个带“i ”的等式.2. 离散型随机变量期望和方差(1则称E ξ=∑=1i x i p i, ++++=n n p x p x px 2211.为ξ的数学期望或平均数、均值,数学期望又简称为期望.它反映了离散型随机变量取值的平均水平.则其n 次射击的环数ξ的期望为E ξ=4×0.02+5×0.04+…+10×0.28=8.32若b a +=ξη其中a ,b 是常数,则η也是随机变量.因为P (b ax i +=η)=P (ξ=x i )i =1,2,3, …所以η于是E η=(a x 1+b )p 1+(a x 2+b )p 2+…+(a x n +b )p n +…=a (1p 1+2p 2+…+x n p n +…)+b (p 1+p 2+…+p n +…)aE ξ+b即(2那么,把 D ξ=∑∞=1(i x i -E ξ)2p i =(x 1-E ξ)2·p 1+(x 2-E ξ)2·p 2+…+(x n - E ξ)2·pn+…叫做随机变量ξ的均方差,简称方差.其中E ξ是随机变量ξ的期望.D ξ的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.其中标准差与随机变量本身有相同的单位.两个计算方差的简单公式(不要求证明):①D(a ξ+b)=a 2D ξ.②如果ξ~B(n ,p),那么D ξ=npq ,这里q =1-p说明:在实际问题中,人们常关心随机变量的特征,而不是随机变量的具体值.离散型随机变量的期望和方差都是随机变量的特征数,期望反映了随机变量的平均取值,方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.其中标准差与随机变量本身有相同的单位,在实际中应用更广泛.【解题方法指导】例1.盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.(I )求随机变量ξ的分布列; (II )求随机变量ξ的期望ξE .解:(I )由题意可得,随机变量ξ的取值是2、3、4、6、7、10. 随机变量ξ的概率分布列如下:ξE =2×0.09+3×0.24+4×0.16+6×0.18+7×0.24+10×0.09=5.2.例2.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率.解:(Ⅰ)依题意,ξ可能取的值为0,1,2,3.3,2,1,0,)(310346=⋅==-k C C C k P k k ξ.甲答对试题数ξ的数学期望 E ξ=0×301+1×103+2×21+3×61=59. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32,P(B)=310381228C C C C +=1205656+=1514. 方法一:因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P(B A ⋅)=P(A )P(B )=(1-32)(1-1514)=451. ∴甲、乙两人至少有一人考试合格的概率为 P =1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:因为事件A 、B 相互独立,∴甲、乙两人至少有一个考试合格的概率为P =P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 说明:本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力.【考点突破】【考点指要】离散型随机变量是高考的重点内容,它是随机事件的概率的深化,它的本质是某些随机试验结果的数量化.离散型随机变量的分布列整体地反映了随机变量所有可能的取值及其相应值的概率P (ξ=x i )=P i .期望反映了离散型随机变量取值的平均水平,方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度.离散型随机变量的期望与方差都建立在分布列的基础之上.方差又与期望紧密相连,求期望与方差的关键是求ξ的分布列.期望与方差是随机变量的最重要的两个特征数,它们所表示的意义具有很大的实用价值,所以成为高考的热点之一.历年高考中所占的分值为5~13分,多以填空题和解答题的形式出现.【典型例题分析】例1. (2005卷17题)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32. (I )记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ; (II )求乙至多击中目标2次的概率;(III )求甲恰好比乙多击中目标2次的概率.分析:本题主要考查概率的内容,考查点有随机事件的分布列、互斥事件的概率及相互独立事件的概率等.解:(I )P (ξ=0)=03311()28C =,P (ξ=1)=13313()28C =, P (ξ=2)=23313()28C =,P (ξ=3)=33311()28C =.ξE ξ=130123 1.58888⋅+⋅+⋅+⋅=, (或E ξ=3·2=1.5); (II )乙至多击中目标2次的概率为1-3332()3C =1927;(III )设甲恰比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件B 1,甲恰击中目标 3次且乙恰击中目标 1次为事件B 2,则A =B 1+B 2,B 1,B 2为互斥事件.1231121()()()8278924P A P B P B =+=⋅+⋅=所以,甲恰好比乙多击中目标2次的概率为124.例2. (2004某某卷理18题)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯(允许通行)的概率为34,遇到红灯(禁止通行)的概率为14.假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求:(Ⅰ)ξ的概率分布列及期望E ξ;(Ⅱ)停车时最多已通过3个路口的概率. 解:(I )ξ的所有可能值为0,1,2,3,4用A K 表示“汽车通过第k 个路口时不停(遇绿灯)”,则P (A K )=4321,,,),4,3,2,1(43A A A A k 且=独立.从而ξ有分布列:ξ 01234P41 16364925627256812562564256364216140=⨯+⨯+⨯+⨯+⨯=ξE (II )256175256811)4(1)3(=-==-=≤ξξP P 答:停车时最多已通过3个路口的概率为256175.【综合测试】一. 选择题1.随机变量ξ的分布列如下,则m = ( )ξ1 2 3 4P41 M31 61 A.31 B. 2 C. 6 D. 42.某射手射击时击中目标的概率为0.7,设4次射击击中目标的次数为随机变量ξ,则P (ξ≥1)等于()A. 0.9163B. 0.0081C. 0.0756D. 0.99193. 某一计算机网络,有n 个终端,每个终端在一天中使用的概率p ,则这个网络中一天平均使用的终端个数为 ()A. np(1-p)B. npC. nD. p(1- p) 4.设随机变量ξ~B(n ,p),且E ξ=1,D ξ=1.8,则( )A. n =8,p =0.2B. n =4,p =0.4C. n =5,p =0.32D. n =7,p =0.45二. 填空题5.重复抛掷一枚筛子5次得到点数为6的次数记为ε,则P(ε>3)=______________.6. 某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示) 7. 有一批数量很大的商品的次品率为100,从中任意地连续取出200件商品,设其中次品数为ξ,则E ξ=__________, D ξ=_____________.8. 在有奖摸彩中,一期(发行10000X 彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一X 彩票的合理价格是_______________元.三. 解答题9.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?10. A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示: A 机床B 机床问:哪一台机床加工质量较好?11. 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(Ⅰ)求ξ的分布列;(Ⅱ)求ξ的数学期望;(Ⅲ)求“所选3人中女生人数1≤ξ”的概率.12.(2004年高考全国卷Ⅳ(19))某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.(Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望;(Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率.参考答案一. 选择题1. D 解析:∵41+m +31+61=1 ∴m =.∴选D 2. D 解析:∵P (ξ≥1)=1-P(ξ=0)=1-(1-0.7)4=1-0.0081=0.9919. ∴选D3. B 解析:设这个网络中一天使用的终端个数为ξ,则ξ~B(n ,p),∴E ξ=np .∴选B .4. A 解析:由E ξ= np ,D ξ=np(1-p) 可知⎩⎨⎧-==)1(28.16.1p np np ∴⎩⎨⎧==2.08p n ∴选A二. 填空题 5.388813解:依题意,随机变量ε~B⎪⎭⎫ ⎝⎛61,5.∴P(ε=4)=6561C 445⨯⎪⎭⎫ ⎝⎛=777625,P(ε=5)=55C 561⎪⎭⎫ ⎝⎛=77761. ∴P(ε>3)=P(ε=4)+P(ε=5)=388813. 6. 190119解:属于同一个国家的概率为190712202524211=++C C C C , 所求概率为 190119190711=-,或:所求概率为 19011954511411220=⨯+⨯+⨯C 7. 2,1.98解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξ~B(200,1%). 因为E ξ=n ξ,D ξ=npq ,这里n =200,p =1%,q =99%, 所以,E ξ=200⨯1%=2,D ξ=200%99%1⨯⨯=1.98.8. 0.2解:设一X 彩票中奖额为随机变量ξ,显然ξ所有可能取得的值为0,5,25,100.依题意,可得ξ的分布列为∴E ξ=0400⨯2.0200010050025505=⨯+⨯+⨯+ 答:一X 彩票的合理价格是0.2元.三. 解答题9. 答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”.所以,“ξ>4”表示第一枚为6点,第二枚为1点,10.解:E ξ1 =0×0.7+1×0.2+2×0.06+3×0.04=0.44 E ξ2 =0×0.8+1×0.06+2×0.04+3×0.10=0.44 它们的期望相同,再比较它们的方差.D ξ1 =(0-0.44)2×0.7+(1-0.44) 2×0.2+(2-0.44) 2×0.06+(3-0.44) 2×0.04=0.6064,D ξ2 =(0-0.44)2×0.8+(1-0.44) 2×0.06+(2-0.44) 2×0.04+(3-0.44) 2×0.10 = 0.9264,∴D ξ1<D ξ2,故A 机床加工较稳定、质量较好11. (Ⅰ)解:ξ可能取的值为0,1,2.2,1,0,)(36342=⋅==-k C C C k P k k ξ. 所以,ξ的分布列为(Ⅱ)解:由(1),ξ的数学期望为1525150=⨯+⨯+⨯=ξE(Ⅲ)解:由(1),“所选3人中女生人数1≤ξ”的概率为54)1()0()1(==+==≤ξξξP P P12. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008,P (ξ=-100)=3×0.22×0.8=0.096,P (ξ=100)=3×0.2×0.82=0.384,P (ξ=300)=0.83=0.512, 所以ξ的概率分布为E ξ=(-300)×0.008+(-100)×0.096+100×0.384+300×0.512=180. (Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.。
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望1.定义一般地,如果离散型随机变量的分布列为2.意义:反映离散型随机变量取值的平均水平。
nnii3.性质:若X是随机变量,Y=aX+b,其中a,b是实数,则Y也是随机变量,且E(aX+b)=aE(X)+b二、离散型随机变量的方差1.定义一般地,如果离散型随机变量的分布列为则称D(X)=工(x—E(X))2p为随机变量的方差。
iii=12.意义:反映离散型随机变量偏离均值的程度。
3.性质:D(aX+b)=a2D(X)三、二项分布的均值与方差如果X〜B(n,p),则E(X)=np,D(X)=np(1-p)。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数§的数学期望为()A.0.6B.1C.3.5D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分•小王选对每题的概率为0.8,则其第一大题得分的均值为•【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元•在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X W n)20.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】 1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为E ,则E (勺等于() A .0.765B .1.75 C .1.765D .0.22 2•某射手射击所得环数d 的分布列如下: 3.已知随机变量d 的分布列为贝y x =,P (l W d <3)=,E (d )=. 4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1) 求三种粽子各取到1个的概率; (2) 设X表示取到的豆沙粽个数,求X 的分布列与数学期望. 题型二离散型随机变量方差的计算 【例1】若X 的分布列为 其中p W (0,1),贝%) A .D (X )=p 3B. C .D (X )=p —p 2D. D (X )=p 2 D (X )=pq 2【例2】设随机变量E 的分布列为P (^=k )=cA (^k\i^n-k ,k =o,1,2,…,n ,且E (^)=24,则D ©的值为()A .8 c? C.gB .12 D .16【例3】若D©=1,则D(f-D(f))=.3【例4】若随机变量X]〜B(n,0.2),坞〜2(6,p)X3〜B(n,p),且E(X J=2,D(X^,则6禺)=()A.0.5B.VT3C.、i25D.3.5【例5】根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为()A.0.48B.1.2C.0.72D.0.62.设投掷一个骰子的点数为随机变量X,则X的方差为.3•盒中有2个白球,3个黑球,从中任取3个球,以X表示取到白球的个数,n表示取到黑球的个数.给出699下列结论:①E(X)=5,E(n)=5;®E(X2)=E(n);@E(n2)=E(X);④D(X)=D(")=25・其中正确的是.(填上所有正确结论的序号)4•海关大楼顶端镶有A、B两面大钟,它们的日走时误差分别为X]、坞(单位:s),其分布列如下:根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量.课后练习【补救练习】1.若随机变量d〜B(n,0.6),且E(0=3,则P(^=1)的值为()A.2X0.44B.2X0.45C.3X0.44D.3X0.642.已知d〜B(n,p),E(d)=8,D(d)=1.6,则n与p的值分别为()A.100和0.08B.20和0.4C.10和0.2D.10和0.83•有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲乙)=11,D(X)=3.4.由此可以估计()ffl甲乙A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为;方差为.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是()A.6B.7.8C.9D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44B.3.376C.2.376D.2.43•已知随机变量X+Y=8,若X〜B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4B.2,2.4C.2,5.6D.6,5.64.马老师从课本上抄录一个随机变量d的概率分布列如下表:请小牛同学计算d的数学期望.“?”处的数值相同.据此,小牛给出了正确答案E(勺=.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的2概率为3,得到乙、丙两公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数,若P(X=O)=12,则随机变量X的数学期望E(X)=.6•随机变量E的分布列如下:其中a,b,c成等差数列,若E(0=3,则D(^)=•7•某城市出租汽车的起步价为6元,行驶路程不超出3km时按起步价收费,若行驶路程超出3km,则按每超出1km加收3元计费(超出不足1km的部分按1km计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程d是一个随机变量,司机收费为"(元),则n=3<—3,求出租车行驶一天收费的均值.8•为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设d为成活沙柳的株数,数学期望E(d)=3,标准差丫苑为g6(1)求n,p的值并写出d的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设E为离散型随机变量,则E(E©_^=()A.0B.1C.2D.不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多21者赢得比赛.假设每局甲获胜的概率为3,乙获胜的概率为3,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).3.A,B两个投资项目的利润率分别为随机变量X1和^•根据市场分析,X]和X2的分布列分别为:(1)在A,B两个项目上各投资100万元,3(万元)和与(万元)分别表示投资项目A和B所获得的利润,求方差D(Y1),D(Y2);⑵将x(0W x W100)万元投资A项目,(100—朗万元投资B项目,沧)表示投资A项目所得利润的方差与投资B 项目所得利润的方差的和.求夬朗的最小值,并指出x为何值时,沧)取到最小值.。
知识内容1. 离散型随机变量及其分布列⑴离散型随机变量如果在试验中,试验可能出现的结果可以用一个变量来表示,并且是随着试验的X X 结果的不同而变化的,我们把这样的变量叫做一个随机变量.随机变量常用大写字X 母表示.,,X Y 如果随机变量的所有可能的取值都能一一列举出来,则称为离散型随机变量.X X ⑵离散型随机变量的分布列将离散型随机变量所有可能的取值与该取值对应的概率列表表示:X i x i p (1,2,,)i n = X 1x 2x …i x …n x P1p 2p …ip …np 我们称这个表为离散型随机变量的概率分布,或称为离散型随机变量的分布列.X X 2.几类典型的随机分布⑴两点分布如果随机变量的分布列为X X 10Ppq其中,,则称离散型随机变量服从参数为的二点分布.01p <<1q p =-X p 二点分布举例:某次抽查活动中,一件产品合格记为,不合格记为,已知产品的合格率10为,随机变量为任意抽取一件产品得到的结果,则的分布列满足二点分布.80%X X X 1P0.80.2两点分布又称分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分01-布又称为伯努利分布.⑵超几何分布一般地,设有总数为件的两类物品,其中一类有件,从所有物品中任取件N M n ,这件中所含这类物品件数是一个离散型随机变量,它取值为时的概率()n N ≤n X m 为,为和中较小的一个.C C ()C m n mM N Mn N P X m --==(0m l ≤≤l n M )我们称离散型随机变量的这种形式的概率分布为超几何分布,也称服从参数为X X N期望与方差,,的超几何分布.在超几何分布中,只要知道,和,就可以根据公式求M n N M n 出取不同值时的概率,从而列出的分布列.X ()P X m =X ⑶二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果及,并且事件发生的概率相同.在相A A A 同的条件下,重复地做次试验,各次试验的结果相互独立,那么一般就称它们为次n n 独立重复试验.次独立重复试验中,事件恰好发生次的概率为n A k .()C (1)kk n k n n P k p p -=-(0,1,2,,)k n = 2.二项分布若将事件发生的次数设为,事件不发生的概率为,那么在次独立重复A X A 1q p =-n 试验中,事件恰好发生次的概率是,其中.于A k ()C k k n kn P X k p q -==0,1,2,,k n = 是得到的分布列X X 01…k…nP00C nn p q111C n n p q-…C k k n kn p q-…C n n n p q由于表中的第二行恰好是二项展开式001110()C C C C n n n k k n k n n n n n n q p p q p q p q p q--+=++++ 各对应项的值,所以称这样的散型随机变量服从参数为,的二项分布,X n p 记作.~(,)X B n p 二项分布的均值与方差:若离散型随机变量服从参数为和的二项分布,则X n p ,.()E X np =()D x npq =(1)q p =-⑷正态分布1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量,则这条曲线称为的概率密度曲线.X X 曲线位于横轴的上方,它与横轴一起所围成的面积是,而随机变量落在指定的两1X 个数之间的概率就是对应的曲边梯形的面积.a b ,2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.正态变量概率密度曲线的函数表达式为,22()2()x f x μσ--=,其中,是参数,且,.x ∈R μσ0σ>μ-∞<<+∞式中的参数和分别为正态变量的数学期望和标准差.期μσ望为、标准差为的正态分布通常记作.μσ2(,)N μσ正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为,标准差为的正态分布叫做标准正态分布.01⑶重要结论:①正态变量在区间,,内,取值的概率(,)μσμσ-+(2,2)μσμσ-+(3,3)μσμσ-+分别是,,.68.3%95.4%99.7%②正态变量在内的取值的概率为,在区间之外的取值的概()-∞+∞,1(33)μσμσ-+,率是,故正态变量的取值几乎都在距三倍标准差之内,这就是正态分布的0.3%x μ=原则.3σ⑷若,为其概率密度函数,则称为概率分2~()N ξμσ,()f x ()()()xF x P x f t dt ξ-∞==⎰≤布函数,特别的,,称为标准正态分布函数.2~(01)N ξμσ-,22()t x x dt φ-=⎰.()(x P x μξφσ-<=标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.3.离散型随机变量的期望与方差1.离散型随机变量的数学期望定义:一般地,设一个离散型随机变量所有可能的取的值是,,…,,这些X 1x 2x n x 值对应的概率是,,…,,则,叫做这个离散型随1p 2p n p 1122()n n E x x p x p x p =+++ 机变量的均值或数学期望(简称期望).X 离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.2.离散型随机变量的方差一般地,设一个离散型随机变量所有可能取的值是,,…,,这些值对应的X 1x 2x n x 概率是,,…,,则叫1p 2p n p 2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++- 做这个离散型随机变量的方差.X 离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).叫做离散型随机变量的标准差,它也是一个衡量离散型随()D X X 机变量波动大小的量.3.为随机变量,为常数,则;X a b ,2()()()()E aX b aE X b D aX b a D X +=++=,4. 典型分布的期望与方差:⑴二点分布:在一次二点分布试验中,离散型随机变量的期望取值为,在次二X p n 点分布试验中,离散型随机变量的期望取值为.X np ⑵二项分布:若离散型随机变量服从参数为和的二项分布,则,X n p ()E X np =.()D x npq =(1)q p =-⑶超几何分布:若离散型随机变量服从参数为的超几何分布,X N M n ,,则,.()nM E X N=2()()()(1)n N n N M MD X N N --=-4.事件的独立性如果事件是否发生对事件发生的概率没有影响,即,A B (|)()P B A P B =这时,我们称两个事件,相互独立,并把这两个事件叫做相互独立事件.A B 如果事件,,…,相互独立,那么这个事件都发生的概率,等于每个事件发1A 2A n A n 生的概率的积,即,并且上式中任意多个1212()()()()n n P A A A P A P A P A =⨯⨯⨯ 事件换成其对立事件后等式仍成立.i A5.条件概率对于任何两个事件和,在已知事件发生的条件下,事件发生的概率叫做条件A B A B 概率,用符号“”来表示.把由事件与的交(或积),记做(或(|)P B A A B D A B = ).D AB =典例分析【例1】已知随机变量的分布列为X X 123P0.40.20.4则等于( )()D X A .B .C .2D .100.8【例2】同时抛掷两枚相同的均匀硬币,随机变量表示结果中有正面向上,1ξ=0ξ=表示结果中没有正面向上,则 ,__________.E ξ=D ξ=【例3】袋中编号为,,,,的五只小球,从中任取只球,以表示取出的123453ξ球的最大号码,则_________,_________.E ξ=D ξ=【例4】已知离散型随机变量的分布列如下表.若,,则X 0EX =1DX =a =,.b =【例5】两封信随机投入三个空邮箱,求邮箱的信件数的数学期望A B C ,,A X ()E X与方差.()D X【例6】编号的三位学生随意入座编号为,,的三个座位,每位学生坐一123,,123个座位,设与座位编号相同的学生的个数是.X⑴求随机变量的概率分布;X⑵求随机变量的数学期望和方差.X【例7】甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为、,和的分布列如下:εηεηε012η012P610110310P510310210则比较两名工人的技术水平的高低.【例8】甲乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:1X0123P0.30.30.20.2乙保护区:2X012P0.10.50.4试评定这两个保护区的管理水平.【例9】现有甲、乙两种建筑钢筋材料,从中各取等量的样品,检验它们的抗拉强度指数如下ξ100115125130145P0.10.20.40.10.2ξ110120125130135P0.10.20.40.10.2和分别表示甲、乙两种材料的抗拉强度.在使用材料时,要求抗拉强度平均ξη不低于的条件下,试比较甲、乙两种材料哪一种的质量更好些.120【例10】袋中有个大小相同的球,其中记上号的有个,记上号的有个(20010n n ).现从袋中任取一球,表示所取球的标号.1234n =,,,ξ⑴求的分布列,期望和方差;ξ⑵若,,,试求的值.a b ηξ=+1E η=11D η=a b ,【例11】某射手进行射击练习,每射击发子弹算一组,一旦命中就停止射击,并进入5下一组的练习,否则一直打完发子弹后才能进入下一组练习,若该射手在某5组练习中射击命中一次,并且已知他射击一次的命中率为,求在这一组练0.8习中耗用子弹数的分布列,并求出的期望与方差(保留两位X X ()E X ()D X 小数).【例12】有把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去n 试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数的数学期望和方差.X【例13】袋中装有大小相同的2个白球和3个黑球.⑴采取放回抽样方式,从中依次摸出两个球,求两球颜色不同的概率;ξ⑵采取不放回抽样方式,从中依次摸出两个球,记为摸出两球中白球的个数,ξ求的期望和方差.。