专题一 集合与常用逻辑用语不等式函数与导数(第五讲)
- 格式:doc
- 大小:92.01 KB
- 文档页数:4
专题二集合与常用逻辑用语、不等式、函数与导数第一讲集合与常用逻辑用语1.集合的概念、运算(1)集合元素的三个特性:确定性、互异性、无序性,是判断某些对象能否构成一个集合或判断两集合是否相等的依据.(2)集合的表示方法:列举法、描述法、图示法.(3)集合间的关系:子集、真子集、空集、集合相等,在集合间的运算中要注意空集的情形.(4)重要结论A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.2.命题(1)两个命题互为逆否命题,它们有相同的真假性;(2)含有量词的命题的否定:∀x∈M,p(x)的否定是∃x∈M,綈p(x);∃x∈M,p(x)的否定是∀x∈M,綈p(x).3.充要条件从逻辑观点看从集合观点看p是q的充分不必要条件(p⇒q,q⇒p)A Bp是q的必要不充分条件(q⇒p,p⇒q)B Ap是q的充要条件(p⇔q)A=Bp是q的既不充分也不必要条件(p⇒q,q⇒p)A与B互不包含1.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于() A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案 D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.2.(2013·北京)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件.3. (2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D. 4. (2013·天津)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③答案 C解析 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5. (2013·四川)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P 到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号)答案①④解析∵|CA|+|CB|≥|AB|,当且仅当点C在线段AB上等号成立,即三个点A,B,C,∴点C在线段AB上,∴点C是A,B,C的中位点,故①是真命题.如图(1),在Rt△ABC中,∠C=90°,P是AB的中点,CH⊥AB,点P,H不重合,则|PC|>|HC|.又|HA|+|HB|=|P A|+|PB|=|AB|,∴|HA|+|HB|+|HC|<|P A|+|PB|+|PC|,∴点P不是点A,B,C的中位点,故②是假命题.如图(2),A,B,C,D是数轴上的四个点,若P点在线段BC上,则|P A|+|PB|+|PC|+|PD|=|AD|+|BC|,由中位点的定义及①可知,点P是点A,B,C,D的中位点.显然点P 有无数个,故③是假命题.如图(3),由①可知,若点P是点A,C的中位点,则点P在线段AC上,若点P是点B,D的中位点,则点P在线段BD上,∴若点P是点A,B,C,D的中位点,则P是AC,BD的交点,∴梯形对角线的交点是梯形四个顶点的唯一中位点,故④是真命题.题型一集合的概念与运算问题例1(1)(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为() A.1 B.2 C.3 D.4(2)定义A-B={x|x∈A且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M等于()A.M B.N C.{1,4,5} D.{6}审题破题(1)先对集合A、B进行化简,注意B中元素的性质,然后根据子集的定义列举全部适合条件的集合C即可.(2)透彻理解A-B的定义是解答本题的关键,要和补集区别开来.答案(1)D(2)D解析(1)由x2-3x+2=0得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)N -M ={x |x ∈N 且x ∉M }. ∵2∈N 且2∈M ,∴2∉N -M ; 3∈N 且3∈M ,∴3∉N -M ; 6∈N 且6∉M ,∴6∈N -M . ∴故N -M ={6}.反思归纳 (1)解答集合间关系与运算问题的一般步骤:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解. (2)两点提醒:①要注意集合中元素的互异性;②当B ⊆A 时,应注意讨论B 是否为∅.变式训练1 (2013·玉溪毕业班复习检测)若集合S ={x |log 2(x +1)>0},T =⎩⎨⎧⎭⎬⎫x |2-x 2+x <0,则S ∩T 等于( )A .(-1,2)B .(0,2)C .(-1,+∞)D .(2,+∞)答案 D解析 S ={x |x +1>1}={x |x >0}, T ={x |x >2或x <-2}. ∴S ∩T ={x |x >2}. 题型二 命题的真假与否定问题 例2 下列叙述正确的个数是( )①l 为直线,α、β为两个不重合的平面,若l ⊥β,α⊥β,则l ∥α;②若命题p :∃x 0∈R ,x 20-x 0+1≤0,则綈p :∀x ∈R ,x 2-x +1>0;③在△ABC 中,“∠A =60°”是“cos A =12”的充要条件;④若向量a ,b 满足a ·b <0,则a 与b 的夹角为钝角. A .1 B .2 C .3 D .4审题破题 判定叙述是否正确,对命题首先要分清命题的条件与结论,再结合涉及知识进行判定;对含量词的命题的否定,要改变其中的量词和判断词. 答案 B解析 对于①,直线l 不一定在平面α外,错误;对于②,命题p 是特称命题,否定时要写成全称命题并改变判断词,正确;③注意到△ABC 中条件,正确;④a ·b <0可能〈a ,b 〉=π,错误.故叙述正确的个数为2. 反思归纳 (1)命题真假的判定方法:①一般命题p 的真假由涉及到的相关知识辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;③形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定.(2)区分命题的否定和否命题;含一个量词的命题的否定一定要改变量词. 变式训练2 给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1,命题q :∃x ∈R ,x 2-x -1≤0,则命题p ∧綈q 是真命题.其中真命题只有( )A .①②③B .①②④C .①③④D .②③④答案 A解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④中綈q :∀x ∈R ,x 2-x -1>0,由于x 2-x -1=⎝⎛⎭⎫x -122-54,则存在x 值使x 2-x -1≤0,故綈q 为假命题,则p ∧綈q 为假命题. 题型三 充要条件的判断问题例3 (1)甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件(2)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 审题破题 (1)利用逆否命题判别甲、乙的关系;(2)转化为两个集合间的包含关系,利用数轴解决. 答案 (1)B (2)A解析 (1)“甲⇒乙”,即“x ≠2或y ≠3”⇒“x +y ≠5”,其逆否命题为:“x +y =5”⇒“x =2且y =3”显然不正确.同理,可判断命题“乙⇒甲”为真命题.所以甲是乙的必要不充分条件.(2)綈p :|4x -3|>1;綈q :x 2-(2a +1)x +a (a +1)>0,解得綈p :x >1或x <12;綈q :x >a +1或x <a .若綈p ⇐綈q ,则⎩⎪⎨⎪⎧ a ≤12a +1>1或⎩⎪⎨⎪⎧a <12a +1≥1,即0≤a ≤12.反思归纳 (1)充要条件判断的三种方法:定义法、集合法、等价命题法;(2)判断充分、必要条件时应注意的问题:①要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.变式训练3 (1)(2012·山东)设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由题意知函数f (x )=a x 在R 上是减函数等价于0<a <1,函数g (x )=(2-a )x 3在R 上是增函数等价于0<a <1或1<a <2,∴“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件. (2)设A ={x |xx -1<0},B ={x |0<x <m },若B 是A 成立的必要不充分条件,则m 的取值范围是( )A .m <1B .m ≤1C .m ≥1D .m >1答案 D解析 xx -1<0⇔0<x <1.由已知得,0<x <m ⇒0<x <1, 但0<x <1⇒0<x <m 成立. ∴m >1.典例 设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .3解析 ①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确. 答案 D得分技巧 创新性试题中最常见的是以新定义的方式给出试题,这类试题要求在新的情境中使用已知的数学知识分析解决问题,解决这类试题的关键是透彻理解新定义,抓住新定义的本质,判断给出的各个结论,适当的时候可以通过反例推翻其中的结论. 阅卷老师提醒 在给出的几个命题中要求找出其中正确命题类的试题实际上就是一个多项选择题,解答这类试题时要对各个命题反复进行推敲,确定可能正确的要进行严格的证明,确定可能错误的要举出反例,这样才能有效避免答错试题.1. 已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a 等于( )A .-12或1 B .2或-1C .-2或1或0D .-12或1或0答案 D解析 依题意可得A ∩B =B ⇔B ⊆A . 因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.2. (2013·浙江)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ= π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数,∴“f (x )是奇函数”是“φ=π2”的必要条件.又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )⇒φ=π2.∴“f (x )是奇函数”不是“φ=π2”的充分条件.3. (2012·辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 根据全称命题的否定是特称命题知. 綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.4. 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围为( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)答案 C解析 由P ={x |x 2≤1}得P ={x |-1≤x ≤1}. 由P ∪M =P 得M ⊆P .又M ={a },∴-1≤a ≤1. 5. 下列命题中错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若x ,y ∈R ,则“x =y ”是“xy ≤⎝⎛⎭⎫x +y 22中等号成立”的充要条件 C .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 D .对命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,x 2+x +1≥0 答案 C解析 易知选项A ,B ,D 都正确;选项C 中,若p ∨q 为假命题,根据真值表,可知p ,q 必都为假,故C 错.专题限时规范训练一、选择题1. (2013·陕西)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 答案 D解析 由题意得M =[-1,1],则∁R M =(-∞,-1)∪(1,+∞).2. (2013·山东)给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知:綈p ⇐q ⇔(逆否命题)p ⇒綈q .3. (2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由命题与其逆否命题之间的关系可知,原命题的逆否命题是:若tan α≠1,则α≠π4.4. (2012·湖北)命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0D ∈∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30D ∈C .∀xD ∈∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3D ∈Q 答案 D解析 “∃”的否定是“∀”,x 3∈Q 的否定是x 3D ∈Q .命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是“∀x ∈∁R Q ,x 3D ∈Q ”.5. 设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 C解析 A ={x |x -2>0}={x |x >2}=(2,+∞),B ={x |x <0}=(-∞,0),∴A ∪B =(-∞,0)∪(2,+∞),C ={x |x (x -2)>0}={x |x <0或x >2}=(-∞,0)∪(2,+∞).A ∪B =C .∴“x ∈A ∪B ”是“x ∈C ”的充要条件. 6. 下列关于命题的说法中错误的是( )A .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题 答案 D解析 对于A ,命题綈p :∀x ∈R ,均有x 2+x +1≥0,因此选项A 正确.对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确.对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确.7. 已知p :2xx -1<1,q :(x -a )(x -3)>0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A .(-∞,1)B .[1,3]C .[1,+∞)D .[3,+∞)答案 C解析 2xx -1-1<0⇒x +1x -1<0⇒(x -1)(x +1)<0⇒p :-1<x <1.当a ≥3时,q :x <3或x >a ;当a <3时,q :x <a 或x >3.綈p 是綈q 的必要不充分条件,即p 是q 的充分不必要条件,即p ⇒q 且q ⇒,从而可推出a 的取值范围是a ≥1. 8. 下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数 答案 D解析 对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,由A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题.综上所述,选D. 二、填空题9. 已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.答案 3解析 A ={x ∈R ||x -1|<2}={x ∈R |-1<x <3}, 集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}. 故A ∩Z 中所有元素之和为0+1+2=3.10.设集合M ={y |y -m ≤0},N ={y |y =2x -1,x ∈R },若M ∩N ≠∅,则实数m 的取值范围是________.答案 (-1,+∞)解析 M ={y |y ≤m },N ={y |y >-1},结合数轴易知m >-1.11. 已知命题p :“∀x ∈[1,2],12x 2-ln x -a ≥0”是真命题,则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤-∞,12 解析 命题p :a ≤12x 2-ln x 在[1,2]上恒成立,令f (x )=12x 2-ln x ,f ′(x )=x -1x=(x -1)(x +1)x ,当1<x <2时,f ′(x )>0,∴f (x )min =f (1)=12,∴a ≤12. 12.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.(写出所有真命题的序号)答案 ①④解析 对于①,当数列{a n }是等比数列时,易知数列{a n a n +1}是等比数列;但当数列 {a n a n +1}是等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确.对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确.对于③,当m =3时,相应的两条直线垂直;反过来,当这两条直线垂直时,不一定能得出m =3,也可能得出m =0,因此③不正确.对于④,由题意,得b a =sin B sin A =3,当B =60°时,有sin A =12,注意到b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°或B =120°,因此④正确. 三、解答题13.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 A ={x |-1<x ≤5},(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},故4是方程-x 2+2x +m =0的一个根,∴有-42+2×4+m =0,解得m =8.此时B ={x |-2<x <4},符合题意.因此实数m 的值为8.14.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q为假命题,求a 的取值范围.解 由命题p :1∈A ,得⎩⎨⎧ -2-a <1,a >1.解得a >1. 由命题q :2∈A ,得⎩⎨⎧-2-a <2,a >2.解得a >2. 又∵p ∨q 为真命题,p ∧q 为假命题,即p 真q 假或p 假q 真, 当p 真q 假时,⎩⎪⎨⎪⎧ a >1,a ≤2,即1<a ≤2, 当p 假q 真时,⎩⎪⎨⎪⎧ a ≤1,a >2,无解. 故所求a 的取值范围为(1,2].。
一元二次方程、不等式考试要求 1.会从实际情景中抽象出一元二次不等式.2.结合二次函数图象,会判断一元二次方程的根的个数,以及解一元二次不等式.3.了解简单的分式、绝对值不等式的解法.知识梳理1.二次函数与一元二次方程、不等式的解的对应关系判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象方程ax 2+bx +c =0(a >0)的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集{x |x <x 1,或x >x 2}错误!Rax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2}∅ ∅2.分式不等式与整式不等式 (1)f xg x>0(<0)⇔f (x )g (x )>0(<0);(2)f xg x≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0.3.简单的绝对值不等式|x |>a (a >0)的解集为(-∞,-a )∪(a ,+∞),|x |<a (a >0)的解集为(-a ,a ). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若方程ax 2+bx +c =0无实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (2)若不等式ax 2+bx +c >0的解集为(x 1,x 2),则a <0.( √ ) (3)若ax 2+bx +c >0恒成立,则a >0且Δ<0.( × )(4)不等式x -ax -b≥0等价于(x -a )(x -b )≥0.( × ) 教材改编题1.若集合A ={x |x 2-9x >0},B ={x |x 2-2x -3<0},则A ∪B 等于( ) A .R B .{x |x >-1} C .{x |x <3或x >9} D .{x |x <-1或x >3} 答案 C解析 A ={x |x >9或x <0},B ={x |-1<x <3}, ∴A ∪B ={x |x <3或x >9}.2.若关于x 的不等式ax 2+bx +2>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,则a +b =________. 答案 -14解析 依题意知⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.3.一元二次不等式ax 2+ax -1<0对一切x ∈R 恒成立,则实数a 的取值范围是________. 答案 (-4,0)解析 依题意知⎩⎪⎨⎪⎧a <0,Δ<0,即⎩⎪⎨⎪⎧a <0,a 2+4a <0,∴-4<a <0.题型一 一元二次不等式的解法 命题点1 不含参的不等式例1 (1)不等式-2x 2+x +3<0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <32 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <1C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-1或x >32 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-32或x >1答案 C解析 -2x 2+x +3<0可化为2x 2-x -3>0, 即(x +1)(2x -3)>0, ∴x <-1或x >32.(2)(多选)已知集合M ={}x ||x -1|≤2,x ∈R ,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪5x +1≥1,x ∈R ,则( ) A .M ={}x |-1≤x ≤3 B .N ={}x |-1≤x ≤4 C .M ∪N ={}x |-1≤x ≤4 D .M ∩N ={}x |-1<x ≤3 答案 ACD解析 由题设可得M =[-1,3],N =(-1,4], 故A 正确,B 错误;M ∪N ={x |-1≤x ≤4},故C 正确;而M ∩N ={x |-1<x ≤3},故D 正确. 命题点2 含参的不等式例2 解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解 原不等式变为(ax -1)(x -1)<0,因为a >0,所以⎝⎛⎭⎪⎫x -1a (x -1)<0.所以当a >1时,解得1a<x <1; 当a =1时,解集为∅; 当0<a <1时,解得1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <1.延伸探究 在本例中,把a >0改成a ∈R ,解不等式. 解 当a >0时,同例2,当a =0时, 原不等式等价于-x +1<0,即x >1, 当a <0时,1a<1,原不等式可化为⎝⎛⎭⎪⎫x -1a (x -1)>0,解得x >1或x <1a.综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a , 当a =1时,不等式的解集为∅,当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <1, 当a =0时,不等式的解集为{x |x >1},当a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a或x >1. 教师备选解关于x 的不等式x 2-ax +1≤0. 解 由题意知,Δ=a 2-4,①当a 2-4>0,即a >2或a <-2时,方程x 2-ax +1=0的两根为x =a ±a 2-42,∴原不等式的解为a -a 2-42≤x ≤a +a 2-42.②若Δ=a 2-4=0,则a =±2.当a =2时,原不等式可化为x 2-2x +1≤0, 即(x -1)2≤0,∴x =1;当a =-2时,原不等式可化为x 2+2x +1≤0, 即(x +1)2≤0,∴x =-1. ③当Δ=a 2-4<0,即-2<a <2时, 原不等式的解集为∅.综上,当a >2或a <-2时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -a 2-42≤x ≤a +a 2-42; 当a =2时,原不等式的解集为{1}; 当a =-2时,原不等式的解集为{-1};当-2<a <2时,原不等式的解集为∅.思维升华 对含参的不等式,应对参数进行分类讨论,常见的分类有 (1)根据二次项系数为正、负及零进行分类. (2)根据判别式Δ与0的关系判断根的个数. (3)有两个根时,有时还需根据两根的大小进行讨论.跟踪训练1 (1)(多选)已知关于x 的不等式ax 2+bx +c ≥0的解集为{x |x ≤-3或x ≥4},则下列说法正确的是( ) A .a >0B .不等式bx +c >0的解集为{x |x <-4}C .不等式cx2-bx +a <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-14或x >13 D .a +b +c >0 答案 AC解析 关于x 的不等式ax 2+bx +c ≥0的解集为(-∞,-3]∪[4,+∞), 所以二次函数y =ax 2+bx +c 的开口方向向上,即a >0,故A 正确; 对于B ,方程ax 2+bx +c =0的两根分别为-3,4,由根与系数的关系得⎩⎪⎨⎪⎧-ba=-3+4,ca =-3×4,解得⎩⎪⎨⎪⎧b =-a ,c =-12a .bx +c >0⇔-ax -12a >0,由于a >0,所以x <-12,所以不等式bx +c >0的解集为{}x |x <-12, 故B 不正确;对于C ,由B 的分析过程可知⎩⎪⎨⎪⎧b =-a ,c =-12a ,所以cx 2-bx +a <0⇔-12ax 2+ax +a <0⇔12x 2-x -1>0⇔x <-14或x >13,所以不等式cx 2-bx +a <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-14或x >13,故C 正确; 对于D ,a +b +c =a -a -12a =-12a <0,故D 不正确. (2)解关于x 的不等式(x -1)(ax -a +1)>0.解 ①当a =0时,原不等式可化为x -1>0,即x >1; 当a ≠0时,(x -1)(ax -a +1)=0的两根分别为1,1-1a.②当a >0时,1-1a<1,∴原不等式的解为x >1或x <1-1a.③当a <0时,1-1a>1,∴原不等式的解为1<x <1-1a.综上,当a =0时,原不等式的解集为{x |x >1};当a >0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <1-1a ; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1-1a . 题型二 一元二次不等式恒(能)成立问题 命题点1 在R 上恒成立问题例3 (2022·漳州模拟)对∀x ∈R ,不等式(a -2)x 2+2(a -2)x -4<0恒成立,则a 的取值范围是( ) A .-2<a ≤2 B .-2≤a ≤2 C .a <-2或a ≥2 D .a ≤-2或a ≥2答案 A解析 不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,当a -2=0,即a =2时,-4<0恒成立,满足题意;当a -2≠0时,要使不等式恒成立,需⎩⎪⎨⎪⎧a -2<0,Δ<0,即有⎩⎪⎨⎪⎧a <2,4a -22+16a -2<0,解得-2<a <2.综上可得,a 的取值范围为(-2,2]. 命题点2 在给定区间上恒成立问题例4 已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,则实数m 的取值范围为________. 答案 ⎝⎛⎭⎪⎫-∞,67 解析 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:方法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上单调递增, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上单调递减, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎝⎛⎭⎪⎫-∞,67.方法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0在x ∈[1,3]上恒成立, 所以m <6x 2-x +1在x ∈[1,3]上恒成立.令y =6x 2-x +1,因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67.命题点3 给定参数范围的恒成立问题例5 (2022·宿迁模拟)若不等式x 2+px >4x +p -3,当0≤p ≤4时恒成立,则x 的取值范围是( ) A .[-1,3] B .(-∞,-1] C .[3,+∞)D .(-∞,-1)∪(3,+∞) 答案 D解析 不等式x 2+px >4x +p -3 可化为(x -1)p +x 2-4x +3>0,由已知可得[(x -1)p +x 2-4x +3]min >0(0≤p ≤4), 令f (p )=(x -1)p +x 2-4x +3(0≤p ≤4),可得⎩⎪⎨⎪⎧f 0=x 2-4x +3>0,f4=4x -1+x 2-4x +3>0,∴x <-1或x >3.教师备选函数f (x )=x 2+ax +3.若当x ∈[-2,2]时,f (x )≥a 恒成立,则实数a 的取值范围是________. 若当a ∈[4,6]时,f (x )≥0恒成立,则实数x 的取值范围是________________. 答案 [-7,2](-∞,-3-6]∪[-3+6,+∞)解析 若x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立, 令g (x )=x 2+ax +3-a ,则有①Δ≤0或②⎩⎪⎨⎪⎧Δ>0,-a2<-2,g -2=7-3a ≥0.或③⎩⎪⎨⎪⎧Δ>0,-a 2>2,g 2=7+a ≥0,解①得-6≤a ≤2,解②得a ∈∅, 解③得-7≤a <-6.综上可得,满足条件的实数a 的取值范围是[-7,2]. 令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧h 4≥0,h 6≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞). 思维升华 恒成立问题求参数的范围的解题策略(1)弄清楚自变量、参数.一般情况下,求谁的范围,谁就是参数.(2)一元二次不等式在R 上恒成立,可用判别式Δ,一元二次不等式在给定区间上恒成立,不能用判别式Δ,一般分离参数求最值或分类讨论.跟踪训练2 (1)已知关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围是( )A .{a |-1≤a ≤4}B .{a |-1<a <4}C .{a |a ≥4或a ≤-1}D .{a |-4≤a ≤1}答案 A解析 因为关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解, 即x 2-4x +a 2-3a ≤0在R 上有解,只需y =x 2-4x +a 2-3a 的图象与x 轴有公共点, 所以Δ=(-4)2-4×(a 2-3a )≥0, 即a 2-3a -4≤0,所以(a -4)(a +1)≤0, 解得-1≤a ≤4,所以实数a 的取值范围是{a |-1≤a ≤4}.(2)当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是( ) A .(-∞,4] B .(-∞,-5) C .(-∞,-5] D .(-5,-4)答案 C解析 令f (x )=x 2+mx +4, ∴当x ∈(1,2)时,f (x )<0恒成立, ∴⎩⎪⎨⎪⎧f 1≤0,f2≤0,即⎩⎪⎨⎪⎧1+m +4≤0,4+2m +4≤0,解得m ≤-5.课时精练1.不等式9-12x ≤-4x 2的解集为( ) A .RB .∅C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =32 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠32 答案 C解析 原不等式可化为4x 2-12x +9≤0,即(2x -3)2≤0, ∴2x -3=0,∴x =32,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =32. 2.(2022·揭阳质检)已知p :|2x -3|<1,q :x (x -3)<0,则p 是q 的( ) A .充要条件 B .充分不必要条件 C .既不充分也不必要条件 D .必要不充分条件 答案 B解析 ∵p :|2x -3|<1,则-1<2x -3<1, 可得p :1<x <2,又∵q :x (x -3)<0,由x (x -3)<0,可得q :0<x <3, 可得p 是q 的充分不必要条件.3.(2022·南通模拟)不等式(m +1)x 2-mx +m -1<0的解集为∅,则m 的取值范围是( ) A .m <-1 B .m ≥233C .m ≤-233D .m ≥233或m ≤-233答案 B解析 ∵不等式(m +1)x 2-mx +m -1<0的解集为∅, ∴不等式(m +1)x 2-mx +m -1≥0恒成立.①当m +1=0,即m =-1时,不等式化为x -2≥0, 解得x ≥2,不是对任意x ∈R 恒成立,舍去; ②当m +1≠0,即m ≠-1时,对任意x ∈R , 要使(m +1)x 2-mx +m -1≥0,只需m +1>0且Δ=(-m )2-4(m +1)(m -1)≤0, 解得m ≥233.综上,实数m 的取值范围是m ≥233.4.(2022·合肥模拟)不等式x 2+ax +4≥0对一切x ∈[1,3]恒成立,则a 的最小值是( ) A .-5B .-133C .-4D .-3答案 C解析 ∵x ∈[1,3]时,x 2+ax +4≥0恒成立,则a ≥-⎝⎛⎭⎪⎫x +4x 恒成立,又x ∈[1,3]时,x +4x≥24=4,当且仅当x =2时取等号.∴-⎝⎛⎭⎪⎫x +4x ≤-4,∴a ≥-4.故a 的最小值为-4.5.(多选)满足关于x 的不等式(ax -b )(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2,则满足条件的一组有序实数对(a ,b )的值可以是( ) A .(-2,-1) B .(-3,-6) C .(2,4) D.⎝⎛⎭⎪⎫-3,-32答案 AD解析 不等式(ax -b )(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2, ∴方程(ax -b )(x -2)=0的实数根为12和2,且⎩⎪⎨⎪⎧a <0,b a =12,即a =2b <0,故选AD.6.(多选)(2022·湖南长郡中学月考)已知不等式x 2+ax +b >0(a >0)的解集是{x |x ≠d },则下列四个结论中正确的是( ) A .a 2=4b B .a 2+1b≥4C .若不等式x 2+ax -b <0的解集为(x 1,x 2),则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为(x 1,x 2),且|x 1-x 2|=4,则c =4 答案 ABD解析 由题意,知Δ=a 2-4b =0, 所以a 2=4b ,所以A 正确; 对于B ,a 2+1b =a 2+4a2≥2a 2·4a 2=4,当且仅当a 2=4a2,即a =2时等号成立,所以B 正确;对于C ,由根与系数的关系, 知x 1x 2=-b =-a 24<0,所以C 错误;对于D ,由根与系数的关系,知x 1+x 2=-a ,x 1x 2=b -c =a 24-c ,则|x 1-x 2|=x 1+x 22-4x 1x 2=a 2-4⎝ ⎛⎭⎪⎫a 24-c =2c =4, 解得c =4,所以D 正确. 7.不等式3x -1>1的解集为________. 答案 (1,4) 解析 ∵3x -1>1, ∴3x -1-1>0,即4-x x -1>0, 即1<x <4.∴原不等式的解集为(1,4).8.一元二次方程kx 2-kx +1=0有一正一负根,则实数k 的取值范围是________. 答案 (-∞,0)解析 kx 2-kx +1=0有一正一负根,∴⎩⎪⎨⎪⎧Δ=k 2-4k >0,1k<0,解得k <0.9.已知关于x 的不等式-x 2+ax +b >0.(1)若该不等式的解集为(-4,2),求a ,b 的值; (2)若b =a +1,求此不等式的解集.解 (1)根据题意得⎩⎪⎨⎪⎧2-4=a ,2×-4=-b ,解得a =-2,b =8.(2)当b =a +1时,-x 2+ax +b >0⇔x 2-ax -(a +1)<0, 即[x -(a +1)](x +1)<0. 当a +1=-1,即a =-2时, 原不等式的解集为∅; 当a +1<-1,即a <-2时, 原不等式的解集为(a +1,-1);当a +1>-1,即a >-2时, 原不等式的解集为(-1,a +1).综上,当a <-2时,不等式的解集为(a +1,-1);当a =-2时,不等式的解集为∅; 当a >-2时,不等式的解集为(-1,a +1).10.若二次函数f (x )=ax 2+bx +c (a ≠0),满足f (x +2)-f (x )=16x 且f (0)=2. (1)求函数f (x )的解析式;(2)若存在x ∈[1,2],使不等式f (x )>2x +m 成立,求实数m 的取值范围. 解 (1)由f (0)=2,得c =2, 所以f (x )=ax 2+bx +2(a ≠0),由f (x +2)-f (x )=[a (x +2)2+b (x +2)+2]-(ax 2+bx +2)=4ax +4a +2b , 又f (x +2)-f (x )=16x , 得4ax +4a +2b =16x ,所以⎩⎪⎨⎪⎧4a =16,4a +2b =0,故a =4,b =-8,所以f (x )=4x 2-8x +2. (2)因为存在x ∈[1,2], 使不等式f (x )>2x +m 成立,即存在x ∈[1,2],使不等式m <4x 2-10x +2成立, 令g (x )=4x 2-10x +2,x ∈[1,2], 故g (x )max =g (2)=-2,所以m <-2, 即m 的取值范围为(-∞,-2).11.(多选)已知函数f (x )=4ax 2+4x -1,∀x ∈(-1,1),f (x )<0恒成立,则实数a 的取值可能是( )A .0B .-1C .-2D .-3 答案 CD解析 因为f (x )=4ax 2+4x -1, 所以f (0)=-1<0成立.当x ∈(-1,0)∪(0,1)时,由f (x )<0可得4ax 2<-4x +1,所以4a <⎝⎛⎭⎪⎫1x 2-4xmin ,当x ∈(-1,0)∪(0,1)时, 1x∈(-∞,-1)∪(1,+∞),所以1x2-4x =⎝ ⎛⎭⎪⎫1x -22-4≥-4,当且仅当x =12时,等号成立,所以4a <-4,解得a <-1.12.(2022·南京质检)函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为________. 答案 3解析 依题意得,一元二次不等式-x 2+2x +c >0,即x 2-2x -c <0的解集为(m ,m +4),所以m ,m +4是方程x 2-2x -c =0的两个根,所以⎩⎪⎨⎪⎧m +m +4=2,m m +4=-c ,解得m =-1,c =3.13.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________. 答案 [-4,3]解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3. 14.若不等式x 2+ax -2>0在[1,5]上有解,则a 的取值范围是________.答案 ⎝⎛⎭⎪⎫-235,+∞解析 对于方程x 2+ax -2=0, ∵Δ=a 2+8>0,∴方程x 2+ax -2=0有两个不相等的实数根, 又∵两根之积为负, ∴必有一正根一负根, 设f (x )=x 2+ax -2,于是不等式x 2+ax -2>0在[1,5]上有解的充要条件是f (5)>0, 即5a +23>0, 解得a >-235.故a 的取值范围是⎝ ⎛⎭⎪⎫-235,+∞.15.(2022·湖南多校联考)若关于x 的不等式x 2-(2a +1)x +2a <0恰有两个整数解,则a 的取值范围是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪32<a ≤2 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪-1<a ≤-12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪-1<a ≤-12或32≤a <2D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪-1≤a <-12或32<a ≤2答案 D解析 令x 2-(2a +1)x +2a =0,解得x =1或x =2a . 当2a >1,即a >12时,不等式x 2-(2a +1)x +2a <0的解集为{x |1<x <2a }, 则3<2a ≤4, 解得32<a ≤2;当2a =1,即a =12时,不等式x 2-(2a +1)x +2a <0无解, 所以a =12不符合题意;当2a <1,即a <12时,不等式x 2-(2a +1)x +2a <0的解集为{x |2a <x <1},则-2≤2a <-1,解得-1≤a <-12.综上,a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪-1≤a <-12或32<a ≤2. 16.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)若不等式组⎩⎪⎨⎪⎧fx >0,f x +k <0的正整数解只有一个,求实数k 的取值范围;(2)若对于任意x ∈[-1,1],不等式t ·f (x )≤2恒成立,求t 的取值范围. 解 (1)因为不等式f (x )<0的解集是(0,5),所以0,5是一元二次方程2x 2+bx +c =0的两个实数根,可得⎩⎪⎨⎪⎧0+5=-b2,0×5=c2,解得⎩⎪⎨⎪⎧b =-10,c =0.所以f (x )=2x 2-10x .不等式组⎩⎪⎨⎪⎧f x >0,f x +k <0,即⎩⎪⎨⎪⎧2x 2-10x >0,2x 2+2kx +k 2-10x +k <0,解得⎩⎪⎨⎪⎧x <0或x >5,-k <x <5-k ,因为不等式组的正整数解只有一个, 可得该正整数解为6, 可得6<5-k ≤7, 解得-2≤k <-1,所以k 的取值范围是[-2,-1). (2)tf (x )≤2,即t (2x 2-10x )≤2, 即tx 2-5tx -1≤0, 当t =0时显然成立,当t >0时,有⎩⎪⎨⎪⎧t ·1-5t ·-1-1≤0,t ·1-5t ·1-1≤0,即⎩⎪⎨⎪⎧t +5t -1≤0,t -5t -1≤0,解得-14≤t ≤16,所以0<t ≤16;当t <0时,函数y =tx 2-5tx -1在[-1,1]上单调递增, 所以只要其最大值满足条件即可, 所以t -5t -1≤0, 解得t ≥-14,即-14≤t <0,综上,t 的取值范围是⎣⎢⎡⎦⎥⎤-14,16.。
第五节二次函数与一元二次方程、不等式课标要求1.会从实际情景中抽象出一元二次不等式,了解一元二次不等式的现实意义.2.结合二次函数的图象,会判断一元二次方程根的个数,以及二次函数的零点与一元二次方程根的关系.3.掌握利用二次函数的图象解一元二次不等式.必备知识·整合〔知识梳理〕1.一元二次不等式只含有一个未知数,并且未知数的最高次数是 2 的不等式,称为一元二次不等式,一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx+c<0(a,b,c为常数,且a≠0).提醒解不等式ax2+bx+c>0(<0)时,不要忘记讨论当a=0时的情况.2.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b2−4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+ bx+c=0(a>0)的根有两个相异实根x1,x2(x1<x2)有两个相等实根x1=x2=−b2a没有实根ax2+bx+c>0(a> 0)的解集{x|x<x1或x>x2}{xx≠−b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}⌀⌀提醒a>0时的一元二次不等式的解法口诀:大于取两边,小于取中间. 知识拓展1.简单分式不等式(1)f(x)g(x)≥0(≤0)⇔{f(x)g(x)≥0(≤0),g(x)≠0.(2)f(x)g(x)>0(<0)⇔f(x)g(x)>0(<0).2.不等式ax2+bx+c>0(<0)恒成立的条件要结合其对应的函数图象决定.(1)不等式ax2+bx+c>0对任意实数x恒成立⇔{a=b=0, c>0或{a>0,Δ<0.(2)不等式ax2+bx+c<0对任意实数x恒成立⇔{a=b=0,c<0或{a<0,Δ<0.〔课前自测〕1. 概念辨析(正确的打“√”,错误的打“×”).(1)ax2+bx+c<0为一元二次不等式.( × )(2)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( × )(3)如果二次函数y=ax2+bx+c的图象开口向下,那么不等式ax2+bx+ c<0的解集一定不是空集.( √ )(4)x−ax−b≥0等价于(x−a)(x−b)≥0.( × )2. [2020全国Ⅰ,1,5分]已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=( D )A. {−4,1}B. {1,5}C. {3,5}D. {1,3}[解析]由x2−3x−4<0解得−1<x<4,所以A={x|−1<x<4},因为B={−4,1,3,5},所以A∩B={1,3}.3. [2021辽宁大连质检]若不等式ax2+bx+2>0的解集为{x−12<x<13},则a−b的值是( A )A. −10B. −14C. 10D. 144. 易错题不等式(x−2)(3−2x)≥0的解集为( B )A. (32,+∞) B. [32,2] C. [2,+∞) D. (−∞,32][解析]由(x−2)(3−2x)≥0,得(x−2)(2x−3)≤0,解得32≤x≤2,故原不等式的解集为[32,2].易错提醒本题容易忽视二次项的符号致错.5. (新教材改编题)若关于x的不等式x2−2ax+18>0恒成立,则实数a的取值范围为(−3√2,3√2).[解析]由题意得4a2−4×18<0,解得−3√2<a<3√2.关键能力·突破考点一一元二次不等式的解法角度1 简单分式不等式的解法例1≥0的解集为( C )(1)不等式1−x2+xA. [−2,1]B. (−∞,−2)∪(1,+∞)C. (−2,1]D. (−∞,−2]∪(1,+∞)≥2的解集为( B )(2)[2022山东烟台二中模拟]不等式3x−2x+3A. (−∞,−3]∪[8,+∞)B. (−∞,−3)∪[8,+∞)C. (−3,8]D. (−∞,−3)∪(8,+∞)−2≥0,[解析]原不等式可化为3x−2x+3≥0,即(x−8)(x+3)≥0且x+3≠0,即x−8x+3∴x<−3或x≥8.所以原不等式的解集为(−∞,−3)∪[8,+∞).方法感悟将分式不等式进行同解变形,利用不等式的同解原理将其转化为整式不等式(组)即可求解.角度2 不含参数的不等式的解法例2(1)[2022重庆八中模拟]已知集合A={3,8},B={x|x2−x−6≤0},则A∩(∁R B)=( B )A. {3}B. {8}C. {−2,3,8}D. {−2}[解析]由x2−x−6≤0,得−2≤x≤3,则B ={x|x 2−x −6≤0}=[−2,3],∁R B ={x|x <−2或x >3} ,则A ∩(∁R B)={8} .(2) [2022广东潮州月考]不等式0<x 2−x −2≤4 的解集为{x|−2≤x < −1或2<x ≤3} .[解析]原不等式等价于{x 2−x −2>0,x 2−x −2≤4,即{x 2−x −2>0,x 2−x −6≤0,即{(x −2)(x +1)>0,(x −3)(x +2)≤0,解得{x >2或x <−1,−2≤x ≤3. 借助数轴,如图所示,原不等式的解集为{x|−2≤x <−1或2<x ≤3} .方法感悟解一元二次不等式的步骤角度3 含参数的不等式的解法例3 解关于x的不等式ax2−2≥2x−ax(a∈R).[答案]原不等式可化为ax2+(a−2)x−2≥0.①当a=0时,原不等式可化为x+1≤0,解得x≤−1.②当a>0时,原不等式可化为(x−2a )(x+1)≥0,解得x≥2a或x≤−1.③当a<0时,原不等式化为(x−2a)(x+1)≤0.当2a >−1,即a<−2时,解得−1≤x≤2a;当2a=−1,即a=−2时,解得x=−1;当2a <−1,即−2<a<0时,解得2a≤x≤−1.综上所述,当a=0时,不等式的解集为{x|x≤−1};当a>0时,不等式的解集为{x|x≥2a 或x≤−1};当−2<a<0时,不等式的解集为{x|2a≤x≤−1};当a=−2时,不等式的解集为{−1};当a<−2时,不等式的解集为{x|−1≤x≤2a}.方法感悟含参数的一元二次不等式的解题策略(1)二次项中若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式;(2)当不等式对应方程的根的个数不确定时,需要讨论判别式Δ与0的关系;(3)确定无根时可直接写出解集,确定方程有两个根时,需要讨论两根的大小关系,从而确定解集的形式.1. [2023广东湛江模拟]已知全集U=R,集合A={x|2x2−3x−2<0,x∈R},B={x12<x<3},则(∁U A)∩B=( B )A. (12,1)∪(1,3) B. [2,3) C. {0,1} D. {1}[解析]由2x2−3x−2=(2x+1)(x−2)<0,得−12<x<2,所以A={x−12<x<2},则∁U A={xx≤−12或x≥2},又B={x12<x<3},则(∁U A)∩B={x|2≤x<3}=[2,3).2. [2023山东济南一模]不等式x−12x+1≥0的解集为(−∞,−12)∪[1,+∞).[解析]x−12x+1≥0⇒{(x−1)(2x+1)≥0,2x+1≠0⇒x≥1或x<−12.3. 求不等式12x2−ax>a2(a∈R)的解集. [答案]原不等式可化为12x2−ax−a2>0,即(4x+a)(3x−a)>0,令(4x+a)(3x−a)=0,解得x1=−a4,x2=a3.当a>0时,不等式的解集为{x<x−a4或x>a3};当a=0时,不等式的解集为{x|x≠0};当a<0时,不等式的解集为{x|x<a3或x>−a4}.考点二三个两次的关系例4 [2021广东东莞高三期末]多选题若不等式ax2−bx+c>0的解集是(−1,2),则( AD )A. 相应的一元二次函数的图象开口向下B. b >0 且c >0C. a +b +c >0D. 不等式ax 2−cx +b ≤0 的解集是R[解析]由题意知a <0 ,所以A 正确;由题意可得−1 ,2是方程ax 2−bx +c =0 的两个根,所以{−1+2=ba ,−1×2=c a ,所以{b =a,c =−2a ,得b <0,c >0 ,所以B 不正确;因为−1 是方程ax 2−bx +c =0 的根,所以把x =−1 代入方程得a +b +c =0 ,所以C 不正确;把b =a ,c =−2a 代入不等式ax 2−cx +b ≤0 ,可得ax 2+2ax +a ≤0 ,因为a <0 ,所以x 2+2x +1≥0 ,此时不等式的解集为R ,所以D 正确. 方法感悟(1)一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.(2)给出一元二次不等式的解集,相当于知道了相应一元二次函数的图象开口方向及与x 轴的交点,可以利用代入根或根与系数的关系求待定系数.4. 已知关于x 的不等式ax 2+bx +c >0(a ≠0) 的解集是{x|−1<x <2} ,则不等式cx 2+bx +a <0 的解集是( A ) A. {x −1<x <12} B. {x <x −1或x >12} C. {x −12<x <1}D. {x <x −12或x >1}[解析]因为ax 2+bx +c >0(a ≠0) 的解集是{x|−1<x <2} ,所以−1 ,2是方程ax 2+bx +c =0 的两实数根,且a <0 ,由根与系数的关系得{−1+2=−ba ,−1×2=ca , 所以b =−a ,c =−2a ,所以不等式cx 2+bx +a <0⇒−2ax 2−ax +a <0 ,即2x 2+x −1<0 ,解得−1<x <12 ,故不等式cx 2+bx +a <0 的解集为{x −1<x <12} .考点三 一元二次不等式恒成立问题角度1 在R 上的恒成立问题例5 不等式ax(x +1)−1<0 对任意x ∈R 恒成立,则实数a 的取值范围是 (−4,0] .[解析]由ax(x +1)−1<0 ,得ax 2+ax −1<0 .当a =0 时,−1<0 恒成立;当a ≠0 时,有{a <0,Δ=a 2+4a <0⇒−4<a <0 .综上所述,实数a 的取值范围是(−4,0] .角度2 在给定区间上的恒成立问题例6 [2022广东深圳月考]若对于任意的x ∈[0,2] ,不等式x 2−2x +a >0 恒成立,则a 的取值范围为( B ) A. (−∞,1)B. (1,+∞)C. (0,+∞)D. [1,+∞)[解析]不等式x 2−2x +a >0 可化为a >−x 2+2x ,设f(x)=−x 2+2x ,x ∈[0,2] ,则f(x)=−(x −1)2+1 ,当x =1 时,f(x)max =f(1)=1 ,所以实数a 的取值范围是(1,+∞) .角度3 给定参数范围的恒成立问题例7 若mx2−mx−1<0对任意m∈[1,2]恒成立,则实数x的取值范围是(1−32,1+32).[解析]设g(m)=mx2−mx−1=(x2−x)m−1,其图象是直线,当m∈[1,2]时,图象为一条线段,则{g(1)<0, g(2)<0,即{x2−x−1<0, 2x2−2x−1<0,解得1−√32<x<1+√32,故x的取值范围为(1−√32,1+√32).方法感悟(1)解决恒成立问题一定要搞清谁是自变量,谁是参数.(2)一元二次不等式恒成立问题常见的类型有两种,一是在全集R上恒成立,二是在某给定区间上恒成立.对第一种情况,恒大于0就是相应的二次函数的图象全部在x轴上方,恒小于0就是相应的二次函数的图象全部在x轴下方;对第二种情况,要充分结合函数图象进行分类讨论(也可采用分离参数的方法求解).5. 函数f(x)=x2+ax+3.(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围;[答案]当x∈R时,x2+ax+3−a≥0恒成立,只需Δ=a2−4(3−a)≤0,即a2+4a−12≤0,解得−6≤a≤2,∴实数a的取值范围是[−6,2].(2)当x∈[−2,2]时,f(x)≥a恒成立,求实数a的取值范围;[答案]由题意,可得x2+ax+3−a≥0在[−2,2]上恒成立,令g(x)=x2+ ax+3−a,则有①g(x)中Δ≤0或②{Δ>0,−a2<−2,g(−2)=7−3a≥0或③{Δ>0,−a2>2,g(2)=7+a≥0,解①得−6≤a≤2,解②得无实数解,解③得−7≤a<−6.综上可得,满足条件的实数a的取值范围是[−7,2].(3)当a∈[4,6]时,f(x)≥0恒成立,求实数x的取值范围. [答案]令ℎ(a)=xa+x2+3.当a∈[4,6]时,ℎ(a)≥0恒成立,只需{ℎ(4)≥0,ℎ(6)≥0,即{x2+4x+3≥0, x2+6x+3≥0,解得x≤−3−√6或x≥−3+√6.∴实数x的取值范围是(−∞,−3−√6]∪[−3+√6,+∞).考点四一元二次方程根的分布例8 [2023湖南益阳开学考]已知关于x的二次方程x2+2mx+2m+1=0. [解析]设函数f(x)=x2+2mx+2m+1.(1)若方程有两根,其中一根在区间(−1,0)内,另一根在区间(1,2)内,求m 的取值范围;[答案]易知f(x)的图象与x轴的交点分别在区间(−1,0)和(1,2)内,画出示意图,得{ f(0)=2m +1<0,f(−1)=2>0,f(1)=4m +2<0,f(2)=6m +5>0,∴{m <−12,m ∈R m <−12,m >−56,∴−56<m <−12 .(2) 若方程两根均在区间(0,1) 内,求m 的取值范围.[答案]易知f(x) 的图象与x 轴的交点在区间(0,1) 内,画出示意图,得{ f(0)>0,f(1)>0,Δ≥0,0<−m <1,∴{ m >−12,m >−12,m ≥1+√2或m ≤1−√2,−1<m <0,∴−12<m ≤1−√2 .方法感悟一元二次方程根的分布一般要考虑以下几点: (1)一元二次函数图象的开口方向; (2)一元二次函数对应方程的根的判别式;(3)一元二次函数图象的对称轴与区间的关系; (4)一元二次函数在区间端点处函数值的符号.6. [2023广东茂名期中]已知方程2x 2−(m +1)x +m =0 有两个不等的正实根,则实数m 的取值范围为(0,3−2√2)∪(3+2√2,+∞) . [解析]设f(x)=2x 2−(m +1)x +m , 由{Δ>0,−−(m+1)2×2>0,f(0)>0,得{(m +1)2−8m >0,m >−1,m >0,∴{m <3−2√2或m >3+2√2,m >−1,m >0,∴0<m <3−2√2 或m >3+2√2 ,即实数m 的取值范围为(0,3−2√2)∪(3+2√2,+∞) .分层突破训练 基础达标练1. 不等式−x 2+3x +10>0 的解集为( A ) A. (−2,5) B. (−∞,−2)∪(5,+∞) C. (−5,2)D. (−∞,−5)∪(2,+∞)[解析]由x 2−3x −10<0 ,解得−2<x <5 .2. 多选题 下列不等式的解集为R 的是( BC ) A. x 2+2√5x +5>0 B. x 2+6x +10>0 C. −x 2+x −2<0D. 2x 2−3x −3<0[解析]对于A 选项,x 2+2√5x +5=(x +√5)2>0 ,故解集为{x|x ≠−√5} ; 对于B 选项,x 2+6x +10=(x +3)2+1>0 ,解集为R ; 对于C 选项,−x 2+x −2=−(x −12)2−74<0 ,解集为R ;对于D 选项,2x 2−3x −3<0 ,对应的二次函数图象开口向上,Δ=9−4×2×(−3)=33>0 ,故不等式的解集不是R .故选BC.3. [2023山东东营模拟]设x ∈R ,则“x ≤3 ”是“x 2≤3x ”的( B ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件[解析]由x 2≤3x ,得0≤x ≤3 ,所以“x ≤3 ”是“x 2≤3x ”的必要不充分条件.4. [2022江苏南通模拟]当x ∈R 时,不等式x 2−2x −1−a ≥0 恒成立,则实数a 的取值范围是( A ) A. (−∞,−2]B. (−∞,−2)C. (−∞,0]D. (−∞,0)[解析]当x ∈R 时,不等式x 2−2x −1−a ≥0 恒成立,故Δ=(−2)2+4(1+a)≤0 ,解得a ≤−2 ,故实数a 的取值范围是(−∞,−2] . 5. [2022湖北华中师大一附中模拟]不等式2x+1≤1 的解集是( A ) A. (−∞,−1)∪[1,+∞) B. (−∞,−1]∪[1,+∞) C. (−∞,−1)D. (−1,1)[解析]原不等式可化为2x+1−1≤0 ,即x−1x+1≥0 ,得(x −1)(x +1)≥0 且x +1≠0 ,得x <−1 或x ≥1 ,所以原不等式的解集为(−∞,−1)∪[1,+∞) . 6. [2022天津耀华中学模拟]对于任意实数x ,不等式(a −1)x 2−2(a −1)x −4<0 恒成立,则实数a 的取值范围是( D ) A. (−∞,3)B. (−∞,3]C. (−3,1)D. (−3,1][解析]当a =1 时,−4<0 恒成立; 当a ≠1 时,有{a −1<0,Δ<0, 解得−3<a <1 .综上,实数a 的取值范围是(−3,1] .7. 已知二次函数f(x)=(m +2)x 2−(2m +4)x +3m +3 的图象与x 轴有两个交点,一个大于1,一个小于1,则实数m 的取值范围为(−2,−12) . [解析]由题意得,(m +2)⋅f(1)<0 , 即(m +2)⋅(2m +1)<0 , ∴−2<m <−12 ,即m 的取值范围为(−2,−12) .8. [2023辽宁丹东期末]某种杂志以每本2.5 元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高0.1 元,销售量就可能减少2 000本.要使提价后的销售总收入不低于20万元,则定价的最大值为4元.[解析]设定价为x 元,销售总收入为y 元,由题意得,y =(80 000−x−2.50.1×2 000)x =−2 0000x 2+130 000x ,因为要使提价后的销售总收入不低于20万元,所以y =−20 000x 2+130 000x ≥200 000 ,解得52≤x ≤4 ,所以要使提价后的销售总收入不低于20万元,则定价的最大值为4元.9. [2023河北保定模拟]已知集合A ={x ∈R ||x +2|<3} ,集合B ={x ∈R ∣x−m x−2<0} ,且A ∩B =(−1,n) ,则m = −1 ,n = 1.[解析]A ={x ∈R ||x +2|<3}={x|−5<x <1} ,B ={x ∈R ∣x−m x−2<0}={x ∣(x −m)(x −2)<0} ,因为A ∩B =(−1,n) ,所以−1 是方程(x −m)(x −2)=0 的根,则−1−m =0 ,解得m =−1 ,所以B ={x|−1<x <2} ,A ∩B =(−1,1) ,则n =1 .10. [2022广东化州第三中学月考]已知集合A ={−5,−1,2,4,5} ,请写出一个一元二次不等式,使得该不等式的解集与集合A 有且只有一个公共元素,这个不等式可以是(x +4)(x −6)>0 (答案不唯一).[解析]不等式(x +4)(x −6)>0 的解集为{x|x >6或x <−4} ,解集中只有−5 在集合A 中.11. [2021江西南昌莲塘第一中学模拟]已知f(x)=−3x 2+a(6−a)x +6 . (1) 解关于a 的不等式f(1)>0 ; [答案]∵f(x)=−3x 2+a(6−a)x +6 , ∴f(1)=−3+a(6−a)+6=−a 2+6a +3 , ∴ 原不等式可化为a 2−6a −3<0 , 解得3−2√3<a <3+2√3 .∴ 原不等式的解集为{a|3−2√3<a <3+2√3} .(2) 若不等式f(x)>b 的解集为(−1,3) ,求实数a ,b 的值.[答案]f(x)>b 的解集为(−1,3) 等价于方程−3x 2+a(6−a)x +6−b =0 的两根为−1 ,3, 即{−1+3=a(6−a)3,−1×3=−6−b3,解得{a =3±√3,b =−3.能力强化练12. [2022重庆南开中学模拟]三位同学合作学习,对问题“已知不等式xy ≤ax 2+2y 2 对任意x ∈[1,2] ,y ∈[2,3] 恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析.” 乙说:“寻找x 与y 的关系,再进行分析.” 丙说:“把字母a 单独放在一边,再进行分析.”参考上述思路,或自己的其他解法,可求出实数a 的取值范围是( B ) A. [1,+∞)B. [−1,+∞)C. [−1,4)D. [−1,6][解析]选择用丙的方法.因为xy ≤ax 2+2y 2 ,x ∈[1,2] ,y ∈[2,3] , 所以xy −2y 2≤ax 2 等价于xy−2y 2x 2≤a ,即yx −2(yx )2≤a . 令y x =t ,则t ∈[1,3] .原式化为t −2t 2≤a 对任意t ∈[1,3] 恒成立,因为t −2t 2=−2(t −14)2+18 ,所以当t =1 时,(t −2t 2)max =−1 . 所以−1≤a ,即a ∈[−1,+∞) . 故选B.13. [2022重庆质量检测]若方程x 2+(m −2)x +6−m =0 的两根都大于2,则m 的取值范围是(−6,−2√5] .[解析]令f(x)=x 2+(m −2)x +6−m ,其图象的对称轴方程为x =2−m 2,由题意得,{2−m2>2,f(2)>0,Δ≥0,即{2−m2>2,4+2m −4+6−m >0,(m −2)2−4(6−m)≥0,解得−6<m ≤−2√5 ,故m 的取值范围是(−6,−2√5] .14. [2023江苏南京二模]已知定义在R 上的奇函数f(x) 满足f(1−x)+f(1+x)=2 ,当x ∈[0,1] 时,f(x)=2x −x 2 ,若f(x)≥x +b 对一切x ∈R 恒成立,则实数b 的最大值为−14 .[解析]因为f(1+x)+f(1−x)=2 ,所以f(x) 的图象关于点(1,1) 中心对称, 当x ∈[−1,0] 时,f(x)=−f(−x)=x 2+2x ,作出f(x) 的图象和直线y =x +b ,如图所示,结合图象可得,只需当x ∈[−1,0] 时,f(x)=x 2+2x ≥x +b 即可, 即b ≤(x +12)2−14 , 故b ≤−14 .故b的最大值为−1.415. 某地区上年度电价为0.8元/kW⋅h,年用电量为a kW⋅h.本年度计划将电价降到0.55元/kW⋅h至0.75元/kW⋅h之间,而用户期望电价为0.4元/kW⋅h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW⋅h.(1)写出本年度电价下调后,电力部门的收益y(元)与实际电价x(元/kW⋅h)的函数关系式;kW⋅h,∴下调电价后的总用电量为(a+ [答案]下调电价后新增的用电量为kx−0.4k)kW⋅h,x−0.4)(x−0.3)(0.55≤x≤0.75).∴y=(a+kx−0.4(2)设k=0.2a,问:电价最低定为多少时,仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价−成本价).)(x−0.3)≥a×(0.8−0.3)×(1+20%),0.55≤x≤[答案]由已知得(a+0.2ax−0.40.75,整理得x2−1.1x+0.3≥0,0.55≤x≤0.75,解得0.60≤x≤0.75.故电价最低定为0.60元/kW⋅h时,仍可保证电力部门的收益比上年度至少增长20%.+b,关于x的不等式xf(x)<0的解集为(1,3). 16. 已知函数f(x)=x+ax(1)求实数a,b的值;[答案]因为关于x的不等式xf(x)<0的解集为(1,3),所以不等式x2+bx+a<0的解集为(1,3),所以{1+3=−b,1×3=a,解得{a=3,b=−4,所以f(x)=x+3x−4.(2)求关于x的不等式xf(x)<(m−3)(x−1)(m∈R)的解集;[答案]由xf(x)<(m−3)(x−1)(m∈R),得x2+3−4x<(m−3)(x−1),即x2−(m+1)x+m<0,即(x−1)(x−m)<0.所以当m<1时,不等式的解集为(m,1);当m=1时,不等式无解;当m>1时,不等式的解集为(1,m).(3)若不等式f(2x)−k⋅2−x−2k≥0在R上恒成立,求实数k的取值范围.[答案]令t=2x(t>0),则f(t)−kt−2k≥0在(0,+∞)上恒成立,即t+3t −4−kt−2k≥0在(0,+∞)上恒成立,即t 2−(2k+4)t+3−kt≥0在(0,+∞)上恒成立,即t2−(2k+4)t+3−k≥0在(0,+∞)上恒成立,令g(t)=t2−(2k+4)t+3−k.当2k+42≤0,即k≤−2时,g(t)图象的对称轴在y轴的左侧,所以g(0)=3−k≥0,即k≤3,所以k≤−2;当2k+42>0 ,即k >−2 时,g(t) 图象的对称轴在y 轴的右侧,则Δ=(2k −4)2−4(3−k)≤0 ,所以3−√52≤k ≤3+√52 .综上,k ≤−2 或3−√52≤k ≤3+√52 .素养综合练17. [2022河北石家庄二中模拟]若函数f(x) 满足对任意的x ∈[n,m](n <m) ,都有n k ≤f(x)≤km 成立,则称函数f(x) 在区间[n,m](n <m) 上是“被k 约束的”.若函数f(x)=x 2−ax +a 2 在区间[1a ,a](a >0) 上是“被2约束的”,则实数a 的取值范围是( A )A. (1,2]B. (1,√323]C. (1,√2]D. (√2,2] [解析]由题意得12a ≤x 2−ax +a 2≤2a 对任意的x ∈[1a ,a](a >0) 都成立.由a >1a 且a >0 ,得a >1 ,则f(1a )=1a 2−1+a 2>2−1=1>12a 恒成立. 由f(a)=a 2−a 2+a 2=a 2≤2a ,且a >1 ,得1<a ≤2 .因为a >1 ,所以f(1a )=1a 2−1+a 2<1−1+a 2=a 2 .f(x)=x 2−ax +a 2 图象的对称轴方程为x =a 2 ,由f(a 2)=3a 24≥12a , 得a ≥√233 .因为√233<1 ,所以a 的取值范围为(1,2] .故选A.。
专题一 集合与常用逻辑用语、函数与导数、不等式第1讲 集合与常用逻辑用语[云览高考]说明:A 表示简单题,B 表示中等题,C 表示难题.频率为分析2012各省市课标卷情况.二轮复习建议:命题角度:该部分的命题通常围绕三个点展开,第一个点是围绕集合的概念、基本关系和运算展开,设计考查集合的意义、根据集合之间的关系求参数范围、集合的运算等试题,目的是考查集合的基础知识和基本方法;第二个点是围绕命题(包括特称命题和全称命题)、充要条件、逻辑联结词展开,设计判断命题之间的关系、命题之间的充分性与必要性的判断等试题,目的是考查对常用逻辑用语基础知识的掌握程度、逻辑知识在数学中的应用;第三个点是围绕集合命制新定义试题,目的是考查在新的环境中使用数学知识分析问题、解决问题的创新能力.预测2013年高考在该部分仍然会从上述命题角度出发设计试题,考查集合与常用逻辑用语的基础知识,试题会在知识网络交汇上下工夫,使试题能够考查到更多的知识点,但试题的难度为容易或者中等.复习建议:1.强化对集合意义的复习,使学生能够正确地处理各种情况下集合表达的是什么数学问题,重点加强对集合的运算的复习,注意集合之间关系的等价转化,如A ⊆B ⇔A ∩B =A ⇔A ∪B =B . 2.强化命题真假的判断、充要条件的判断的训练,重点加强对在知识交汇处命制的试题的分析,引导学生注意知识的融会贯通.考点统计 题型(频率) 考例(难度)考点1 集合的概念、关系与运算选择(8) 2012陕西1(A),2012浙江卷1(A),2012广东卷2(A)考点2 命题及其关系、逻辑联结词 选择(3) 解答(1)2012山东卷3(A),2012陕西卷18(C) 考点3 充要条件的判断 选择(5) 2012天津卷2(A),2012安徽卷6(B) 考点4全称量词存在量词与命题的否定 选择(3) 2012福建卷3(A)主干知识整合1.集合的概念、关系与运算(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n.(3)集合的运算:∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B),∁U(∁UA)=A.2.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理.3.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.4.简单的逻辑联结词(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;綈p和p为真假对立的命题.(2)命题p∨q的否定是(⌝p)∧(⌝q);命题p∧q的否定是(⌝p)∨(⌝q).5.含有量词的命题的否定“∀x∈M,p(x)”的否定为“∃x0∈M,⌝p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,⌝p(x)”.要点热点探究►探究点一集合的概念、关系和基本运算例1(1)[2012·课程标准卷] 已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y ∈A},则B中所含元素的个数为(D)A.3 B.6 C.8 D.10(2)已知集合A={z∈C|z=1-2a i,a∈R},B={z∈C||z|=2},则A∩B=(A)A.{1+3i,1-3i} B.{3-i}C.{1+23i,1-23i} D.{1-3i}[点评] 集合是一种数学语言,使用集合可以表示函数的定义域、值域、方程的解集、不等式的解集、平面区域等,在复习时要注意集合的这个特点,准确地把集合表达的数学问题翻译为普通的数学问题,看下面的变式.变式题(1)已知集合A={x∈N|0≤x≤5},∁A B={1,3,5},则集合B=(B)A.{2,4} B.{0,2,4} C.{0,1,3} D.{2,3,4}(2)已知集合M={y|y=2x},集合N={x|y=lg(2x-x2)},则M∩N=(A)A.(0,2) B.(2,+∞)C.[0,+∞) D.(-∞,0)∪(2,+∞)►探究点二命题的认识及其真假判断例2(1)[2012·湖南卷] 命题“若α=π4,则tanα=1”的逆否命题是(C)A.若α≠π4,则tanα≠1 B.若α=π4,则tanα≠1C.若tanα≠1,则α≠π4D.若tanα≠1,则α=π4(2)已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x0∈R,x20+2ax0+2-a=0”.若命题“(⌝p)∧q”是真命题,则实数a的取值范围是(C)A.a≤-2或a=1 B.a≤-2或1≤a≤2C.a>1 D.-2≤a≤1[点评] 原命题与其逆命题、否命题、逆否命题是根据原命题得出的形式上的命题,其中逆否命题是把原命题中的结论否定作为条件,条件否定作为结论得到的形式上的命题,这个命题与原命题等价;p ∨q 为真只要p ,q 至少有一个真即可;p ∧q 为真必需p ,q 同时为真;p ,⌝p 一真一假.对第2题注意:理解题目中命题的含义,命题p 等价于a ≤x 2在[1,2]上恒成立;命题q 等价于方程x 2+2ax +2-a =0有实根.如果是∀x ,ax 2+bx +c =0,则等价于方程ax 2+bx +c =0恒成立,则必须a =b =c =0;如果是∃x 0, x 20-a ≥0,x ∈[1,2],则等价于[x 2]max ≥a .► 探究点三 充分条件、必要条件的推理与判断例3 (1)[2012·山东卷] 设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)若条件p :-3≤x ≤1,条件q :x 2+2x -3<0,则⌝p 是⌝q 的( A )A.充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件[点评] 充分条件、必要条件的推理与判断有三种方法.一、定义法:直接推断若p 则q ,若q 则p 是否成立;二、集合法:即若命题p 成立的集合为A ,命题q 成立的集合为B ,若A 是B 的真子集,则p 是q 的充分不必要条件,若B 是A 的真子集,则p 是q 的必要不充分条件,若A =B ,则p 与q 互为充要条件;三、等价转化法:根据一个命题与其逆否命题等价,把判断p 是q 的什么条件转化为判断⌝q 是⌝p 的什么条件,如α≠π3是tan α≠3的什么条件等价于判断tan α=3是α=π3的什么条件(必要不充分条件). ► 探究点四 量词与命题的否定例4 [2012·辽宁卷] 已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是( C )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0[点评] 由于全称命题是对某个集合中的所有元素都成立的一个命题,那么只要在这个集合中找出一个元素使结论不成立,就否定了这个命题,这就是为什么全称命题的否定是特称命题.同理理解为什么特称命题的否定是全称命题.注意:一个命题的否定是否定这个命题的结论,否命题是把原命题的条件和结论都否定后得到的形式上的命题.变式题 命题:“对任意a ∈R ,方程ax 2-3x +2=0有正实根”的否定是( D )A .对任意a ∈R ,方程ax 2-3x +2=0无正实根B .对任意a ∈R ,方程ax 2-3x +2=0有负实根C .存在a ∈R ,方程ax 2-3x +2=0有负实根D .存在a ∈R ,方程ax 2-3x +2=0无正实根规律技巧提炼•规律 对否定形式给出的充要条件的判断可以根据命题与其逆否命题等价转化为肯定形式给出的充要条件的判断,如x ≠2是x 2≠4的什么条件,可以转化为判断x 2=4是x =2的什么条件.•技巧 集合{x |y =f (x )}为函数y =f (x )的定义域,集合{y |y =f (x )}为函数y =f (x )的值域,集合{x |f (x )=0}为方程f (x )=0的解集,集合{x |f (x )>0}为不等式f (x )>0的解集,集合{(x ,y )|f (x ,y )=0}为方程f (x ,y )=0的解集,也表示方程f (x ,y )=0所表示的曲线上的点集等.•易错 空集是任何集合的子集,在判断两个集合之间的关系时不要忘记其中的集合可能是空集的情况.命题立意追溯抽象概括能力——集合中三种语言的转换示例 设平面点集}0)1)((),({≥--=xy x y y x A ,B ={}(x ,y )|(x -1)2+(y -1)2≤1,则A ∩B 所表示的平面图形的面积为(C) A.34π B.35π C.47π D.π2命题阐释] 本题命制点为抽象概括数学语言的能力,数学语言的考查体现在文字语言、符号语言、图形语言三者之间的互相转化.条件1:(y -x )⎝⎛⎭⎫y -1x ≥0(符号语言)转化不等式的解集(文字语言)转化平面坐标系中平面区域表示(图形语言);条件2同条件1;结论:A ∩B (符号语言)转化表示条件1与条件2图形的公共点(文字语言)转化平面坐标系中平面区域表示(图形语言).1.集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x x -1>0,集合N =}{21x y y =,则M ∩N =( B ) A .(0,+∞) B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)2.已知集合A ={(x ,y )|x 2+y 2≤1},B ={(x ,y )|-1≤x ≤1,-1≤y ≤1},则集合N ={(x ,y )|x =x 1+x 2,y =y 1+y 2,(x 1,y 1)∈A ,(x 2,y 2)∈B }表示的区域的面积是________.12+π教师备用例题选题理由:例题1说明集合表述问题的广泛性,例2说明充要条件的判断方法以及函数是偶函数的充要条件,例3说明逻辑用语应用的广泛性,通过这几个题目向学生阐明高考中集合与常用逻辑用语考查时涉及的知识是非常全面的,使学生认识到集合与常用逻辑用语与数学其他知识的广泛联系.例1 [2011·陕西卷] 设集合M ={y |y =|cos 2x -sin 2x |,x ∈R},N =x ⎪⎪⎪⎪⎪⎪x -1i <2,i 为虚数单位,x ∈R ,则M ∩N 为( C )A .(0,1)B .(0,1]C .[0,1)D .[0,1]例2 [2012·天津卷] 设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R)为偶函数”的( A )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件例3 [2012·江西卷] 下列命题中,假命题为( B )A .存在四边相等的四边形不.是正方形B .z 1,z 2∈C ,z 1+z 2为实数的充分必要条件是z 1,z 2互为共轭复数C .若x ,y ∈R ,且x +y >2,则x ,y 至少有一个大于1D .对于任意n ∈N *,C 0n +C 1n +…+C n n 都是偶数第2讲 函数、基本初等函数Ⅰ的图象与性质[云览高考]说明:A 表示简单题,B 表示中等题,C 表示难题.频率为分析2012各省市课标卷情况.二轮复习建议命题角度:函数部分的命题通常围绕三个方面进行.第一个方面是围绕函数概念、函数的解析式、函数的性质(单调性、奇偶性、周期性)展开,主要考查对函数概念的理解、函数定义域的求解、函数值的求解(一般是分段函数)、函数的最值的求解、函数性质在解题中的综合运用等;第二个方面是围绕函数图象展开,主要考查根据函数的解析式判断函数图象的大致形状,根据函数图象通过数形结合的方法解决一些问题等;第三个方面是围绕指数函数、对数函数、幂函数的图象与性质的运用展开,主要考查这三个函数的图象与性质在解决问题中的应用,如比较含有指数与对数的数的大小、含有指数函数与对数函数的分段函数的最值等.预计2013年基本的考点不会发生变化,仍然会从函数概念、性质、图象的应用等方面进行考查,但函数试题有非常大的灵活性,安徽卷主要以思想方法的创新为主,陕西和广东可能会出现一些创新性试题.复习建议:函数是高中数学最重要的基础知识,在一套高考试卷中考查到函数以及与函数相关问题的试题数量是较多的,但在本节中我们主要是研究函数概念、函数表示方法、函数性质,以及指数函数、对数函数、幂函数本身的问题,在复习时要以此为重点.函数问题中的重点是函数的性质,难点是函数性质的综合运用,特别是在抽象函数中函数性质的综合运用,在复习中注意引导学生抓住这个重点,通过例、习题掌握使用函数性质分析问题、解决问题的基本方法.主干知识整合1、函数的概念及其表示函数的定义域和值域均为非空的数集,定义域和对应关系相同的两个函数是同一函数.2.函数的性质考点统计 题型(频率) 考例(难度)考点1 函数概念的理解和性质的应用选择(4) 2012安徽卷2(A),2012广东卷4(A) 考点2 函数图象的分析与判断 选择(4) 2012四川卷5(B),2012重庆卷7(B),2012陕西卷2(A) 考点3 基本初等函数的性质及应用选择(5) 2012广东卷4(A),2012课程标准卷12(C),2012山东卷8(B)(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则;(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性;(3)周期性:周期性是函数在定义域上的整体性质.若函数满足f (a +x )=f (x )(a 不等于0),则其一个周期T =|a |.3.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质;(2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况要点热点探究► 探究点一 函数的概念的理解和性质的应用例1 (1)[2012·山东卷] 函数f (x )=1ln (x +1)+4-x 2的定义域为( B ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2] D .(-1,2](2)[2012·福建卷] 设函数D (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( C ) A .D (x )的值域为{0,1} B .D (x )是偶函数C .D (x )不是周期函数 D .D (x )不是单调函数[点评] 本例第二题是历史上有名的函数“狄利克雷”函数,这个函数的著名的性质之一就是其为周期函数,任何非零实数都是其周期,这个函数没有最小正周期.函数的奇偶性和周期性都是函数在其定义域上的整体性质,即对定义域内任意的一个自变量都满足的性质,在证明函数的奇偶性和周期性时,一定要注意这个特点,如本题中我们在证明D (x )为偶函数时,就是对定义域内任意无理数证明其满足偶函数的定义,也得证明对定义域内任意有理数也满足偶函数的定义,缺少任何一个方面的证明都是不完整的,作出的结论也就可能是错误的.本例第一题是求函数的定义域,求函数定义域的主要依据:①分式的分母不为零;②偶次方根被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1.变式题 已知函数f (x )和f (x +2)都是定义在R 上的偶函数,当x ∈[-2,2]时,f (x )=g (x ).则当x ∈[-4n -2,-4n +2],n ∈Z 时,f (x )的解析式为( C )A .g (x )B .g (x +2n )C .g (x +4n )D .g (x -4n )► 探究点二 函数的图象的分析与判断例2 (1)设a <b ,则函数y =(a -x )(x -b )2的图象可能是( B )图1-2-12)[2012·课程标准卷] 已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( B )图1-2-2[点评] 根据函数的解析式判断函数图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时可结合部分特殊函数值进行辅助推断,这是解决函数图象判断类试题的基本方法.变式题 函数y =ln ⎪⎪⎪⎪1x 与y =-x 2+1在同一平面直角坐标系内的大致图象为( C )图1-2-3► 探究点三 基本初等函数的性质及其应用例3 (1)[2012·江西卷] 若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( B ) A .lg101 B .2 C .1 D .0 (2)设a =5.0)21(,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是(C )A .a >b >cB .a <b <cC .b <a <cD .a <c <b[点评] 在计算复合函数值时要注意从内层到外层逐次计算,如果已知的函数是分段的,在求解时要不断判断求解的函数值使用哪段的解析式.在指数式、对数式比较大小时,要根据实际情况构造适当的函数,使用函数的单调性进行.如果是指数相同、底数不同则构造幂函数,如果是底数相同、指数不同则构造指数函数.比较大小的一个基本技巧是寻找中间值,如0,1等,把要比较的对象的取值画在不同的区间,这样就可以根据取值的情况对比较的对象作出判断.变式题 若x ∈()e -1,1,a =ln x ,b =x ln )21(,c =e ln x ,则( D ) A .c >b >a B .b >a >c C .a >b >c D .b >c >a规律技巧提炼•技巧 当奇函数在x =0处有定义时,一定有f (0)=0(反之不真);在函数的奇偶性问题中使用函数奇偶性的定义是对函数定义域内任意x 恒成立(当然对定义域内的特殊值也成立)得到关于x 的恒等式,从而确定函数解析式中的字母参数问题(在选择题和填空题中也可以使用特殊的函数值).•易错 忽视函数的定义域,分段函数中分段点处混用函数解析式,复合函数值计算层次混乱.命题立意追溯推理论证能力——函数问题中的代数推理示例 [2012·福建卷] 函数f (x )在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有f )2(21x x +≤12[f (x 1)+f (x 2)],则称f (x )在[a ,b ]上具有性质P .设f (x )在[1,3]上具有性质P ,现给出如下命题:①f (x )在[1,3]上的图象是连续不断的;②f (x 2)在[1,3]上具有性质P ;③若f (x )在x =2处取得最大值1,则f (x )=1,x ∈[1,3];④对任意x 1,x 2,x 3,x 4∈[1,3],有f (x 1+x 2+x 3+x 44)≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)]. 其中真命题的序号是( D ) A .①② B .①③ C .②④ D .③④[跟踪练]1.已知函数f (x )对任意x ∈R 都有f (x +6)+f (x )=2f (3),y =f (x -1)的图象关于点(1,0)对称,且f (4)=4,则f (2 012)=( B ) A .0 B .-4 C .-8 D .-162.已知定义在R 上的函数f (x )满足)23(+x f =-f (x ),且函数y =)43(-x f 为奇函数,给出三个结论:①f (x )是周期函数;②f (x )的图象关于点)0,43(-对称;③f (x )是偶函数.其中正确结论的个数为( A ) A .3 B .2 C .1 D .0教师备用例题选题理由:例1为指数函数、三角函数交汇类试题,解题中要研究函数的奇偶性以及函数值的变化规律,才能较好地作出判断,该题对学生解答图象分析类试题具有较好的示范作用;例2考查指数函数、对数函数和不等式等,其中最值的求解方法很丰富,是一题多解的好题;例3的主要思想是函数与方程,把问题转化为方程的解,是一个训练学生等价转化问题方法的较好题目.这三个题目可作为探究点二、三的补充.例1 [2012·山东卷] 函数y =cos6x 2x -2-x 的图象大致为( D )例2 [2012·湖南卷] 已知两条直线l 1:y =m 和l 2:y =82m +1(m >0),l 1与函数y =|log 2x |的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,b a 的最小值为( B )A .16 2B .8 2C .834D .434例3 对于定义域为D 的函数f (x ),若存在区间M =[a ,b ]⊆D (a <b ),使得{y |y =f (x ),x ∈M }=M ,则称区间M 为函数f (x )的“等值区间”.给出下列四个函数:①f (x )=2x ;②f (x )=x 3;③f (x )=sin x ;④f (x )=log 2x +1.则存在“等值区间”的函数的个数是( B )A .1个B .2个C .3个D .4个第3讲函数与方程、函数模型及其应用[云览高考]考点统计题型(频率)考例(难度)考点1函数的零点与方程根的分布选择(4)2012天津卷4(B),2012湖南卷9(B),2012湖北卷9(B)考点2二分法求方程的近似解0考点3函数模型及其应用解答(2)2012课程标准卷18(1)A,2012江苏卷17(C) 说明:A表示简单题,B表示中等题,C表示难题.频率为分析2012各省市课标卷情况.二轮复习建议命题角度:从五年来课程标准卷的考情看,该部分的命题通常围绕两个点展开.第一个点是围绕函数图象的交点展开,通过函数图象的交点问题命制综合性较强的试题,如2011年的试题是求“函数y=1x-1的图象与函数y=2sinπx(-2≤x≤4)的图象所有交点的横坐标之和”,把函数的零点问题以图象的交点坐标的形式进行表述,而不直接给出函数考查函数的零点(五年没有一次提到函数零点问题);第二个点是围绕函数建模展开,一般是解答题的一个部分,特别值得指出的是课程标准卷五年来考查的两次函数建模都是与概率统计交汇进行的,这是课程标准卷的一个命题特点,而安徽,陕西和广东等自主命题省份很少把函数图象与性质与其他知识结合.预计2013年上述情况会得到延续,但出现变化的可能性也很大,即有可能直接考查函数的零点,可能在选择题或者填空题中直接考查函数建模,或者在解答题中以函数建模、导数解模为主考查函数模型及其应用.复习建议:该讲的重点是函数与方程的关系,函数零点的存在性定理,函数建模的基本方法,导数在解决函数模型中的应用,复习时要围绕这两个重点内容展开.在第一个点上要注意以数形结合思想为指导,引导学生掌握解决问题的方法;在第二个点上要注意建模的一般过程的训练,使学生掌握函数建模的基本方法.主干知识整合1.函数的零点与方程的根(1)函数的零点与方程根的关系:函数y=f(x)的零点就是方程f(x)=0的实数根,即函数y=f(x)的图象与x轴的交点的横坐标.方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(2)二分法:对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是:(1)审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)检验数学结果是否满足实际情况;(5)实际问题作答:将数学问题的结果转译成实际问题作出解答.要点热点探究► 探究点一 函数的零点和方程根的分布例1 (1)[2012·天津卷] 函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( B )A .0B .1C .2D .3(2)设f (x )是定义在R 上的偶函数,且f (2+x )=f (2-x ),当x ∈[-2,0]时,f (x )=x )22(-1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)恰有4个不同的实数根,则实数a 的取值范围是( D ) A.)1,41( B .(1,4) C .(1,8) D .(8,+∞)[点评] 函数的零点、方程的根,都可以转化为函数图象的交点,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数的一个有效方法.在解决函数零点问题时,既要注意利用函数的图象,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来.式题 (1)已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点个数是( C ) A .2 B .3 C .4 D .5(2)当直线y =kx 与曲线y =e |ln x |-|x -2|有3个公共点时,实数k 的取值范围是( A )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)► 探究点二 二分法求方程的近似解例2 用二分法求方程ln x =1x 在[1,2]上的近似解,取中点c =1.5,则下一个有根区间是[1.5,2][点评] 用二分法求方程近似解时,每一次取中点后,下一个有根区间的判断原则是:若中点函数值为零,则这个中点就是方程的解,若中点函数值不等于零,则下一个有根区间是中点与和这个中点函数值不同号的端点组成的区间.在用二分法求方程的近似解时,有时需要根据精确度确定近似解.► 探究点三 函数的模型及其应用例3 受全球经济疲软的影响,某旅游公司经济效益出现了一定程度的滑坡.现需要对某一景点进行改造升级,从而扩大内需,提高旅游增加值.经过市场调查,旅游增加值y万元与投入x 万元之间满足:y =5150x -ax 2-ln x 10,x 2x -12∈[t ,+∞),其中t 为大于12的常数.当x =10万元时,y =9.2万元.(1)求y =f (x )的解析式和投入x 的取值范围;(2)求旅游增加值y 取得最大值时对应的x 值.[点评] 本题给出了函数的模型,但函数模型中含有未知参数,需要根据已知的试验数据确定未知参数,这也是高考中命制函数建模试题常见的方式之一.在使用导数求解定义域有限制的函数的极值时,一般是先把函数的单调性和极值点求出,再根据函数极值点与函数定义域的相对位置关系进行分类讨论,讨论的标准是函数的极值点在函数定义域内与不在函数的定义域内.实际问题中的函数大多是单峰函数,即在问题的实际范围内函数只有一个极值点,那么这个极值点就是最值点.变式题 某集团为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元)可增加销售额约为-t 2+5t (百万元)(0≤t ≤3).(1)若该集团将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使集团由广告费而产生的收益最大?(2)现在该集团准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x (百万元),可增加的销售额约为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该集团由这两项共同产生的收效最大.规律技巧提炼•规律 在区间(a ,b )上单调的函数,如果在这个区间上存在零点x 0,则只有一个零点,而且区间(a ,x 0)上函数值符号相同,在区间(x 0,b )上函数值同号且与在区间(a ,x 0)的函数值异号.二分法求方程的近似解时,如果初始区间的长度为l ,则计算n 次后得到的近似解其精确度为l2n .•技巧 在判断函数零点个数时,如果一个函数能够分解为两个函数的差,则可以构造两个函数,然后通过研究两个函数图象交点的个数得出函数零点的个数,在解决由函数零点个数求参数范围问题中这种方法更有效.易错•分段函数的零点判断中忽视对分界点的正确处理,实际应用问题中忽视函数的定义域. 命题立意追溯 应用意识——合理转化实际问题为抽象数学问题示例 某驾驶员喝了m 升酒后,血液中的酒精含量f (x )(毫克/毫升)随时间x (小时)变化的规律近似满足表达式⎪⎩⎪⎨⎧>⋅≤≤=-1,)31(5310,5)(2x x x f x x 《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量不得超过0.02毫克/毫升.此驾驶员至少要过___4_____小时后才能开车(不足1小时部分算1小时,结果精确到1小时). [跟踪练] [2012·湖南卷] 某企业接到生产3 000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(1)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间; (2)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.教师备用例题选题理由:例1是一道考查函数与方程的难度极大的题目,这个题目背景是三次方程根与系数的关系,对开阔学生思路有一定的价值;例2考查分段函数,一元二次方程以及求最值的综合,也是一道难度较大的试题;例3重在考查函数解析式的求解以及数形结合思想.这三道题目均可作为探究点一的深化补充.例1 [2012·山东卷] 设函数f (x )=1x,g (x )=ax 2+bx (a ,b ∈R ,a ≠0),若y =f (x )的图象与y=g (x )的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是(B)A .当a <0时,x 1+x 2<0,y 1+y 2>0B .当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0D .当a >0时,x 1+x 2>0,y 1+y 2>0例2 [2012·福建卷] 对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R)恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________⎝ ⎛⎭⎪⎫1-316,0.例3 [2012·天津卷] 已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________. (0,1)∪(1,4)第4讲 不等式与简单的线性规划。
专题01 集合与常用逻辑用语(知识梳理)一、集合1、集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),通常用英语大写字母A 、B 、C 、…来表示。
2、元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a 、b 、c 、…来表示。
注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。
3、空集的含义:不含任何元素的集合叫做空集,记为∅。
4、元素与集合的关系:之间只能用“∈”或“∉”符号连接。
(1)属于:如果a 是集合A 的元素,就说a 属于集合A ,记作A a ∈;(2)不属于:如果a 不是集合A 的元素,就说a 不属于集合A ,记作A a ∉。
5、集合中元素的三个特性:确定性、互异性、无序性。
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。
集合中的元素互不相同。
例:集合},1{a A =,则a 不能等于1。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。
例:}2,1,0{有}1,2,0{、}2,0,1{、}0,2,1{、}1,0,2{、}0,1,2{等六种表示方法。
6、集合的分类:(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合。
7、常见的特殊集合:(1)正整数集*N 或+N ;(2)非负整数集N (即自然数集,包括零);(3)整数集Z (包括负整数、零和正整数);(4)有理数集Q (包括整数集Z 和分数集→正负有限小数或无限循环小数);(5)实数集R (包括所有的有理数和无理数);注意:①}{整数=Z (√);}{全体整数=Z (×);②},,0|),{(R y R x y x y x ∈∈=⋅表示坐标轴上的点集;③},,0|),{(R y R x y x y x ∈∈>⋅表示第一、三象限的点集;④},,0|),{(R y R x y x y x ∈∈<⋅表示第二、四象限的点集;⑤对方程组解的集合应是点集,例:⎩⎨⎧=-=+1323y x y x 解的集合)}1,2{(; 例1-1.判断下列说法是否正确,并说明理由。
专题一:集合、常用逻辑用语、不等式、函数与导数一、选择题1.已知全集U =R ,集合2{|1}M x x =<,2{|0}N x x x =-<,则集合M ,N 的关系用韦恩(Venn )图可以表示为 ( )2.已知()x f 是定义在R 上的奇函数,若()x f 的最小正周期为3,f (1)>0,f (2)=231m m -+,则m 的取值范围是 ( )(A )3(,)2-∞ (B )3(,1)(1,)2-∞ (C )3(1,)2- (D )3(,1)(,)2-∞-+∞ 3.下列函数既是奇函数,又在区间[]1,1-上单调递减的是 ( ) A.()sin f x x = B.()1f x x =-+ C.()1()2x x f x a a -=+ D.2()ln 2xf x x-=+ 4.下列结论:①命题“0,2>-∈∀x x R x ”的否定是“0,2≤-∈∃x x R x ”;②当),1(+∞∈x 时,函数221,x y x y ==的图象都在直线x y =的上方; ③定义在R 上的奇函数()x f ,满足()()x f x f -=+2,则()6f 的值为0.④若函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为12m ≥.其中,正确结论的个数是 ( )A .1B . 2C . 3D . 45.已知,,22,,xy c y x R y x ==+∈+那么c 的最大值为 ( )A .1B .21 C .22 D .41 6.(2011南昌期末)设⎪⎩⎪⎨⎧∈∈=],1[,1]1,0[,)(22e x xx x x f (其中e 为自然对数的底数),则⎰20)(edx x f 的值为( ) A .43 B .35 C .37 D .38 7.已知a 是使表达式2x +1>42-x 成立的最小整数,则方程1-|2x -1|=a x -1实数根的个数为 ( )A .0B .1C .2D .38.已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )A .42-xB .42+xC .2)4(+xD . 2)4(-x9.(2011哈尔滨期末)已知10101x y x y y +-≤⎧⎪-+>⎨⎪≥-⎩,且22448u x y x y =+--+,则u 的最小值为( )A.2B .92 C.2D .1210.(2011黄冈期末)设a ∈R ,函数f (x )=e x +a·e -x 的导函数是f ′( x ),且 f ′( x )是奇函数,若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为 ( ) A.ln 22-B. -ln2C. ln2D.ln 2211.设Q P ,为两个非空实数集合,定义集合⎭⎬⎫⎩⎨⎧∈∈-=⊕Q y P x y x Q P ,,2.{}5,2,0=P {}7,4,2=Q ,Q P ⊕中元素的个数是 ( )A .3B .4C .5D .612.函数)(x f 在定义域R 内可导,若)1()1(x f x f +=-,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设)0(f a =,)21(f b =,)3(f c =,则( )A .c b a <<B .a c b <<C .a b c <<D .b a c << 二、填空题13.设函数⎩⎨⎧+∞∈-∞∈=-),1(log )1,(2)(81x x x x f x ,则满足41)(=x f 的x 值是 .14.函数y =x 2(x >0)的图像在点(a k ,a k 2)处的切线与x 轴的交点的横坐标为a k +1,k N *∈其中,若a 1=16,则a 1+a 3+a 5的值是_____ __.15.在平面直角坐标系中,若不等式组 (a 为常数)所表示的平面区域的面积等于2,则a的值为___ __.16.已知偶函数()()y f x x R =∈在区间[1,0]-上单调递增,且满足(1)(1)0f x f x -++=,给出下列判断:(1)f (5)=0; (2)f (x )在[1,2]上减函数;(3)()x f 的图像关与直线1x =对称; (4)函数()x f 在0x =处取得最大值; (5)函数()y f x =没有最小值, 其中正确的序号是 . 三、解答题17.命题P :对数)572(log 2-+-t t a (a >0,a ≠1)有意义;Q :关于实数t 的不等式2(3)(2)0t a t a -+++<. (1)若命题P 为真,求实数t 的取值范围;(2)若命题P 是命题Q 的充分不必要条件,求实数a 的取值范围.18.已知函数()x f =ln x -ax(a ∈R). (1)当a ∈[-e ,-1]时,试讨论f (x )在[1,e ]上的单调性; (2)若()x f < x 在[1,+∞)上恒成立,试求a 的取值范围.19.(2012佛山一中上学期期中考试)设函数)1ln()(2x a x x f ++=有两个极值点12x x 、,且12x x <.(I )求a 的取值范围,并讨论()f x 的单调性; (II )求)(2x f 的取值范围.20.已知函数()x f =3213x ax b -+在x = -2处有极值. (Ⅰ)求函数()x f 的单调区间;(Ⅱ)若函数()x f 在区间[-3,3]上有且仅有一个零点,求b 的取值范围.21.已知xxx g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,.a R ∈ (Ⅰ)讨论1=a 时, ()x f 的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,1()()2f xg x >+;(Ⅲ)是否存在实数a,使()xf的最小值是3,若存在,求出a的值;若不存在,说明理由.参考答案1.B. 2.C 3.D 4.C 5.B 6.C 7.C 8.D 9.B 10.C 11.B 12.D 13. 3 14.21 15. 3 16.(1)(2)(4)17.解析:(1)由对数式有意义得,512t<<.(2)命题P 是命题q 的充分不必要条件 ∴512t <<是不等式2(3)(2)0t a t a -+++<解集的真子集.法一:因方程2(3)(2)0t a t a -+++=两根为1,2a +故只需522a +> 解得:12a >.法二:令2()(3)(2)f t t a t a =-+++,因5(1)0,()02f f =<故只需 解得:12a >. 18.【解析】(1)f(x)的定义域为(0,+∞),2221(),0a x af x x x x x+'=+=>显然 当-e≤a≤-1时,1≤-a≤e ,令f′(x)=0得x=-a ,于是当1≤x≤-a 时,f′(x)≤0, ∴f(x)在[1,-a ]上为减函数; 当-a≤x≤e 时,f′(x)≥0, ∴f(x)在[-a,e ]上为增函数.综上可知,当-e≤a≤-1时f(x)在[1,-a ]上为减函数,在[-a,e ]上为增函数. (2)由f(x)<x 得lnx-ax<x . ∵x≥1, ∴a>xlnx-x 2. 令g(x)=xlnx-x 2,要使a>xlnx-x 2在[1,+∞)上恒成立,只需a>g(x)max , g′(x)=lnx -2x+1,令φ(x)=lnx -2x+1,则φ′(x)=1x-2,∵x≥1,∴φ′(x)<0,∴φ(x)在[1,+∞)上单调递减, ∴φ(x)≤φ(1)=-1<0,因此g′(x)<0,故g(x)在[1,+∞)上单调递减,则g(x)≤g(1)=-1, ∴a 的取值范围是(-1,+∞).19.解答:(I )()2222(1)11a x x a f x x x x x++'=+=>-++ 令2()22g x x x a =++,其对称轴为12x =-。
第五讲 导数及其应用 (推荐时间:50分钟)
一、选择题
1.已知函数f (x )=k cos x 的图象经过点P (π
3,1),则函数图象上在点P 的切线斜率等于( )
A .1
B. 3 C .- 3
D .-1
2.(2012·重庆)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是
( )
A .函数f (x )有极大值f (2)和极小值f (1)
B .函数f (x )有极大值f (-2)和极小值f (1)
C .函数f (x )有极大值f (2)和极小值f (-2)
D .函数f (x )有极大值f (-2)和极小值f (2)
3.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为( )
A .-15
B .0
C.15 D .5 4.设a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数是f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为
( )
A .y =-2x
B .y =3x
C .y =-3x
D .y =4x 5.函数y =f (x )在定义域(-3
2,3)内可导,其图象如图所示,记y =f (x )的导函数为y =f ′(x ),
则不等式f ′(x )≤0的解集为
( )
A .[-1
3,1]∪[2,3)
B .[-1,12]∪[43,8
3]
C .[-32,1
2]∪[1,2]
D .[-32,-13]∪[12,4
3]
6.(2011·福建)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大
值等于
( )
A .2
B .3
C .6
D .9
7.(2011·江西)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为
( )
A .(0,+∞)
B .(-1,0)∪(2,+∞)
C .(2,+∞)
D .(-1,0)
8.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值等于
( )
A .1
B .2
C .0
D. 2
二、填空题
9.(2012·广东)曲线y =x 3-x +3在点(1,3)处的切线方程为________.
10.已知函数f (x )=f ′(π4)cos x +sin x ,则f (π
4
)的值为______.
11.设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,
且g (-3)=0,则不等式f (x )g (x )<0的解集是____________.
12.某名牌电动自行车的耗电量y 与速度x 之间有如下关系:y =13x 3-39
2
x 2-40x (x >0),为使
耗电量最小,则速度应定为________. 三、解答题
13.(2011·福建)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售
价格x (单位:元/千克)满足关系式y =a
x -3
+10(x -6)2,其中3<x <6,a 为常数.已知销
售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;
(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.
14.(2011·江西)设f (x )=-13x 3+12
x 2+2ax .
(1)若f (x )在(2
3
,+∞)上存在单调递增区间,求a 的取值范围;
(2)当0<a <2时,f (x )在[1,4]上的最小值为-16
3
,求f (x )在该区间上的最大值.
答案
1.C 2.D 3.B 4.A 5.A 6.D 7.C 8.B 9.2x -y +1=0 10.1
11. (-∞,-3)∪(0,3) 12.40
13.解 (1)因为x =5时,y =11,所以a
2
+10=11,所以a =2.
(2)由(1)可知,该商品每日的销售量y =2
x -3
+10(x -6)2,
所以商场每日销售该商品所获得的利润
f (x )=(x -3)[2
x -3+10(x -6)2]=2+10(x -3)(x -6)2,
3<x <6.
从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).
于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:
由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.
答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.
14.解 (1)f ′(x )=-x 2+x +2a =-(x -12)2+1
4
+2a .
当x ∈[23,+∞)时,f ′(x )的最大值为f ′(23)=2
9+2a .
令29+2a >0,得a >-19
. 所以当a >-19时,f (x )在(2
3,+∞)上存在单调递增区间.
即f (x )在(23,+∞)上存在单调递增区间时,a 的取值范围为(-1
9,+∞).
(2)令f ′(x )=0,得两根x 1=
1-
1+8a 2,x 2=1+1+8a
2
, 所以f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增. 当0<a <2时,有x 1<1<x 2<4,所以f (x )在[1,4]上的最大值为f (x 2).
又f (4)-f (1)=-27
2
+6a <0,即f (4)<f (1).
所以f (x )在[1,4]上的最小值为f (4)=8a -403=-16
3.
得a =1,x 2=2,
从而f (x )在[1,4]上的最大值为f (2)=10
3
.。