7.3 电力系统的序网络
- 格式:doc
- 大小:208.00 KB
- 文档页数:5
第七章 对称分量法及电力系统元件各序参数和等值电路 7-1 在三相电路中,对于任意一组不对称的三相相量,总可以分解为正序、负序和零序三组三相对称分量之和,这就是对称分量法。
⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫==========∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙00222240222120211120112124010000a cb a a jc a a j b a a j c a a j b I I I I I e I I I e I I I e I I I eI αααα 将方程式写成矩阵形式⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙0212211111a a a c b a I I I I I I αααα 求解方程得到⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=∙∙∙∙∙∙∙∙∙∙∙∙c b a a c b a a c b a a I I I I I I I I I I I I 31313102221αααα将方程式写成矩阵形式⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙c b a a a a I I I I I I 111113122021αααα 7-2 变压器零序励磁电抗与变压器的贴心结构密切相关。
对于由三个单项变压器组成的三相变压器组,每相的零序主磁通与正序主磁通一样,都有独立的铁芯回路,因此,零序励磁电抗与正序的相等。
对于三相四柱式变压器,零序主磁通也能在铁芯中形成回路,磁阻很小,因而零序励磁电抗的数值很大。
以上两种变压器,在短路计算中都可以当做零序励磁电抗为无穷大,即忽略励磁电流,将励磁支路断开。
对于三相三柱式变压器,由于三相零序磁通大小相等、相位相同,因而不能像正序(或负序)主磁通那样,一相主磁通可以经过另外两相的铁芯形成回路。
它们被迫经过绝缘介质和外壳形成回路,遇到很大的磁阻。
2023年电气工程基础上册(陈慈萱著)课后习题答案下载电气工程基础上册(陈慈萱著)课后答案下载电气工程基础为21世纪高等学校规划教材。
本书共分10章,主要内容包括电力工程概论、电力网及其分析、变电站的一次设备、电气主接线与配电装置、电力系统短路分析、电气设备的选择、电力系统继电保护、二次系统与自动装置、接地与电气安全以及电力系统过电压保护。
本书全面论述了有关电力网分析、电力工程设计、电气设备制造与安装、电力系统运行等方面的基本知识,具有内容全面、实用性强资料最新、方便教学等特点。
书后还附有电力工程设计常用表格、课程设计参考题目以及习题参考答案。
本书共分12章,主要内容包括电力系统概述、电力系统设备、电气主接线、电气二次接线、电力系统的负荷、电力网络的稳态分析、电力系统的短路计算、电力系统的继电保护、电力系统的安全保护、电力系统电气设备的选择、电力工程设计以及电力系统运行。
本书以电力系统为主,全面论述了发电、输变电和配电系统的构成、设计、运行以及管理的基本理论和设计计算方法,具有内容全面、实用性强、方便教学等特点。
本书可供普通高等院校电气工程及其自动化、自动化等相关专业使用,同时也可供从事发电厂和变电站的电气设计、运行和管理的电气工程技术人员参考。
电气工程基础上册(陈慈萱著):内容简介第1章电力系统概述11.1电力系统的发展历程1 1.2电力系统基本概念11.3发电系统21.3.1发电能源简介21.3.2火力发电31.3.3水力发电61.3.4风力发电91.3.5核能发电101.3.6太阳能发电141.3.7生物质发电171.3.8潮汐发电191.4电能的质量指标201.5电力系统的电压等级22 1.6变电站及类型23__小结24习题25第2章电力系统设备262.1汽轮发电机262.2水轮发电机262.3风力发电机272.4输变电设备292.5配电装置322.6高压电器362.6.1断路器362.6.2互感器402.7接地保护44__小结47习题47第3章电气主接线483.1电气主接线概念483.2电气主接线的形式483.2.1概述483.2.2有汇流母线的电气主接线49 3.2.3无汇流母线的电气主接线54 3.3主变压器和主接线的选择56 3.4工厂供电系统主接线573.5建筑配电系统接线593.5.1城网主接线603.5.2农网主接线61__小结62习题62第4章电气二次接线634.1二次接线基本概念634.1.1原理接线图644.1.2安装接线图654.2控制回路674.2.1对控制回路的一般要求684.2.2控制回路的组成684.2.3控制回路和信号回路操作过程分析70 4.3信号回路724.3.1位置信号724.3.2事故信号724.3.3预告信号724.4变电站的综合自动化734.4.1变电站自动化的含义734.4.2变电站综合自动化的发展历程734.4.3变电站综合自动化的特点734.4.4变电站综合自动化的基本功能74 4.4.5变电站综合自动化的结构75__小结77习题77第5章电力系统的负荷795.1电力系统负荷的分类795.2电力系统负荷曲线805.3电力系统负荷的计算825.4电网损耗的计算885.5用户负荷的计算905.6尖峰电流的计算915.7功率因数的确定与补偿925.8电力系统负荷的特性955.8.1负荷的静特性与动特性955.8.2负荷的综合特性97__小结98习题99第6章电力网络的稳态分析1006.1输电线路的参数计算与等值电路1006.1.1参数计算1006.1.2等值电路1036.2变压器的参数计算与等值电路1046.2.1双绕组电力变压器1046.2.2三绕组电力变压器1066.2.3自耦变压器1096.2.4分裂绕组变压器1106.3电力网络元件的电压和功率分布计算1116.3.1输电线路1116.3.2变压器1136.4电力网络的无功功率和电压调整1146.4.1无功功率调整1146.4.2中枢点电压管理1176.4.3电力系统调压措施1196.5潮流计算1246.5.1同电压等级开式电力网络1246.5.2多电压等级开式电力网络1266.5.3两端供电电力网络功率分布1276.5.4考虑损耗时两端供电电力网络功率和电压分布1286.6直流输电简介1296.6.1艰难的发展史1296.6.2独特的功能1306.6.3两端直流输电系统1306.6.4直流输电特点及应用范围1316.6.5高压直流输电系统的主要电气设备1326.6.6光明的前景133__小结133习题134第7章电力系统的短路计算1357.1电力网络短路故障概述1357.2标幺值1377.3无限大功率电源供电网的三相短路电流计算141 7.4有限容量电力网三相短路电流的实用计算146 7.5电力系统各序网络的建立1547.6不对称短路的计算1587.7电力网短路电流的效应159__小结162习题162第8章电力系统的继电保护1648.1继电保护的基本概念1648.1.1继电保护的任务1658.1.2对继电保护装置的要求1658.2继电保护原理1678.3常用保护装置1678.4电流保护1698.4.1单侧电源电网相间短路的电流保护1698.4.2多侧电源电网相间短路的方向性电流保护174 8.4.3大电流接地系统零序电流保护1768.4.4小电流接地系统零序电流保护1808.5距离保护1838.5.1距离保护的基本原理1838.5.2距离保护的主要组成部分1848.5.3影响距离保护正常工作的因素及其防止方法184 8.5.4距离保护的整定1918.6电力系统中变压器的保护1968.6.1变压器的纵差动保护1978.6.2变压器的电流和电压保护2008.7电力电容器的`保护2058.8线路的自动重合闸2098.8.1自动重合闸的要求和特点2098.8.2单侧电源线路的三相一次自动重合闸2108.8.3双侧电源线路的三相一次自动重合闸2118.8.4具有同步检定和无电压检定的自动重合闸2138.8.5自动重合闸动作时限选定原则2148.8.6自动重合闸与继电保护的配合2158.8.7单相自动重合闸2168.8.8综合自动重合闸简介2188.8.9自动重合闸在750kV及以上特高压线路上的应用218 __小结219习题220第9章电力系统的安全保护2219.1防雷保护2219.1.1雷电的基本知识2219.1.2防雷保护装置2229.1.3输电线路的防雷保护2259.1.5变电站的防雷保护2319.2绝缘配合2349.3电气装置的接地236__小结237习题238第10章电力系统电气设备的选择23910.1电气设备选择遵循的条件23910.2高压电器的选择24010.2.1按正常工作条件选择高压电气设备240 10.2.2按短路条件校验24110.3低压电器的选择24210.4高压断路器的选择24510.5隔离开关及重合器和分段器的选择246 10.6互感器的选择24710.6.1电流互感器的选择24710.6.2电压互感器的选择24910.7限流电抗器的选择24910.8电力系统母线和电缆的选择25210.8.1母线的选择与校验25210.8.2电缆的选择与校验254__小结255习题256第11章电力工程设计25711.1电气工程绘图基本知识25711.2电气设备图形符号26011.3电力工程CAD介绍26911.3.1软件工程术语26911.3.2系统环境26911.4工厂供电设计示例27311.4.1工厂供电的意义和要求273 11.4.2工厂供电设计的一般原则274 11.4.3设计内容及步骤27411.4.4负荷计算及功率补偿27511.4.5变压器的选择27711.4.6短路计算27711.4.7导线、电缆的选择28011.4.8高、低压设备的选择28111.4.9变压器的继电保护28111.4.10变压器的瓦斯保护28311.4.11二次回路操作电源和中央信号装置28411.4.12电测量仪表与绝缘监视装置28711.4.13防雷与接地28811.5变电站电气主接线设计290__小结292习题292第12章电力系统运行29312.1有功功率及频率的调整29312.2无功功率及电压的调整29612.3系统运行的稳定性30612.4电网运行的经济性308__小结311习题311电气工程基础上册(陈慈萱著):目录点击此处下载电气工程基础上册(陈慈萱著)课后答案。
2.7电力系统各序网络的建立2.7.1概述当电力系统发生不对称短路时,三相电路的对称条件受到破坏,三相电路就成为不对称的了。
但是,应该看到,除了短路点具有某种三相不对称的部分外,系统其余部分仍然可以看成是对称的。
因此,分析电力系统不对称短路可以从研究这一局部的不对称对电力系统其余对称部分的影响入手。
现在根据图7-32所示的简单系统发生单相接地短路(a 相)来阐明应用对称分量法进行分析的基本方法。
设同步发电机直接与空载的输电线路相连,其中性点经阻抗接地。
若在a 相线路上某一点发生接地故障,故障点三相对地阻抗便出现不对称,短路相0Z a =,其余两相对地阻抗则不为零,各相对地电压亦不对称,短路相0U a =,其余两相不为零。
但是,除短路点外,系统其余部分每相的阻抗仍然相等。
可见短路点的不对称是使原来三相对称电路变为不对称的关键所在。
因此,在计算不对称短路时,必须抓住这个关键,设法在一定条件下,把短路点的不对称转化为对称,使由短路导致的三相不对称电路转化为三相对称电路,从而可以抽取其中的一相电路进行分析、计算。
实现上述转化的依据是对称分量法。
发生不对称短路时,短路点出现了一组不对称的三相电压(见图7-33(a)) 。
这组三相不对称的电压,可以用与它们的大小相等、方向相反的一组三相不对称的电势来替代,如图7-33(b) 所示。
显然这种情况同发生不对称短路的情况是等效的。
利用对称分量法将这组不对称电势分解为正序、负序及零序三组对称的电势(见图7-33(c)) 。
由于电路的其余部分仍然保持三相对称,电路的阻抗又是恒定的,因而各序具有独立性。
根据叠加原理,可以将图7-33(c)分解为图7-33(d)(e)(f) 所示的三个电路。
图7-33(d) 的电路称为正序网络,其中只有正序电势在起作用,包括发电机电势及故障点的正序电势。
网络中只有正序电流,它所遇到的阻抗就是正序阻抗。
图7-33(e)的电路称为负序网络。
由于短路发生后,发电机三相电势仍然是对称的,因而发电机只产生正序电势,没有负序和零序电势,只有故障点的负序分量电势在起作用,网络中只有负序电流,它所遇到的阻抗是负序阻抗。
电力系统分析第二版(孟祥萍著)课后答案下载电力系统分析(第2版)内容介绍第一篇电力系统的稳态分析第1章电力系统的基本概念1.1 电力系统的组成和特点1.2 电力系统的电压等级和规定1.3 电力系统的接线方式1.4 电力线路的结构小结思考题与习题第2章电力网各元件的参数和等值电路2.1 输电线路的参数2.2 输电线路的等值电路2.3 变压器的等值电路及参数2.4 标么制小结思考题与习题第3章简单电力系统的潮流计算3.1 基本概念3.2 开式网络电压和功率分布计算3.3 简单闭式网络的电压和功率分布计算小结思考题与习题第4章电力系统的有功功率平衡与频率调整 4.1 概述4.2 自动调速系统4.3 电力系统的频率特性4.4 电力系统的频率调整4.5 电力系统中有功功率的平衡小结思考题与习题第5章电力系统的无功功率平衡与电压调整 5.1 电压调整的必要性5.2 电力系统的无功功率平衡5.3 电力系统的电压管理5.4 电压调整的措施小结思考题与习题第6章电力系统的经济运行6.1 电力系统负荷和负荷曲线6.2 电力系统有功功率负荷的经济分配6.3 电力网中的电能损耗6.4 降低电力网电能损耗的措施小结思考题与习题第二篇电力系统的电磁暂态第7章同步发电机的基本方程7.1 同步发电机的原始方程7.2 d、q、0坐标系统的发电机基本方程7.3 同步电机的稳态运行小结思考题与习题第8章电力系统三相短路的暂态过程8.1 短路的基本概念8.2 无限大功率电源供电系统的三相短路分析8.3 无阻尼绕组同步发电机突然三相短路的分析 8.4 计及阻尼绕组的同步电机突然三相短路分析 8.5 强行励磁对同步电机三相短路的影响小结思考题与习题第9章电力系统三相短路电流的实用计算9.1 交流分量电流初始值的计算9.2 起始次暂态电流和冲击电流的计算9.3 计算曲线法9.4 转移阻抗及电流分布系数小结思考题与习题第10章电力系统各元件的序阻抗和等值电路 10.1 对称分量法10.2 对称分量法在不对称故障分析中的应用10.3 同步发电机的负序和零序电抗10.4 异步电动机的负序电抗和零序电抗10.5 变压器的零序电抗10.6 架空输电线的零序阻抗10.7 电缆线路的零序阻抗10.8 电力系统的序网络小结思考题与习题第11章电力系统简单不对称故障的分析和计算 11.1 单相接地短路11.2 两相短路11.3 两相短路接地11.4 正序等效定则的应用11.5 非故障处电流和电压的计算11.6 非全相运行的分析计算小结思考题与习题第三篇电力系统的机电暂态第12章电力系统稳定性概述12.1 概述12.2 同步发电机组的转子运动方程12.3 简单电力系统的功角特性12.4 复杂电力系统的功角特性12.5 同步发电机自动调节励磁系统小结思考题与习题第13章电力系统静态稳定13.1 简单电力系统的静态稳定13.2 负荷的静态稳定13.3 小干扰法分析电力系统静态稳定13.4 自动调节励磁系统对静态稳定的影响 13.5 提高电力系统静态稳定的措施小结思考题与习题第14章电力系统暂态稳定14.1 电力系统暂态稳定概述14.2 简单电力系统的暂态稳定14.3 复杂电力系统暂态稳定的分析计算 14.4 提高电力系统暂态稳定性的措施14.5 电力系统的异步运行小结思考题与习题第四篇电力系统计算的计算机算法第15章电力网络的数学模型15.1 电力网络的基本方程式15.2 节点导纳矩阵及其算法15.3 节点阻抗矩阵及其算法小结思考题与习题第16章电力系统故障的计算机算法16.1 概述16.2 对称故障的计算机算法16.3 简单不对称故障的计算机算法小结思考题与习题第17章电力系统潮流计算的计算机算法 17.1 概述17.2 潮流计算的基本方程17.3 牛顿-拉夫逊法潮流计算17.4 pq分解法潮流计算小结思考题与习题第18章电力系统稳定的计算机算法18.1 简化模型的暂态稳定计算18.2 简化模型的静态稳定计算小结思考题与习题附录附录1 程序清单1.1 形成节点导纳矩阵1.2 形成节点阻抗矩阵1.3 对称故障的计算1.4 用计算曲线计算对称故障1.5 简单不对称故障的计算1.6 牛顿-拉夫逊法潮流计算1.7 户口分解法潮流计算1.8 分段法确定发电机转子摇摆曲线1.9 小干扰法判断系统的静态稳定附录2 短路电流周期分量计算曲线数字表参考文献电力系统分析(第2版)目录《电力系统分析(第2版)》是教育科学“十五”国家规划课题研究成果之一。
7.3 电力系统的序网络
正确制订电力系统的各序等值网络,是不对称短路计算的重要环节。
应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。
为此,应根据电力系统的接线图、中性点接地情况等原始资料,在故障点分别施加各序电势,从故障点出发,逐步画出各序电流流通的序网络。
需要注意的是,凡是某一序电流能够流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。
根据以上原则,结合图7-25来说明各序网络的制订。
图7-25 正、负序网络的制订
(a) 电力系统接线图;(b) 正序网络及简化网络;(c) 负序网络及简化网络
1.正序网络
正序网络与三相短路时的等值网络基本相同,但须在短路点引入代替故障条件的正序电势,即短路点的电压不为零而等于。
所有的同步发电机和调相机,以及用等值电源表示的综合负荷,都是正序网络的电
源(一般用次暂态或暂态参数表示)。
除中性点接地阻抗、空载线路(不计导纳时)以及空载变压器(不计励磁电流时)外,电力系统各元件均应包括在正序网络中,并用正序参数和等值电路表示。
图7-25(b)是图7-25(a)所示系统在点发生不对称短路时的正序网络,图中不包括空载线路、空载变压器以及变压器的侧电抗及其中性点接地电抗。
从故障端口看正序网络,它是一个有源网络,可以简化为戴维南等值电路。
2.负序网络
负序电流流通情况和正序电流的相同,因此,同一电力系统的负序网络与正序网络基本相同,但是所有电源的负序电势为零,在短路点须引入代替故障条件的负序电势,各元件的电抗应为负序电抗,如图
7-25(c)所示。
即只须把正序网络中的电源电势短接并在短路点施加负序电压,各元件用负序电抗表示,
就得到了负序网络。
从故障端口看负序网络,它是一个无源网络,也可以简化为戴维南等值电路。
3.零序网络
发生接地短路后,有无零序网络和零序网络的结构决定于网络中零序电流的流通情况,而零序电流的流通情况与短路点的位置和变压器绕组的接线方式以及中性点是否接地有关。
因此,零序网络与正、负序网络不同。
零序网络中,电源无零序电势而被短接,短路点的零序电压为,各元件用零序电抗表示。
在不对称短路点施加代表故障边界条件的零序电势时,由于三相零序电流的大小及相位相同,它们必须经大地或
架空地线(电缆包护层等)才能构成通路,因此零序电流的流通与网络的结构,特别是变压器的接线方式及中性点的接地方式有关。
图7-26(a)画出了图7-25(a)所示系统在点发生不对称接地短路时的三线零序电流回路图,图中箭头表示零序电流流通的方向。
由图可见,由于三相零序电流大小相等、方向相同,它们必须经大地才能形成回路。
因此,系统中至少要有两个接地点,方能形成零序电流的通路,如图中的回路和回路;此外,空载线路和空载变压器也可能有零序电流流通,如图中的变压器及其相连线路就有零序电流通路。
图7-26(b)是相应的零序网络。
比较正(负)序和零序网络可以看到,虽然发电机、、和变压器均包含在正(负)序网络中,但因靠近发电机的变压器绕组均为接线且的中性点未接地,不能流通零序电流,所以这些元件均不包括在零序网络中。
相反,线路和变压器因为空载不能流通正(负)电流而不包括在正(负)序网络中,但由于中性点经电抗接地,的中性点接地而能够流通零序电流,所以它们包括在零序网络中。
同样,从故障端口看零序网络,它是一个无源网络,也可以简化为戴维南等值电路。
图7-26 零序网络的制订
(a) 零序网络回路图;(b) 零序网络及简化网络
零序网络的结构与短路点的位置密切相关。
如图7-25(a)所示系统中,在点无论发生何种短路,由于全网无零序电流通路,故无零序网络。
又如在点短路,零序网络仅由发电机的零序电抗组成。
正确制订零序网络的关键是注意变压器绕组的接线方式和中性点的接地情况。
当变压器的中性点经电抗
接地时,在以一相表示的零序等值网络中,该电抗应与变压器同侧绕组的电抗相串联,并以表示之。
例7-1 试制订图7-27(a)所示系统在点发生不对称接地短路时的各序网络。
图7-27 例4-4
(a) 系统图;(b) 正序网络; (c) 负序网络; (d) 零序网络其正序网络、负序网络、零序网络如图(b)、(c)、(d)所示。
例7-2 试制订图7-28(a)所示系统在点发生不对称接地短路时的零序网络。
其零序网络如图(b)所示。
图7-28 例4-5 (a) 系统图;(b) 零。