勾股定理习题
- 格式:doc
- 大小:78.26 KB
- 文档页数:4
勾股定理的练习题(打印版)# 勾股定理练习题## 一、选择题1. 勾股定理适用于哪种形状的三角形?- A. 直角三角形- B. 等边三角形- C. 等腰三角形- D. 任意三角形2. 直角三角形的两条直角边分别为3和4,斜边的长度是多少?- A. 5- B. 6- C. 7- D. 8## 二、填空题1. 如果直角三角形的两条直角边分别为a和b,斜边为c,那么根据勾股定理,c的平方等于______。
2. 已知直角三角形的斜边长为13,一条直角边长为5,另一条直角边的长度是______。
## 三、计算题1. 一个直角三角形的两条直角边分别为6厘米和8厘米,求斜边的长度。
2. 已知一个直角三角形的斜边长为10厘米,一条直角边长为6厘米,求另一条直角边的长度。
## 四、应用题1. 一个梯形的上底为3米,下底为5米,高为4米。
如果将这个梯形分成两个直角三角形,求这两个直角三角形的斜边长度。
2. 一个建筑物的高为50米,从地面到建筑物顶部的直线距离为60米。
求建筑物底部到直线投影点的水平距离。
## 五、证明题1. 证明在一个直角三角形中,斜边是最长的边。
2. 证明勾股定理在等腰直角三角形中同样适用。
注意:请在答题纸上作答,并确保书写清晰、整洁。
答案:一、选择题1. A2. A二、填空题1. a² + b²2. 12三、计算题1. 斜边长度= √(6² + 8²) = √(36 + 64) = √100 = 10厘米2. 另一条直角边长度= √(10² - 6²) = √(100 - 36) = √64 =8厘米四、应用题1. 两个直角三角形的斜边长度分别为:√(3² + 4²) = √(9 + 16) = √25 = 5米2. 水平距离= √(60² - 50²) = √(3600 - 2500) = √1100 ≈ 33.1665米五、证明题1. 略2. 略请同学们认真审题,仔细作答,确保答案的准确性。
勾股定理全章练习题一、选择题1. 在直角三角形ABC中,∠C为直角,若AC=3,BC=4,则AB的长度为()A. 5B. 6C. 7D. 82. 已知直角三角形的一条直角边长为5,斜边长为13,则另一直角边长为()A. 12B. 9C. 8D. 63. 若直角三角形的两直角边长分别为6和8,则其面积是()A. 24B. 28C. 32D. 36二、填空题1. 在直角三角形ABC中,∠C为直角,若AC=5,BC=12,则AB的长度为______。
2. 已知直角三角形的斜边长为10,一条直角边长为6,则另一直角边长为______。
3. 若直角三角形的面积为30,且一条直角边长为5,则斜边长为______。
三、解答题1. 在直角三角形ABC中,∠C为直角,AB=13,BC=5,求AC的长度。
2. 已知直角三角形的一条直角边长为8,斜边长为17,求另一直角边长。
3. 若直角三角形的两直角边长分别为9和12,求其面积。
4. 在直角三角形ABC中,∠C为直角,AB=25,AC=15,求BC的长度。
5. 已知直角三角形的面积为48,且斜边长为13,求一条直角边长。
四、应用题1. 一块直角三角形菜地,已知较短的直角边长为30米,斜边长为50米,求菜地的面积。
2. 有一座山,山顶到山脚的直线距离为300米,沿着山坡走到山顶的路径长为400米,求山的高度。
3. 在一个长方形花园里,对角线的长度为50米,已知一条边的长度为40米,求另一条边的长度。
五、判断题1. 若直角三角形的两条直角边长分别为7和24,则斜边长必定为25。
()2. 在直角三角形中,斜边是最长的边,因此斜边的长度一定大于任意一条直角边的长度。
()3. 如果一个三角形的两边长分别为8和15,那么这个三角形不可能是直角三角形。
()六、作图题1. 画出一个直角三角形,其中一条直角边长为4cm,斜边长为6cm,并标出直角。
2. 在同一平面直角坐标系中,画出两个直角三角形,使它们的斜边分别位于坐标轴上,且一个直角三角形的直角边长为3和4,另一个直角三角形的直角边长为5和12。
勾股定理练习题一、根底达标 :1.以下说法正确的选项是〔〕A. 假设 a 、b、c 是△ ABC的三边,那么 a2+b2=c2;B.假设 a 、b、c 是 Rt△ABC的三边,那么 a2+b2=c2;C. 假设 a 、b、c 是 Rt△ABC的三边,A 90 ,那么a2+b2=c2;222D. 假设 a 、b、c 是 Rt△ABC的三边,C 90 ,那么a+b=c.2.Rt △ABC的三条边长分别是a、b、c,那么以下各式成立的是〔〕A.a b c B. a b c C. a b c D. a2b2 c 2 3.如果 Rt△的两直角边长分别为k2-1,2k〔k >1 〕,那么它的斜边长是〔〕A、2kB、k+1C、k2- 1D、k2+14. a,b,c 为△ ABC三边,且满足 (a 2-b2)(a 2+b2-c2 ) =0,那么它的形状为〔〕A. 直角三角形B. 等腰三角形C. 等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为三角形的周长为〔〕A.121B.1206.△ABC中,AB=15,AC=13,高A.42B.32C9,另两边为连续自然数,那么直角C .90D.不能确定AD=12,那么△ABC的周长为〔〕.42 或32D.37或337.※直角三角形的面积为 S ,斜边上的中线长为 d ,那么这个三角形周长为〔〕〔A〕d2S 2d〔〕 d 2S d〔C〕2 d2BS 2d〔〕 2 d 2S dD8、在平面直角坐标系中,点 P的坐标是 (3,4),那么 OP的长为〔〕A:3B:4C:5D: 79.假设△ ABC中,AB=25cm,AC=26cm高 AD=24,那么 BC的长为〔〕A.17 B.3 C.17或 3 D.以上都不对10. a、b、c 是三角形的三边长,如果满足(a 6)2 b 8 c 100那么三角形的形状是〔〕A:底与边不相等的等腰三角形B:等边三角形C:钝角三角形D:直角三角形11.斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是.12.等腰三角形的腰长为 13,底边长为 10,那么顶角的平分线为__ .13.一个直角三角形的三边长的平方和为 200,那么斜边长为14.一个三角形三边之比是10 : 8 : 6 ,那么按角分类它是三角形.15.一个三角形的三边之比为 5∶12∶13,它的周长为 60,那么它的面积是___ .22216. 在 Rt△ABC中,斜边 AB=4,那么 AB+BC+AC=_____.17.假设三角形的三个内角的比是1: 2 : 3 ,最短边长为1cm,最长边长为2cm ,那么这个三角形三个角度数分别是,另外一边的平方是.18.如图,ABC中,C90 ,BA 15 ,AC12 ,以直角边 BC 为直径作半圆,那么这个半圆的面积是.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是.BCA二、综合开展 :1.如图,一个高4m、宽3m的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边 AC=6cm,BC=8cm,现将直角边AC 沿∠ CAB的角平分线 AD折叠,使它落在斜边 AB 上,且与 AE重合,你能求出 CD的长吗?CDB AE3. 一个三角形三条边的长分别为15cm,20cm,25cm,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树 12m,高 8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民XX国道路交通管理条例〞规定:小汽车在城街路上行驶速度不得超过 70 km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方 30m处,过了 2s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?小汽车小汽车BCA观测点答案 :一、根底达标1. 解析 : 利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案:D.2. 解析:此题考察三角形的三边关系和勾股定理.答案: B.3.解析:设另一条直角边为x ,那么斜边为〔 x+1〕利用勾股定理可得方程,可以求出x .然后再求它的周长 . 答案: C .4.解析:解决此题关键是要画出图形来,作图时应注意高 AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案: C.5.解析 : 勾股定理得到:17 2 82 152 ,另一条直角边是 15,1 15 860cm 2所求直角三角形面积为 2.答案:60cm 2.6.解析:此题目主要是强调直角三角形中直角对的边是最长边, 反过来也是成立.答案 : a 2b 2c 2 ,c ,直角,斜,直角.7.解析 : 此题由边长之比是10 : 8 : 6 可知满足勾股定理,即是直角三角形.答案:直角. 8.解析:由三角形的内角和定理知三个角的度数 , 断定是直角三角形.答案:30 、6090,3.9.解析:由勾股定理知道:BC 2 AB 2 AC 2152 122 92,所以以直角边BC为直径的半圆面积为 10.125 π .答案: 10.125 π .10.解析 : 长方形面积长×宽,即12 长× 3,长4 ,所以一条对角线长为5.、9答案: 5cm .二、综合开展11.解析:木条长的平方=门高长的平方 +门宽长的平方.答案: 5m .12解析:因为 15 2202 252 ,所以这三角形是直角三角形,设最长边〔斜边〕上的高为xcm ,由直角三角形面积关系,可得115201 25 x ,∴x12 .答案:12cm2213.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出 .答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为 5m,所以矩形塑料薄膜的面积是:5× 20=100(m 2).14.解析:此题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是 13m ,两再利用时间关系式求解 .答案: 6.5s .15.解析:此题和 14 题相似,可以求出 BC的值,再利用速度等于路程除以时间后比拟.BC=40米,时间是2s,可得速度是20m/s=72km/h >70 km/h.答案:这辆小汽车超速了.。
勾股定理基础练习题一、选择题1. 在直角三角形中,若一条直角边的长度为3,另一条直角边的长度为4,则斜边的长度为()。
A. 5B. 6C. 7D. 82. 已知直角三角形的斜边长度为10,一条直角边长度为6,则另一条直角边的长度为()。
A. 8B. 9C. 10D. 113. 下列选项中,符合勾股定理的是()。
A. 三角形三边长度分别为3、4、6B. 三角形三边长度分别为5、12、13C. 三角形三边长度分别为6、8、10D. 三角形三边长度分别为7、24、25二、填空题1. 在直角三角形ABC中,∠C为直角,AC=3,BC=4,则AB=______。
2. 已知直角三角形的斜边长度为13,一条直角边长度为5,则另一条直角边的长度为______。
3. 若直角三角形的两条直角边长度分别为a和b,斜边长度为c,则勾股定理可表示为:______。
三、解答题1. 在直角三角形DEF中,∠F为直角,DE=5,EF=12,求DF的长度。
2. 已知直角三角形的一条直角边长度为8,斜边长度为10,求另一条直角边的长度。
3. 判断下列各组长度是否能构成直角三角形,并说明理由:(1)7、24、25(2)9、12、15(3)10、16、204. 在直角三角形ABC中,∠C为直角,AC=6,BC=8,求∠A的正弦值。
5. 已知直角三角形的斜边长度为15,一条直角边长度为9,求该直角三角形的面积。
四、判断题1. 在直角三角形中,斜边长度总是大于任意一条直角边的长度。
()2. 如果一个三角形的三边长度分别为a、b、c,并且满足a^2 +b^2 = c^2,那么这个三角形一定是直角三角形。
()3. 在直角三角形中,斜边上的中线等于斜边的一半。
()五、应用题1. 一个直角三角形的一条直角边长为8厘米,斜边长为10厘米,求这个三角形的周长。
2. 在一个直角三角形中,斜边的长度是直角边长度的2倍,求斜边与较短直角边的长度比。
3. 一块直角三角形的土地,两条直角边的长度分别为60米和80米,求这块土地的面积。
勾股定理练习题(含答案)1.下列说法正确的是:C.若a、b、c是Rt△ABC的三边,A=90°,则a+b=c。
2.根据勾股定理,应该选B.a+b>c。
3.根据勾股定理,斜边长为√(k-1)²+(2k)²,即√(5k²-4)。
4.根据(a-b)(a+b-c)=0,可得a=b或a+b=c,所以它的形状为等腰三角形或直角三角形。
5.设另一直角边为x,则根据勾股定理得x²+9²=(x+1)²,解得x=40/9,周长为9+40/9+41/9=120/9=40/3,选C。
6.根据勾股定理得BC=√(13²-12²)=5,所以周长为15+13+5=33,选D。
7.根据勾股定理和中线长度公式得周长为2d+2√(d²-S),选C。
8.根据勾股定理得OP的长度为√(3²+4²)=5,选C。
9.根据勾股定理和海伦公式得BC=√(26²-24²/25)=17,选A。
10.根据(a-6)+b-8+c-10²=0,可得a+b+c=24,所以它的形状为等边三角形。
11.根据勾股定理和面积公式得面积为(8*15)/2=60,选D。
12.根据等腰三角形的性质,顶角的平分线与底边中线重合,所以答案为底边中线,即6.5.13.根据勾股定理得斜边长为√200=10√2,选D。
14.根据三角形边长比的性质,10:8:6无法构成三角形,所以不是三角形。
15.一个三角形的三边比为5:12:13,周长为60,则其面积为多少?16.在直角三角形ABC中,斜边AB=4,则AB+BC+AC=多少?17.如图,已知直角三角形ABC中,∠C=90°,BA=15,AC=12,以直角边BC为直径作半圆,则该半圆的面积为多少?18.若三角形三个内角的比为1:2:3,最短边长为1cm,最长边长为2cm,则该三角形三个角度数分别为多少?另外一边的平方是多少?19.长方形的一边长为3cm,面积为12cm²,则其一条对角线长为多少?20.如图,一个高为4m、宽为3m的大门,需要在对角线的顶点间加固一个木条,求该木条的长度。
勾股定理练习题及答案勾股定理练习题及答案勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
下面小编给大家带来勾股定理练习题及答案,欢迎大家阅读。
勾股定理练习题:1、在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为__________2、已知直角三角形两边的长为3和4,则此三角形的周长为__________.3、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要 __________元.4、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B 下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m5、将一根24cm的.筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm6、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1。
4m,BC=30米,请帮助小明计算出树高AB.(取1。
732,结果保留三个有效数字)◆典例分析如图1,一个梯子AB长2。
5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1。
5m,梯子滑动后停在DE的位置上,如图2,测得BD长为0。
5m,求梯子顶端A下落了多少米.解法指导:直角三角形中,已知一直角边和斜边是勾股定理的重要应用之一.勾股定理:a2+b2=c2的各种变式:a2=c2-b2,b2=c2-a2.应牢固掌握,灵活应用.分析:先利用勾股定理求出AC与CE的长,则梯子顶端A下落的距离为AE=AC-CF.解:在Rt△ABC中,AB2=AC2+BC2∴2.52=AC2+1。
勾股定理练习题及答案2.零件ABCD为直角梯形,AD∥BC,∠D=120°,斜腰DC=10cm,求另一腰AB的长。
3.直角三角形两直角边长分别为5和12,求其斜边上的高。
4.旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,求旗杆在断裂之前的高度。
5.冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,求这棵树折断之前的高度。
6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米。
7.无盖玻璃,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的的上口外侧距开口1cm的F处有一苍蝇,求蜘蛛急于扑货苍蝇充饥时所走的最短路线的长度。
8.已知零件AC=3cm,AB=4cm,BD=12cm,求CD的长。
9.四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长。
10.牧童在小河南4km的A处牧马,他正位于他的小屋B 的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,求他要走的最短路程。
11.某会展中心在会展期间准备将高5m,长13m,宽2m 的楼道上铺地毯,已知地毯平方米18元,请计算铺完这个楼道至少需要多少元钱。
12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?在直角三角形CBD中,根据勾股定理,得CD=BC+BD=25+12=37,所以CD=37勾股定理的逆定理可以表述为:若三边长满足a²+b²=c²,则这个三角形是直角三角形。
中考数学复习《勾股定理》专项练习题-附带有答案一、单选题1.线段a、b、c组成的三角形不是直角三角形的是()A.a=7,b=24,c=25 B.Ba= √41,b=4,c=5C.a= 34,b=1,c= 54D.a=40,b=50,c=602.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.65B.95C.125D.1653.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为()A.16 B.2 C.32 D.1304.如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C,使得△ABC是腰长为无理数的等腰三角形,点C的个数为()A.3 B.4 C.5 D.75.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中S A=10,S B=8,S C=9,S D=4则下列判断不正确的是()A.S E=18B.S F=13C.S M=31D.S M−S E=176.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.1B.√5C.2√2D.2√37.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么(a+b)2的值为().A.49 B.25 C.13 D.18.如图,在△ABC中∠C=60°,AC=4,BC=3 .分别以点A,B为圆心,大于12AB的长为半径作弧,两弧交于M、N两点,作直线MN交AC于点D,则CD的长为()A.1 B.75C.32D.3二、填空题9.如图,△ABC中AB=AC=10,BC=16,△ABC的面积是.10.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4 √2,则BC=.11.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是12.某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子底端A到左墙的距离AE为0.7m,梯子顶端D到地面的距离DE为2.4m,若梯子底端A保持不动,将梯子斜靠在右墙BC上,梯子顶端C到地面的距离CB为2m,则这两面直立墙壁之间的安全通道的宽BE为m.13.活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中∠A=30°,AC=3,∠A所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为三、解答题14.如图,点C在∠DAB内部,CD⊥AD于点D,CB⊥AB于点B,CD=CB,若AD=5,求AB的长.15.如图,在△ABC中,CD⊥AB,垂足为D.AD=1,BD=4,CD=2.求证:∠ACB=90°.16.如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C 点的距离.17.如图,在△ABC中,∠ACB的平分线CD交AB于点D,E为AC边上一点,且满足∠AED=2∠DCB.(1)求证:DE∥BC;(2)若∠B=90°,AD=6,AE=9,求CE的长.18.如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.答案1.D2.C3.A4.C5.D6.B7.A8.B9.4810.511.1.512.2.213.2√3或√314.解:解法一:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°在Rt△ABC与Rt△ADC中有AC=AC,CD=CB∴Rt△ABC≌Rt△ADC(HL)∴AB=AD=5解法二:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°∵CD=CB∴由勾股定理得:AB= √AC2−BC2 = √AC2−CD2 =AD=515.证明:∵CD是△ABC的高∴∠ADC=∠BDC=90°.∵AD=1,BD=4,CD=2∴AC2=AD2+CD2=12+22=5,BC2=BD2+CD2=42+22=20,AB2=(1+4)2=25.∴AC2+BC2=AB2.∴△ABC是直角三角形∴∠ACB=90°.16.解:由勾股定理得;BC2=AC2−AB2=252−202=225∴BC=15(米)∵BD=AB−AD=20−12=8(米)∴在Rt△BCD中,由勾股定理得CD=√DB2+BC2=√82+152=17∴此时小鸟到地面C点的距离17米.答;此时小鸟到地面C点的距离为17米.17.(1)证明:∵CD平分∠ACB∴∠ACD=∠DCB即∠ACB=2∠DCB又∵∠AED=2∠DCB∴∠ACB=∠AED∴DE//BC;(2)解:∵DE//BC∴∠EDC=∠BCD,∠B=∠ADE=90°∵∠BCD=∠ECD∴∠EDC=∠ECD∴ED=CE∵AD=6,AE=9∴DE=√AE2−AD2=√92−62=3√5∴CE=3√5.18.(1)解:∵△ABC是等边三角形∴AB=AC,∠BAC=∠C=60°又∵AD=CE ∴△ABD≌△CAE(SAS)∴∠BME=∠ABD+∠BAE=∠CAE+∠BAE=∠BAC=60°(2)解:①∵BH⊥AE ∠BME=60°∴∠HBM=30°∴BM=2MH∵△ABD≌△CAE ∴AE=BD=BM+MD=2MH+MD②过点E作EG⊥AB于点GBE=2EC=2 ∴AB=BC=3∴使用ABC=60°∴BG=1,AG=2,由勾股定理可得,GE= √3,AE= √7设HE=x,则AH= √7 -x由勾股定理得32-(√7 -x)2=22-x2解得x= √77再由勾般定理可得:BH= 3√21.7。
勾股定理练习题一、线段长度计算1、如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为。
2、△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是。
3、如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD 的边上.若点P到BD的距离为,则点P的个数为。
4、如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.5、如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A处,则蚂蚁吃到饭粒需爬行的最短路径是。
6、如图,在△ABC 中,AB=BC=4,AO=BO ,P 是射线CO 上的一个动点,∠AOC=60°,则当△PAB 为直角三角形时,AP 的长为 .7、正方形ABCD 的边长是4,点P 是AD 边的中点,点E 是正方形边上的一点.若△PBE 是等腰三角形,则腰长为 .8、在△ABC 中,AB=22,BC=1,∠ ABC=450,以AB 为一边作等腰直角三角形ABD ,使∠ABD=900,连接CD ,则线段CD 的长为 . 9、如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF=,则AB 的长是 .10、在底面直径为2cm ,高为3cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为 cm .(结果保留π)11、如图,直线l 1∥l 2∥l 3,且l 1与l 33l 2与l 3之间的距离为1.若点A ,B ,C 分别在直线l 1,l 2,l 3上,且AC ⊥BC ,AC =BC ,AC 与直线l 2交于点D ,则BD 的长为______.Dl 3l 2l 1ABC11、如图,△ABC 是等边三角形,D 为BC 边上一点,DE ⊥AB 于点E ,DF ⊥AC 于点F .若DE +DF =3,则△ABC 的周长为( )A .6B .63C .8D .43FACD EB12、太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B ,C 在EF 上,EF∥HG,EH⊥HG,AB=80cm ,AD=24cm ,BC=25cm ,EH=4cm ,则点A 到地面的距离是 cm .二、勾股定理与实际运用1、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行 米.2、我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是 尺.3、如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 米.4、“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A 到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)5、如图所示,一根长2.5米的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,此时OB 的距离为0.7米,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)如果木棍的顶端A沿墙下滑0.4米,那么木棍的底端B向外移动多少距离?(2)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.(3)在木棍滑动的过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求出面积的最大值.6、如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)7、如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B 向左转90°后直行400m到达梅花阁C,则点C的坐标是.三、勾股定理综合运用1、如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.2、如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.3、如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.4、若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c,试判定△ABC的形状。
勾股定理习题及答案勾股定理习题及答案勾股定理是数学中的一条重要定理,它描述了直角三角形中三边之间的关系。
在数学教育中,勾股定理常常作为基础知识进行教学,并且在习题中广泛应用。
本文将介绍一些关于勾股定理的习题,并提供详细的解答。
1. 习题一:已知直角三角形的斜边长为5,一条直角边长为3,求另一条直角边的长度。
解答:根据勾股定理,斜边的平方等于两直角边平方和。
设另一条直角边长度为x,则有5^2 = 3^2 + x^2。
化简得25 = 9 + x^2,进一步得到x^2 = 16。
因此,x的取值可以是正负4。
但由于长度不能为负数,所以另一条直角边的长度为4。
2. 习题二:已知直角三角形的两条直角边分别为6和8,求斜边的长度。
解答:同样利用勾股定理,斜边的平方等于两直角边平方和。
设斜边长度为y,则有y^2 = 6^2 + 8^2。
计算得到y^2 = 36 + 64,进一步得到y^2 = 100。
因此,斜边的长度为10。
3. 习题三:已知直角三角形的两条直角边分别为3和4,求斜边的长度。
解答:同样利用勾股定理,斜边的平方等于两直角边平方和。
设斜边长度为z,则有z^2 = 3^2 + 4^2。
计算得到z^2 = 9 + 16,进一步得到z^2 = 25。
因此,斜边的长度为5。
通过以上习题的解答,我们可以看到勾股定理在求解直角三角形问题中的应用。
它帮助我们确定了三角形的边长关系,从而解决了许多实际问题。
除了直角三角形,勾股定理还可以应用于其他几何形状。
例如,我们可以利用勾股定理计算矩形的对角线长度。
设矩形的长为a,宽为b,对角线的长度为c。
根据勾股定理,c^2 = a^2 + b^2。
这个公式可以帮助我们求解矩形的对角线长度,从而在实际问题中应用矩形的性质。
勾股定理的应用不仅限于几何学,它还可以在其他学科中发挥作用。
例如,物理学中的力学问题中,常常需要求解物体的速度、加速度等。
通过应用勾股定理,我们可以计算出物体在不同时间点的速度和加速度之间的关系,从而解决力学问题。
C
勾股定理
一、选择题(每小题3分,共30分)
1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定
2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长
(A )4 cm
(B )8 cm (C )10 cm
(D )12 cm
3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25
(B )14
(C )7
(D )7或25
4. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )64
5.将一根长20 cm 的筷子置于底面直径为5 cm,高为12 cm 的圆柱形水杯中,如图,设筷子露在杯子外面的长是h cm,则h 的取值范围是( )
(A)5<h<6 (B)6≤h ≤7 (C )7≤h ≤8 (D )1224≤≤h 6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(2
2
+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.
9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).
(A )12 (B )7 (C )5 (D )13
5米
3米
(第10题) (第11题) (第14题)
二、填空题(每小题4分,32分)
11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.
12. 在直角三角形ABC 中,斜边AB =2,则2
2
2
AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .
14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面
积是____________.
(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一
棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D
若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且
AE =3,BE =4,阴影部分的面积是______.
18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.
C
三、解答题(共38分)
19(8分). 如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?
C
1
21(10分).如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45°,点D 到地面的垂直距离DE=
23 m.求点B 到地面的垂直距离BC.
20.(10分) 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?
21.(10分)如图(1),分别以Rt △ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明S 1=S 2+S 3.
(1)如图(2),分别以Rt △ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,那么S 1、S 2、S 3之间有什么关系?(不必说理)
(2)如图(3),分别以Rt △ABC 三边为边向外作三个正三角形,其面积分别用S 1、S 2、S 3表示,请你确定S 1、S 2、S 3之间的关系并说明理由
.
A B
C
D
L
第21题图。