手机PCB_布局及布线方案
- 格式:doc
- 大小:1.23 MB
- 文档页数:26
华为PCB布线规范1. 一般规则1.1 PCB板上预划分数字、模拟、DAA信号布线区域。
1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。
1.3 高速数字信号走线尽量短。
1.4 敏感模拟信号走线尽量短。
1.5 合理分配电源和地。
1.6 DGND、AGND、实地分开。
1.7 电源及临界信号走线使用宽线。
1.8 数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。
2. 元器件放置2.1 在系统电路原理图中:a) 划分数字、模拟、DAA电路及其相关电路;b) 在各个电路中划分数字、模拟、混合数字/模拟元器件;c) 注意各IC芯片电源和信号引脚的定位。
2.2 初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。
Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。
2.3 初步划分完毕后,从Connector和Jack开始放置元器件:a) Connector和Jack周围留出插件的位置;b) 元器件周围留出电源和地走线的空间;c) Socket周围留出相应插件的位置。
2.4 首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):a) 确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;b) 将元器件放置在数字和模拟信号布线区域的交界处。
2.5 放置所有的模拟器件:a) 放置模拟电路元器件,包括DAA电路;b) 模拟器件相互靠近且放置在PCB上包含TXA1、TXA2、RIN、VC、VREF信号走线的一面;c) TXA1、TXA2、RIN、VC、VREF信号走线周围避免放置高噪声元器件;d) 对於串行DTE模块,DTE EIA/TIA-232-E系列接口信号的接收/驱动器尽量靠近Connector并远离高频时钟信号走线,以减少/避免每条线上增加的噪声抑制器件,如阻流圈和电容等。
手机PCB LAYOUT 规范一 PCB堆叠:1.关于天线.①.天线面积和高度:双极天线面积≥500m㎡,单极天线面积≥300m㎡,高度≥7mm.②.天线两馈点的中心距离应为4-5mm,且信号馈点下面所有层都不铺地,信号馈点最好靠板框内侧.③.天线投影区内尽量不要放任何元器件,天线附近不能放振子、SPEAKER、RECEIVER等较大的金属结构件.④.天线不要靠SIM卡座太近,最好远离.2. 射频,音频,基带布局.①.射频部分和音频部分尽量保持较大距离.②.音频部分尽量靠近基带.③.射频功放与RF收发IC最好单独屏蔽;并且射频功放尽量远离接收SAWF部分.④. MTK6139与RF3166要分别屏蔽,RF3166要单独屏蔽,与天线开关分开.发射匹配电路要靠近TRX输出端.⑤. 受话器部分电路元件的摆放近放在喇叭的附近且尽量对称放置.⑥. RF屏蔽盖, BT, FM屏蔽盖尽量使用现有机型相同的尺寸.目前的RF尽量参考632/X805的设计.3. 与工艺有关的问题.①. 贴片元件的焊盘边缘与BGA丝印框的间距≥0.4mm.贴片零件尽量不要靠近PCB边框.至少>=0.5mm以上.②. 贴片元件的焊盘边缘与屏蔽支架的焊盘边缘≥0.4mm,③. FPC焊盘的PCB边缘间距>2mm.④. 主板上FPC(KEY板,SIM板)的焊盘边缘间距≥0.4mm,其焊盘长度为≥1.8-2.8mm,宽度为0.4mm,其拖焊方向离焊盘最近的元件与FPC焊盘的边缘间距>5mm,拖锡位中心位置的两边5mm处不能有元件与接地铜皮,(过近会将造成附近的元件上锡)⑤. 需要后焊的元件,两焊点的内侧边缘间距>1mm,与其它的元件之间的边缘间距>1mm,方便焊接最少一个面在3mm之间没有其它的元件.ESD器件和压敏电阻是否都放在被保护线路的入口处,并且信号线的走向是否都先经过ESD器件,再连到其它的元件引脚上⑥. 对于折叠机和滑盖机应避免设计长度较长的FPC,最好两面加地屏蔽层;⑦. LED灯的放置方向尽量一致.⑧. 摆放零件整齐,美观.二. PCB Layout1. RF(MTK6139)部分.①. I/Q线一定要走差分线,(平行走线且等长),注意不被其他走线(上下两层的走线)干扰;②. 26MHz(SYSCLK)、VAFC、VAPC这三个网络必须地全包围的方式走线, PA EN、BANDSW、HB、LB、PCS RX、走线尽量作包地处理;SDATA、SCLK、LE三个网络的走线保持在同一层且保持在一个CLASS中③. RF的26MHz晶体线走表层,线宽4mil,不宜过宽,下面(一层和二层)的地要挖掉。
手机PCB LAYOUT目的:A. 是为PCB设计者提供必须遵循的规则和约定。
B. 提高PCB设计质量和设计效率。
提高PCB·的可生产性、可测试、可维护性手机PCB设计最大的特点:集成度高,集成了ABB,DBB,JPEG和PMU给Layout 带来:“217Hz”noise 问题;电源,数字和模拟部分的相互干扰问题;更复杂的EMI/EMC问题;第一节:设计任务受理A PCB设计申请流程当硬件项目人员需要进行PCB设计时,须在《PCB设计投板申请表》中提出投板申请,并经其项目经理和计划处批准后,流程状态到达指定的PCB设计部门审批,此时硬件项目人员须准备好以下资料:●经过评审的,完全正确的原理图,包括纸面文件和电子件;●带有MRPII元件编码的正式的BOM;●PCB结构图,应标明外形尺寸、安装孔大小及定位尺寸、接插件定位尺寸、禁止布线区等相关尺寸;●对于新器件,即无MRPII编码的器件,需要提供封装资料;●以上资料经指定的PCB设计部门审批合格并指定PCB设计者后方可开始PCB设计。
B. 理解设计要求并制定设计计划●仔细审读原理图,理解电路的工作条件。
如模拟电路的工作频率,数字电路的工作速度等与布线要求相关的要素。
理解电路的基本功能、在系统中的作用等相关问题。
●在与原理图设计者充分交流的基础上,确认板上的关键网络,如电源、时钟、高速总线等,了解其布线要求。
理解板上的高速器件及其布线要求。
●根据《硬件原理图设计规范》的要求,对原理图进行规范性审查。
●对于原理图中不符合硬件原理图设计规范的地方,要明确指出,并积极协助原理图设计者进行修改。
●在与原理图设计者交流的基础上制定出单板的PCB设计计划,填写设计记录表,计划要包含设计过程中原理图输入、布局完成、布线完成、信号完整性分析、光绘完成等关键检查点的时间要求。
设计计划应由PCB设计者和原理图设计者双方签字认可。
●必要时,设计计划应征得上级主管的批准。
一.手机PCB设计指南二.侧面分型与抽芯机构的设计当塑件上具有于开模方向不同的凸起、凹槽和孔时,模具必须有侧向分型或抽芯机构。
侧抽机构必须在塑件脱模之前完成抽芯动作,还必须在核模过程中让机构负位。
我所设计的模具有三处需要设置侧抽机构。
侧抽机构的种类专门多,一样分为机动、液动(气动)以及手动等三大类型。
机动式分型与抽芯机构利用注射机的开模运动,并对其方向进行变换后,可将模具侧向分型或把侧向型芯从制品中抽出。
这类机构尽管结构比较复杂,但操作方便,生产效率高,生产中应用最多。
液动(气动)以液压力或压缩空气为动力,适于抽拔侧向长型芯,其抽拔力大、抽拔距长,多用于管状结构抽芯,但液动或气动装置成本较高。
鸿准公司大多采纳机动式。
我所设计的模具结构中均采纳机动式侧抽机构。
下面分别介绍。
(一)插破侧抽机构此插破处邻近有三个小型的BOSS ,由于他们所在位置的限制,不能在公模侧设置斜销。
这种情形适于采纳侧抽芯机构,而型芯在母模侧,在公母模分模之前必须将其抽出,否则将破坏型芯之上的成品部分,这一点公模滑块是办不到的。
因为三板模在脱料板和母模板之间要进行第一次分模,可利用这一相对运动将侧芯型抽出,我考虑用母模滑块来实现。
将驱动杆固定在上固定板上,如此在脱料板与母模板分离时使滑块于驱动杆发生相对运动,将侧芯抽出。
开始考虑采纳较常用的斜撑销作为驱动杆,但脱料板与母模板分模行程较长且脱料板也有8mm的行程,所设置的驱动轧杆在完成抽芯任务后还要不阻碍分模的连续进行,与斜撑销相干涉的模板部分必须逃空(如图7.1.2示),如此不仅破坏了模板的强度,而且是斜销处在较差的受力状态,另外,由于还必须设置楔紧块以防止注射是滑块因受型腔内熔体压力发生位移及关心滑块负位,在原设定的模板宽度下难以设置,因此斜撑销不可取。
改为较适用于这种情形的拨杆作为驱动杆,其形状如图7.1.3 所示。
那么,此侧抽机构由拨杆、滑块、压板、固定装置及定位装置组成。
试谈华为PCB布线规范华为作为知名的通信设备和智能手机厂商,其也有着自己的PCB布线规范。
PCB布线是PCB板设计中的一项关键性工作,直接影响了电路性能和可靠性。
那么,华为的PCB布线规范又是如何的呢?一、高速信号差分布线规范对于高速差分信号线路的布线,华为要求必须采用差分对称的方式进行布线,并且在布线上要避免出现锯齿状的拐角和斜线,其目的是为了防止绕线带来的损耗和相位失真。
差分对称布线的目的在于避免常模(共模)噪声,以保证信号传输的稳定性和抗干扰性。
二、数字信号布线规范对于数字信号线,华为要求信号线应该有足够的间距,以避免信号之间的互相干扰。
同时,信号线路也要尽量避免与地线和电源线相交叉,以减少噪声的影响,提高信号质量。
此外,布线中还要注意保持信号线长度的一致性,避免信号的延迟和相位不一致。
三、模拟信号布线规范对于模拟信号线路的布线,华为要求信号线的布局和铺设要合理、简洁,保证其恰当的长度、宽度和距离,同时其要与电源线和接地线隔开一定的距离。
在板面布局方面,模拟信号线路要尽量远离数码信号线路和高压高功率信号线路,以保护模拟信号的精度和稳定性。
四、电源与地线布局规范电源和地线也是PCB板上的重要因素。
在布线时,华为要求电源线和地线要保持良好的密封性,并且电源和地线之间应该保持足够的距离,避免电磁相互干扰,导致板面布线不稳定。
此外,电源线和地线的宽度要和负载电流和电源电压匹配,保证电源线路的物理匹配和电流容量的匹配。
五、性能测试规范华为为了保证布线的质量,还设置了一套完整的测试标准和测试流程,以测试板面布线的性能和可靠性。
测试方案包括公司标准测试、正向和反向模式和反向测试等。
这一系列测试严格依照标准程序实施,确保了华为PCB布线质量的高可靠性。
综上所述,华为PCB布线规范是非常严格和完善的,从制定标准到性能测试,都保证了PCB板面布线的精密和稳定性。
关于布线规范的制定和实施,是未来PCB板面设计的一个重要趋势和方向,有望使PCB板设计更加精细和稳定。
在手机PCB Layout中布线要注意哪些事项在手机pcb Layout中要注意哪些问题,还有显示部分需要布线么?layer1:器件器件layer2:signal 大部分地址和数据signal、部分模拟线(对应3层是地)layer3:GND 部分走线(包括键盘面以及2层走不下的线)、GNDLayer4:带状线需穿过射频的基带模拟控制线(txramp_rf、afc_rf)、音频线、基带主芯片之间的模拟接口线、主时钟线Layer5:GND GNDLayer6:电源层VBAT、LDO_2V8_RF(150mA)、VMEM(150mA)、VEXT(150mA)、VCORE(80mA)、V ABB(50mA)、VSIM(20mA)、VVCXO(10mA)Layer7:signal 键盘面的走线Layer8:器件器件二.具体布线要求1.总原则:布线顺序:射频带状线及控制线(天线处)――基带射频模拟接口线(txramp_rf、afc_rf)――基带模拟线包括音频线与时钟线――模拟基带和数字基带接口线――电源线――数字线。
2. 射频带状线及控制线布线要求RFOG、RFOD网络为第四层的带状线,线宽为3mil,其上下两层均用地包住,带状线宽度根据实际板材厚度、以及走线长来确定;由于带状线均需打2~7的孔,注意底层在这些孔附近用地包住,并且其他层走线不要离这些孔太近;RX_GSM、RX_DCS、RX_PCS网络为顶层射频接收信号线,线宽走8mil;RFIGN、RFIGP、RFIDN、RFIDP、RFIPN、RFIPP网络为顶层和第二层射频接收信号线,定层线宽走8mil,第二层线宽走4mil;GSM_OUT、DCS_OUT、TX_GSM、TX_DCS/PCS网络为顶层功放输出发射信号线,线宽走12mil为宜;。
手机PCB-Layout-与布局经验汇总手机PCB-Layout-与布局经验汇总————————————————————————————————作者:————————————————————————————————日期:手机PCB Layout 与布局经验总结1.sirf reference典型的四,六层板,标准FR4材质2.所有的元件尽可能的表贴3.连接器的放置时,应尽量避免将噪音引入RF电路,尽量使用小的连接器,适当的接地4.所有的RF器件应放置紧密,使连线最短和交叉最小(关键)5.所有的pin有应严格按照reference schematic.所有IC电源脚应当有0.01uf的退藕电容,尽可能的离管脚近,而且必须要经过孔到地和电源层6.预留屏蔽罩空间给RF电路和基带部分,屏蔽罩应当连续的在板子上连接,而且应每隔100mil(最小)过孔到地层7.RF部分电路与数字部分应在板子上分开8.RF的地应直接的接到地层,用专门的过孔和和最短的线9.TCXO晶振和晶振相关电路应与高slew-rate数字信号严格的隔离10.开发板要加适当的测试点11.使用相同的器件,针对开发过程中的版本12.使RTC部分同数字,RF电路部分隔离,RTC电路要尽可能放在地层之上走线RF产品设计过程中降低信号耦合的PCB布线技巧新一轮蓝牙设备、无绳电话和蜂窝电话需求高潮正促使中国电子工程师越来越关注RF电路设计技巧。
RF电路板的设计是最令设计工程师感到头疼的部分,如想一次获得成功,仔细规划和注重细节是必须加以高度重视的两大关键设计规则。
射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种“黑色艺术”,但这个观点只有部分正确,RF电路板设计也有许多可以遵循的准则和不应该被忽视的法则。
不过,在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。
当然,有许多重要的RF设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以及波长和驻波,不过,本文将集中探讨与RF 电路板分区设计有关的各种问题。
手机充电器的PCB排版1:保证三个回路走线短而粗(1):输入部分。
AC交流电通过二极管组成的整流桥堆后通过电解电容进行滤波,要求保证此回路最短且走线尽量粗。
(2):输出部分:整流输出的脉冲电流通过电解电容进行滤波,要保证此回路最短且走线尽量粗。
(3):Vcc电压部分:变压器反馈绕组通过整流输出的脉冲电流再通过电解电容滤波,为了保证芯片及开关管的基极得到平滑的直流,必须要求此回路尽量短且整流后的走线通过电解电容后再给其使用。
注意在这回路的地线不能给芯片做参考零电位用。
2、主开关脉冲电流回路由输入电容出来后到变压器,从变压器出来的开关管的C极,C级到E极,E极到芯片的SW极,SW极到芯片的GND,芯片GND到输入电容地,这个回路走线尽量保持单独走,导线加粗一些。
3:输出大电流回路电流从变压器出来,通过二极管整流到第一个输出电容滤波,过了电容再接电感滤波,电感出来再通过第二个输出电容进行滤波,此时得到的电流便是纯净的直流供给负载使用,从负载回来的电流再回到第二个输出电容,接着再到第一个输出电容到变压器的地,这个回路尽量保持这个顺序,可得到输小的输出纹波。
4:芯片周围电路布线规则以芯片的地为中心,主开关电路地单独回到输入电容地,芯片供电地单独回到反馈绕组的滤波电容地,芯片所有外围元器件参考地都接到芯片的地脚(这个地线路上没有大电流通过)。
5:(1)安规方面:注意AC间走线距离,高压走线和低压走线的距离,一、二次间的绝缘距离。
(2)雷击方面:在输入间加合适的压敏电阻,也可加些放电针减缓压敏电阻的压力。
(3)静电方面:可在输入电感下面放些放电针进行放电,在输入和一次地也可放些放电针进行放电,主要是一定要输入AC交流电和二次地间有放电回路,因此可在交流电和二次地之间作放电针或露大面积铜加锡放电,但是距离太远起不到作用,一般方法是距离4mm开槽.(4)电磁兼容性:一次尖峰吸收电路和变压器到C极间加个0殴电阻起小电感的作用(R5),需要注意的开关高频走线一定要远离AC交流走线,其他各个一次控制部分也应远离AC交流走线(至少保证2.5mm以上的距离)。
一.天线的设计1,PIFA双频天线高度≥7mm,面积≥600mm2,有效容积≥5000mm3 PIFA2,三频天线高度≥7.5mm,面积≥700mm2,有效容积≥5500mm33,PIFA天线与连接器之间的压紧材料必须采用白色EV A(强度高/吸波少)4,圆形外置天线尽量设计成螺母旋入方式非圆形外置天线尽量设计成螺丝锁方式。
5,外置天线有电镀帽时,电镀帽与天线内部外壳不要设计成通孔式,否则ESD难通过。
6,内置单棍天线,电子器件离开天线X方向10(低限8),天线尽量靠壳体侧壁,天线倾斜不得超过5度,PCB天线触点背面不允许有金属。
7,内置双棍天线如附图所示,效果非常不好,硬件建议最好不要采用8,天线与SIM卡座的距离要大于30MM GUHE电工天线,周围3mm以内不允许布件,6mm以内不允许布超过2mm高的器件,古河天线正对的PCB板背面平面方向周围3mm以内不允许有任何金属件二.翻盖转轴处的设计:1,尽量采用直径5.8hinge,2,转轴头凸出转轴孔2.2,5.8X5.1端与壳体周圈间隙设计单边0.02,2D图上标识孔出模斜度为03,孔与hinge模具实配,为避免hinge本体金属裁切毛边与壳体干涉,4,5.8X5.1端壳体孔头部做一级凹槽(深度0.5,周圈比孔大单边0.1),5,4.6X4.2端与壳体周圈间隙设计单边0.02,,2D图上标识孔出模斜度为0,6,孔与hinge模具实配,hinge尾端(最细部分)与壳体周圈间隙设计0.17,深度方向5.8X5.1端间隙0,4.6X4.2端设计间隙≥0.2,试模适配到装入方便,翻盖无异音,T1前完成8,壳体装配转轴的孔周圈壁厚≥1.0 非转轴孔周圈壁厚≥1.29,主机、翻盖转轴孔开口处必须设计导向斜角≥C0.210,壳体非转轴孔与另壳体凸圈圆周配合间隙设计单边0.05,不允许喷漆,深度方向间隙≥0.2,试模适配到装入方便,翻盖无异音,T1前完成11,凸圈凸起高度1.5,壁厚≥0.8,内要设计加强筋(见附图)12,非转轴孔开口处必须设计导向斜角≥C0.2,凸圈必须设计导向圆角≥R0.213,HINGE处翻盖与主机壳体总宽度,单边设计0.1,试模适配到喷涂后装入方便,翻盖无异音,T1前完成14,翻转部分与静止部分壳体周圈间隙≥0.315,翻盖FPC过槽正常情况开到中心位,为FPC宽度修改留余量16,转轴位置胶太厚要掏胶防缩水17,转轴过10万次的要求,根部加圆角≥R0.3(左右凸肩根部)18,hinge翻开预压角5~7度(2.0英寸以上LCM双屏翻盖手机采用7度);合盖预压为20度左右19,拆hinge采用内拨方式时,hinge距离最近壳体或导光条距离≥5。
手机PCB LAYOUT目的:A. 是为PCB设计者提供必须遵循的规则和约定。
B. 提高PCB设计质量和设计效率。
提高PCB·的可生产性、可测试、可维护性手机PCB设计最大的特点:集成度高,集成了ABB,DBB,JPEG和PMU给Layout 带来:“217Hz”noise 问题;电源,数字和模拟部分的相互干扰问题;更复杂的EMI/EMC问题;第一节:设计任务受理A PCB设计申请流程当硬件项目人员需要进行PCB设计时,须在《PCB设计投板申请表》中提出投板申请,并经其项目经理和计划处批准后,流程状态到达指定的PCB设计部门审批,此时硬件项目人员须准备好以下资料:经过评审的,完全正确的原理图,包括纸面文件和电子件;带有MRPII元件编码的正式的BOM;PCB结构图,应标明外形尺寸、安装孔大小及定位尺寸、接插件定位尺寸、禁止布线区等相关尺寸;对于新器件,即无MRPII编码的器件,需要提供封装资料;以上资料经指定的PCB设计部门审批合格并指定PCB设计者后方可开始PCB设计。
B. 理解设计要求并制定设计计划仔细审读原理图,理解电路的工作条件。
如模拟电路的工作频率,数字电路的工作速度等与布线要求相关的要素。
理解电路的基本功能、在系统中的作用等相关问题。
在与原理图设计者充分交流的基础上,确认板上的关键网络,如电源、时钟、高速总线等,了解其布线要求。
理解板上的高速器件及其布线要求。
根据《硬件原理图设计规范》的要求,对原理图进行规范性审查。
对于原理图中不符合硬件原理图设计规范的地方,要明确指出,并积极协助原理图设计者进行修改。
在与原理图设计者交流的基础上制定出单板的PCB设计计划,填写设计记录表,计划要包含设计过程中原理图输入、布局完成、布线完成、信号完整性分析、光绘完成等关键检查点的时间要求。
设计计划应由PCB设计者和原理图设计者双方签字认可。
必要时,设计计划应征得上级主管的批准。
第二节:设计过程A. 创建网络表网络表是原理图与PCB的接口文件,PCB设计人员应根据所用的原理图和PCB设计工具的特性,选用正确的网络表格式,创建符合要求的网络表。
创建网络表的过程中,应根据原理图设计工具的特性,积极协助原理图设计者排除错误。
保证网络表的正确性和完整性。
确定器件的封装(PCB FOOTPRINT).创建PCB板根据单板结构图或对应的标准板框, 创建PCB设计文件;注意正确选定单板坐标原点的位置,原点的设置原则:1.单板左边和下边的延长线交汇点。
2.单板左下角的第一个焊盘。
板框四周倒圆角,倒角半径5mm。
特殊情况参考结构设计要求。
B. 布局根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性。
按工艺设计规范的要求进行尺寸标注。
根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。
根据某些元件的特殊要求,设置禁止布线区。
综合考虑PCB性能和加工的效率选择加工流程。
加工工艺的优选顺序为:元件面单面贴装——元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)——双面贴装——元件面贴插混装、焊接面贴装。
但对手机小而薄的特点,手机单板的组装形式通常为双面全SMD。
组装形式示意图PCB设计特征I、单面全SMD仅一面装有SMDII、双面全SMDA/B面装有SMDIII、单面元件混装仅A面装有元件,既有SMD又有THCIV、A面元件混装B面仅贴简单SMDA面混装,B面仅装简单SMDV、A面插件B面仅贴简单SMDA面装THC,B面仅装简单SMD注:简单SMD-----CHIP、SOT、引线中心距大于1 mm的SOP。
布局操作的基本原则1.遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.2.布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.3.布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.4.相同结构电路部分,尽可能采用“对称式”标准布局;5.按照均匀分布、重心平衡、版面美观的标准优化布局;6.器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil。
7.如有特殊布局要求,应双方沟通后确定。
8.同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
9.发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
10.元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
11.需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。
当安装孔需要接地时, 应采用分布接地小孔的方式与地平面连接。
焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直,阻排及SOP(PIN间距大于等于1.27mm)元器件轴向与传送方向平行;PIN间距小于1.27mm(50mil)的IC、SOJ、PLCC、QFP等有源元件避免用波峰焊焊接。
对于手机板元器件的间距建议按照以下原则设计(其中间隙指不同元器件最小间隙含焊盘间的间隙或元件体间隙)。
a) PLCC、QFP、SOP各自之间和相互之间间隙≥0.5mm(20 mil)。
b) PLCC、QFP、SOP与Chip 、SOT之间间隙≥0.3mm(12 mil)。
c) Chip、SOT各自之间和相互之间的间隙≥0.3mm(12 mil)。
d) BGA外形与其他元器件的间隙≥0.45mm(17.7 mil)。
如果考虑要Underfill,BGA外形(至少是一边)与其他元器件的间隙≥0.7mm(28 mil)。
0.7mm的间隙作为点胶边. 如果有位置相邻的多个BGA 元件, 则点胶边的位置应一致。
e) PLCC 表面贴转接插座与其他元器件的间隙≥0.5mm (20 mil )。
f) 表面贴片连接器与连接器之间的间隙≥0.5mm (20 mil )。
g) 元件到金边距离应该在0. 5mm(20mil)以上。
h) 元件到拼板分离边需大于1mm(40mil)以上。
(特殊元件除外,如耳机,底部连接器等)i) 后备电池如需手工焊接,其引脚周围应留出可以用电烙铁手工焊接的空间,一般引脚一侧应至少留出2mm 的空白区域,同时旁边不能有较高的元器件,见图。
不小于2后备电池一侧引脚与元器件最小距离要求12. IC 去偶电容的布局要尽量靠近IC 的电源管脚,并使之与电源和地之间形成的回路最短。
13. 元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。
14. 用于阻抗匹配目的阻容器件的布局,要根据其属性合理布置。
15. 串联匹配电阻的布局要靠近该信号的驱动端,距离一般不超过500mil 。
16. 匹配电阻、电容的布局一定要分清信号的源端与终端,对于多负载的终端匹配一定要在信号的最远端匹配。
17. 布局完成后打印出装配图供原理图设计者检查器件封装的正确性,并且确认单板、主板和接插件的信号对应关系,经确认无误后方可开始布线。
手机PCB 设计布局原则:器件集中/隔离原则保持不同部分信号的回路的通畅和相对独立器件布局与信号走向考虑以电路板及器件外形轮廓为设计出发点,有如下两种自然的信号走向:a. 从天线开始,经由接收机到基带器件,此为接收通路;b. 从基带器件开始,经由发射机再到天线,此为发射通路。
根据这两种自然的信号流向来确定初始的器件布局,可以粗略地将主要的RF 器件沿着代表着RX 和TX 的两条信号走向线 摆放,以便之后的布线更清楚直接。
各大主要器件之间要留有足够的空间来摆放周边辅助之用的小器件(诸如电阻、电容、电感、二三极管等) 及相关走线之用。
如果板上增加了周边器件或者出于保护最高优先级的走线考虑,可能需要对主要器件的摆放作一些轻微的挪动, 要不断调整器件位置、方向及RF连接位置以避免RF走线的交叉。
如果交叉走线确实无法避免,最好是让它们90度垂直交叉,并且这些射频走线一定要用微带线或者带状线。
在增加走线细节的同时,要持续地微调器件布局,直到获得一种比较合适的布局安排,所有的元件都在指定的空间内,关键信号线有个很好的安排,敏感线路与其它可能的干扰源或者干扰线路有足够大的隔离等等。
图1.1是MTK的一个参考布局安排。
1 RF:RF部分的器件摆放请参考提供的参考设计。
尤其注意滤波器、开关、隔离器等器件的位置。
将收发电路功能块电路分开,并采用屏蔽盖屏蔽。
布局保证RF走线尽量短,而且不要有交叉;大功率线(PA输出和从开关到天线的连线)优先级更高;RF 电路集中在一个区域内并采用屏蔽结构,减小对外辐射和加强抗干扰能力,在手机里,用以加强隔离保护的屏蔽区域通常包括Rx, Tx, 及基带(包含数字IC,电源管理IC)等部分。
屏蔽框的焊接走线要求在PCB板外层上,沿着屏蔽框的轮廓走,线宽大约是框壁厚的数倍,并且要有足够多的接地孔直接接到主地。
另外,屏蔽框焊接走线要与被屏蔽区域内的器件及走线保持足够的安全距离FEM要和天线端、PA靠近,保证比较小的插入损耗13MHz TCXO 远离天线口和接收前端匹配电路。
滤波电路要紧靠需滤波的IC引脚2 BBflash(MCP)同BB,以及其他总线设备的相对位置尽量按推荐的,保证BB到flash(MCP)的走线最顺畅;晶振必须放在离芯片最近的地方,但不要放在靠近板边的地方,包括13M(26M)、32.768K。
基带处理芯片及外部MEMORY尽量靠近,并采用屏蔽盖屏蔽。
屏蔽盖的焊接线的宽度视屏蔽盖厚度而定,但至少0.8mm,元器件距离屏蔽盖的焊接线距离至少0.3mm,同时要考虑器件的高度是否超出屏蔽盖。
3 电源(VBAT、LDO)电源VBAT和LDO输出线上的电容尽量靠近相应的管腿;芯片电源的滤波电容必须放在芯片PIN 旁边,比如AVDDVBO 、AVDDVB、AVDDBB、AVDDAUX、AVDD36、VBAT、VDD、VDDIO、VMEM、DVDD3V、V28、VDDNF、VLCD等等。
4 EMI/ESDBB 周围器件(特别是模拟部分)要严格按照参考设计FPC的EMI器件尽量靠近connector;ESD器件要就近摆放元器件与元器件外框边缘的距离大于0.25mm,一般最少为0.3mm,元器件距板边的距离至少0.3mm以上,结构定位器件除外升压电路,音频电路、FPC远离天线,充电电路远离RF、Audio以及其它敏感电路。